windows-nt/Source/XPSP1/NT/base/published/kxia64.w
2020-09-26 16:20:57 +08:00

1763 lines
43 KiB
OpenEdge ABL
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++ BUILD Version: 0004 // Increment this if a change has global effects
*/
//++
//
// Module Name:
//
// kxia64.h
//
// Abstract:
//
// This module contains the nongenerated part of the IA64 assembler
// header file. In general, it contains processor architecture constant
// information, however some assembler macros are also included.
//
// Author:
//
// bjl 12-Jun-95 (based on David N. Cutler (davec) 23-Mar-1990)
//
// Revision History:
//
//--
#define SHADOW_IRQL_IMPLEMENTATION 1
//
// N. B. Register aliases have been moved to ksia64.h (because we
// use assembler aliases not #define's)
//
// Register constants
// For setting non-rotating predicates (not used very much)
#define PS0 0x0001
#define PS1 0x0002
#define PS2 0x0004
#define PS3 0x0008
#define PS4 0x0010
#define PS5 0x0020
#define PRP 0x0080
#define PT0 0x0040
#define PT1 0x0100
#define PT2 0x0200
#define PT3 0x0400
#define PT4 0x0800
#define PT5 0x1000
#define PT6 0x2000
#define PT7 0x4000
#define PT8 0x8000
// For setting nomination register
#define NOM_BS0 0x0001
#define NOM_BS1 0x0002
#define NOM_BS2 0x0004
#define NOM_BS3 0x0008
#define NOM_BS4 0x0010
#define NOM_BS5 0x0020
#define NOM_BRP 0x0080
#define NOM_BT0 0x0040
#define NOM_BT1 0x0100
#define NOM_BT2 0x0200
#define NOM_BT3 0x0400
#define NOM_BT4 0x0800
#define NOM_BT5 0x1000
#define NOM_BT6 0x2000
#define NOM_BT7 0x4000
#define NOM_BT8 0x8000
//
//
// Define IA64 system registers.
//
// Define IA64 system register bit field offsets.
//
// Processor Status Register (PSR) Bit positions
// User / System mask
#define PSR_MBZ4 0
#define PSR_BE 1
#define PSR_UP 2
#define PSR_AC 3
#define PSR_MFL 4
#define PSR_MFH 5
// PSR bits 6-12 reserved (must be zero)
#define PSR_MBZ0 6
#define PSR_MBZ0_V 0x1ffi64
// System only mask
#define PSR_IC 13
#define PSR_I 14
#define PSR_PK 15
#define PSR_MBZ1 16
#define PSR_MBZ1_V 0x1i64
#define PSR_DT 17
#define PSR_DFL 18
#define PSR_DFH 19
#define PSR_SP 20
#define PSR_PP 21
#define PSR_DI 22
#define PSR_SI 23
#define PSR_DB 24
#define PSR_LP 25
#define PSR_TB 26
#define PSR_RT 27
// PSR bits 28-31 reserved (must be zero)
#define PSR_MBZ2 28
#define PSR_MBZ2_V 0xfi64
// Neither mask
#define PSR_CPL 32
#define PSR_CPL_LEN 2
#define PSR_IS 34
#define PSR_MC 35
#define PSR_IT 36
#define PSR_ID 37
#define PSR_DA 38
#define PSR_DD 39
#define PSR_SS 40
#define PSR_RI 41
#define PSR_RI_LEN 2
#define PSR_ED 43
#define PSR_BN 44
// PSR bits 45-63 reserved (must be zero)
#define PSR_MBZ3 45
#define PSR_MBZ3_V 0xfffffi64
//
// Privilege levels
//
#define PL_KERNEL 0
#define PL_USER 3
//
// Instruction set (IS) bits
//
#define IS_EM 0
#define IS_IA 1
// Floating Point Status Register (FPSR) Bit positions
// Status Field 0 - Flags
#define FPSR_VD 0
#define FPSR_DD 1
#define FPSR_ZD 2
#define FPSR_OD 3
#define FPSR_UD 4
#define FPSR_ID 5
// Status Field 0 - Controls
#define FPSR_FTZ0 6
#define FPSR_WRE0 7
#define FPSR_PC0 8
#define FPSR_RC0 10
#define FPSR_TD0 12
// Status Field 0 - Flags
#define FPSR_V0 13
#define FPSR_D0 14
#define FPSR_Z0 15
#define FPSR_O0 16
#define FPSR_U0 17
#define FPSR_I0 18
// Status Field 1 - Controls
#define FPSR_FTZ1 19
#define FPSR_WRE1 20
#define FPSR_PC1 21
#define FPSR_RC1 23
#define FPSR_TD1 25
// Status Field 1 - Flags
#define FPSR_V1 26
#define FPSR_D1 27
#define FPSR_Z1 28
#define FPSR_O1 29
#define FPSR_U1 30
#define FPSR_I1 31
// Status Field 2 - Controls
#define FPSR_FTZ2 32
#define FPSR_WRE2 33
#define FPSR_PC2 34
#define FPSR_RC2 36
#define FPSR_TD2 38
// Status Field 2 - Flags
#define FPSR_V2 39
#define FPSR_D2 40
#define FPSR_Z2 41
#define FPSR_O2 42
#define FPSR_U2 43
#define FPSR_I2 44
// Status Field 3 - Controls
#define FPSR_FTZ3 45
#define FPSR_WRE3 46
#define FPSR_PC3 47
#define FPSR_RC3 49
#define FPSR_TD3 51
// Status Field 3 - Flags
#define FPSR_V3 52
#define FPSR_D3 53
#define FPSR_Z3 54
#define FPSR_O3 55
#define FPSR_U3 56
#define FPSR_I3 57
// FPSR bits 58-63 Reserved -- Must be zero
#define FPSR_MBZ0 58
#define FPSR_MBZ0_V 0x3fi64
//
// For setting up FPSR on kernel entry
//
// all FP exceptions masked
//
// rounding to nearest, 64-bit precision, wide range enabled for FPSR.fs1
//
// rounding to nearest, 53-bit precision, wide range disabled for FPSR.fs0
//
#define FPSR_FOR_KERNEL 0x9804C0270033F
//
// Define hardware Task Priority Register (TPR)
//
// TPR bit positions
// Bits 0 - 3 ignored
#define TPR_MIC 4
#define TPR_MIC_LEN 4
// Bits 8 - 15 reserved
// TPR.mmi is always 0 in NT
#define TPR_MMI 16
// Bits 17 - 63 ignored
//
// The current IRQL is maintained in the TPR.mic field. The
// shift count is the number of bits to shift right to extract the
// IRQL from the TPR. See the GET/SET_IRQL macros.
//
#define TPR_IRQL_SHIFT TPR_MIC
//
// To go from vector number <-> IRQL we just do a shift
//
#define VECTOR_IRQL_SHIFT TPR_IRQL_SHIFT
//
// Define hardware Interrupt Status Register (ISR)
//
// ISR bit positions
#define ISR_CODE 0
#define ISR_CODE_LEN 16
#define ISR_CODE_MASK 0xFFFF
#define ISR_IA_VECTOR 16
#define ISR_IA_VECTOR_LEN 8
// ISR bits 24-31 reserved
#define ISR_MBZ0 24
#define ISR_MBZ0_V 0xff
#define ISR_X 32
#define ISR_W 33
#define ISR_R 34
#define ISR_NA 35
#define ISR_SP 36
#define ISR_RS 37
#define ISR_IR 38
#define ISR_NI 39
// ISR bit 40 reserved
#define ISR_MBZ1 40
#define ISR_EI 41
#define ISR_ED 43
// ISR bits 44-63 reserved
#define ISR_MBZ2 44
#define ISR_MBZ2_V 0xfffff
//
// ISR codes for General Exceptions: ISR{7:4}
//
#define ISR_ILLEGAL_OP 0 // Illegal operation fault
#define ISR_PRIV_OP 1 // Privileged operation fault
#define ISR_PRIV_REG 2 // Privileged register fault
#define ISR_RESVD_REG 3 // Reserved register/field fault
#define ISR_ILLEGAL_ISA 4 // Disabled instruction set transition fault
#define ISR_ILLEGAL_HAZARD 8 // Illegal hazard fault
//
// ISR codes for Nat Consumption Faults: ISR{7:4}
//
#define ISR_NAT_REG 1 // Nat Register Consumption fault
#define ISR_NAT_PAGE 2 // Nat Page Consumption fault
//
// For Traps ISR{3:0}
//
// FP trap
#define ISR_FP_TRAP 0
// Lower privilege transfer trap
#define ISR_LP_TRAP 1
// Taken branch trap
#define ISR_TB_TRAP 2
// Single step trap
#define ISR_SS_TRAP 3
// Unimplemented instruction address trap
#define ISR_UI_TRAP 4
//
// Define hardware Default Control Register (DCR)
//
// DCR bit positions
#define DCR_PP 0
#define DCR_BE 1
#define DCR_LC 2
// DCR bits 3-7 reserved
#define DCR_DM 8
#define DCR_DP 9
#define DCR_DK 10
#define DCR_DX 11
#define DCR_DR 12
#define DCR_DA 13
#define DCR_DD 14
#define DCR_DEFER_ALL 0x7f00
// DCR bits 16-63 reserved
#define DCR_MBZ1 2
#define DCR_MBZ1_V 0xffffffffffffi64
// Define hardware RSE Configuration Register
//
// RS Configuration (RSC) bit field positions
#define RSC_MODE 0
#define RSC_PL 2
#define RSC_BE 4
// RSC bits 5-15 reserved
#define RSC_MBZ0 5
#define RSC_MBZ0_V 0x3ff
#define RSC_LOADRS 16
#define RSC_LOADRS_LEN 14
// RSC bits 30-63 reserved
#define RSC_MBZ1 30
#define RSC_MBZ1_LEN 34
#define RSC_MBZ1_V 0x3ffffffffi64
// RSC modes
// Lazy
#define RSC_MODE_LY (0x0)
// Store intensive
#define RSC_MODE_SI (0x1)
// Load intensive
#define RSC_MODE_LI (0x2)
// Eager
#define RSC_MODE_EA (0x3)
// RSC Endian bit values
#define RSC_BE_LITTLE 0
#define RSC_BE_BIG 1
// RSC while in kernel: enabled, little endian, pl = 0, eager mode
#define RSC_KERNEL ((RSC_MODE_EA<<RSC_MODE) | (RSC_BE_LITTLE<<RSC_BE))
// RSE disabled: disabled, pl = 0, little endian, eager mode
#define RSC_KERNEL_DISABLED ((RSC_MODE_LY<<RSC_MODE) | (RSC_BE_LITTLE<<RSC_BE))
//
// Define Interruption Function State (IFS) Register
//
// IFS bit field positions
//
#define IFS_IFM 0
#define IFS_IFM_LEN 38
#define IFS_MBZ0 38
#define IFS_MBZ0_V 0x1ffffffi64
#define IFS_V 63
#define IFS_V_LEN 1
//
// IFS is valid when IFS_V = IFS_VALID
//
#define IFS_VALID 1
//
// define the width of each size field in PFS/IFS
//
#define PFS_PPL 62 // pfs.ppl bit location
#define PFS_EC_SHIFT 52
#define PFS_EC_SIZE 6
#define PFS_EC_MASK 0x3F
#define PFS_SIZE_SHIFT 7
#define PFS_SIZE_MASK 0x7F
#define NAT_BITS_PER_RNAT_REG 63
#define RNAT_ALIGNMENT (NAT_BITS_PER_RNAT_REG << 3)
//
// Define Region Register (RR)
//
// RR bit field positions
//
#define RR_VE 0
#define RR_MBZ0 1
#define RR_PS 2
#define RR_PS_LEN 6
#define RR_RID 8
#define RR_RID_LEN 24
#define RR_MBZ1 32
//
// indirect mov index for loading RR
//
#define RR_INDEX 61
#define RR_INDEX_LEN 3
//
// Define low order 8 bit's of RR. All RR's have same PS and VE
//
#define RR_PS_VE ( (PAGE_SHIFT<<RR_PS) | (1<<RR_VE) )
//
// Number of region registers used by NT
//
#define NT_RR_SIZE 4
//
// Total number of region registers
//
#define RR_SIZE 8
//
// Define Protection Key Register (PKR)
//
// PKR bit field positions
//
#define PKR_V 0
#define PKR_WD 1
#define PKR_RD 2
#define PKR_XD 3
#define PKR_MBZ0 4
#define PKR_KEY 8
#define PKR_KEY_LEN 24
#define PKR_MBZ1 32
//
// Define low order 8 bit's of PKR. All valid PKR's have same V, WD, RD, XD
//
#define PKR_VALID (1<<PKR_V)
//
// Number of protection key registers
//
#define PKRNUM 16
//
// Define Interrupt TLB Insertion Register
//
// ITIR bit field positions
//
#define ITIR_RV0 0
#define ITIR_PS 2
#define ITIR_KEY 8
#define ITIR_RV1 32
//
// The following definitions are obsolete but
// there are codes in ke/ia64 reference them.
//
// Define Interruption Translation Register (IDTR/IITR)
//
// IDTR/IITR bit field positions
//
#define IDTR_MBZ0 0
#define IDTR_PS 2
#define IDTR_KEY 8
#define IDTR_MBZ1 32
#define IDTR_IGN0 48
#define IDTR_PPN 56
#define IDTR_MBZ2 63
#define IITR_MBZ0 IDTR_MBZ0
#define IITR_PS IDTR_PS
#define IITR_KEY IDTR_KEY
#define IITR_MBZ1 IDTR_MBZ1
#define IITR_IGN0 IDTR_IGN0
#define IITR_PPN IDTR_PPN
#define IITR_MBZ2 IDTR_MBZ2
//
// ITIR bit field masks
#define IITR_PPN_MASK 0x7FFF000000000000
#define IITR_ATTRIBUTE_PPN_MASK 0x0003FFFFFFFFF000
//
// Define Translation Insertion Format (TR)
//
// TR bit field positions
//
#define TR_P 0
#define TR_RV0 1
#define TR_MA 2
#define TR_A 5
#define TR_D 6
#define TR_PL 7
#define TR_AR 9
#define TR_PPN 13 // must be same as PAGE_SHIFT
#define TR_RV1 50
#define TR_ED 52
#define TR_IGN0 53
//
// Macros for generating TR value
//
#define TR_VALUE(ed, ppn, ar, pl, d, a, ma, p) \
( ( ed << TR_ED ) | \
( ppn & IITR_ATTRIBUTE_PPN_MASK) | \
( ar << TR_AR ) | \
( pl << TR_PL ) | \
( d << TR_D ) | \
( a << TR_A ) | \
( ma << TR_MA ) | \
( p << TR_P ) \
)
#define ITIR_VALUE(key, ps) \
( ( ps << ITIR_PS ) | \
( key << ITIR_KEY ) \
)
//
// Platform related virtual address constants
//
#define VIRTUAL_IO_BASE 0xe0000000f0000000
#define VIRTUAL_PAL_BASE 0xe0000000f4000000
//
// Page size definitions
//
#define PS_4K 0xC // 0xC=12, 2^12=4K
#define PS_8K 0xD // 0xD=13, 2^13=8K
#define PS_16K 0xE // 0xE=14, 2^14=16K
#define PS_64K 0x10 // 0x10=16, 2^16=64K
#define PS_256K 0x12 // 0x12=18, 2^18=256K
#define PS_1M 0x14 // 0x14=20, 2^20=1M
#define PS_4M 0x16 // 0x16=22, 2^22=4M
#define PS_16M 0x18 // 0x18=24, 2^24=16M
#define PS_64M 0x1a // 0x1a=26, 2^26=64M
#define PS_256M 0x1c // 0x1a=26, 2^26=64M
//
// Debug Registers definitions
// For the break conditions (mask):
//
#define DR_MASK 0 // Mask
#define DR_MASK_LEN 56 // Mask length
#define DR_PLM0 56 // Enable privlege level 0
#define DR_PLM1 57 // Enable privlege level 1
#define DR_PLM2 58 // Enable privlege level 2
#define DR_PLM3 59 // Enable privlege level 3 (user)
#define DR_IG 60 // Ignore
#define DR_RW 62 // Read/Write
#define DR_RW_LEN 2 // R/W length
#define DR_X 63 // Execute
//
// Macro to generate mask value from bit position
// N.B. If this macro is used in a C expression and the result is a
// 64-bit, the "value" argument shoud be cast as "unsigned long long" to
// produce a 64-bit mask.
//
#define MASK_IA64(bp,value) (value << bp)
//
// Interrupt Vector Definitions
//
#define APC_VECTOR APC_LEVEL << VECTOR_IRQL_SHIFT
#define DISPATCH_VECTOR DISPATCH_LEVEL << VECTOR_IRQL_SHIFT
//
// Define interruption vector offsets
//
#define OFFSET_VECTOR_BREAK 0x2800 // Break instruction vector
#define OFFSET_VECTOR_EXT_INTERRUPT 0x2c00 // External interrupt vector
#define OFFSET_VECTOR_EXC_GENERAL 0x4400 // General exception vector
//
//
// Define IA64 page mask values.
//
#define PAGEMASK_4KB 0x0 // 4kb page
#define PAGEMASK_16KB 0x3 // 16kb page
#define PAGEMASK_64KB 0xf // 64kb page
#define PAGEMASK_256KB 0x3f // 256kb page
#define PAGEMASK_1MB 0xff // 1mb page
#define PAGEMASK_4MB 0x3ff // 4mb page
#define PAGEMASK_16MB 0xfff // 16mb page
//
// Define IA64 primary cache states.
//
#define PRIMARY_CACHE_INVALID 0x0 // primary cache invalid
#define PRIMARY_CACHE_SHARED 0x1 // primary cache shared (clean or dirty)
#define PRIMARY_CACHE_CLEAN_EXCLUSIVE 0x2 // primary cache clean exclusive
#define PRIMARY_CACHE_DIRTY_EXCLUSIVE 0x3 // primary cache dirty exclusive
//
// Page table constants
//
#define PS_SHIFT 2
#define PS_LEN 6
#define PTE_VALID_MASK 1
#define PTE_ACCESS_MASK 0x20
#define PTE_NOCACHE 0x10
#define PTE_LARGE_PAGE 54
#define PTE_PFN_SHIFT 8
#define PTE_PFN_LEN 24
#define PTE_ATTR_SHIFT 1
#define PTE_ATTR_LEN 5
#define PTE_PS 55
#define PTE_OFFSET_LEN 10
#define PDE_OFFSET_LEN 10
#define VFN_LEN 19
#define VFN_LEN64 24
#define TB_USER_MASK 0x180
#define PTE_DIRTY_MASK 0x40
#define PTE_WRITE_MASK 0x400
#define PTE_EXECUTE_MASK 0x200
#define PTE_CACHE_MASK 0x0
#define PTE_EXC_DEFER 0x10000000000000
#define VALID_KERNEL_PTE (PTE_VALID_MASK|PTE_ACCESS_MASK|PTE_WRITE_MASK|PTE_CACHE_MASK|PTE_DIRTY_MASK)
#define VALID_KERNEL_EXECUTE_PTE (PTE_VALID_MASK|PTE_ACCESS_MASK|PTE_EXECUTE_MASK|PTE_WRITE_MASK|PTE_CACHE_MASK|PTE_DIRTY_MASK|PTE_EXC_DEFER)
#define PTE_VALID 0
#define PTE_ACCESS 5
#define PTE_OWNER 7
#define PTE_WRITE 10
#define ATE_INDIRECT 62
#define ATE_MASK 0xFFFFFFFFFFFFF9DE
#define ATE_MASK0 0x621
#define PAGE4K_SHIFT 12
#define ALT4KB_BASE 0x6FC00000000
#define ALT4KB_END 0x6FC00400000
#define VRN_SHIFT 61
#define KSEG3_VRN 4
#define KSEG4_VRN 5
#define MAX_PHYSICAL_SHIFT 44
//
// Translation register usage
//
//
// In NTLDR
//
//
// Boot loader CONFIGFLAG definitions.
//
#define DISABLE_TAR_FIX 0
#define DISABLE_BTB_FIX 1
#define DISABLE_DATA_BP_FIX 2
#define DISABLE_DET_STALL_FIX 3
#define ENABLE_FULL_DISPERSAL 4
#define ENABLE_TB_BROADCAST 5
#define DISABLE_CPL_FIX 6
#define ENABLE_POWER_MANAGEMENT 7
#define DISABLE_IA32BR_FIX 8
#define DISABLE_L1_BYPASS 9
#define DISABLE_VHPT_WALKER 10
#define DISABLE_IA32RSB_FIX 11
#define DISABLE_INTERRUPTION_LOG 13
#define DISABLE_UNSAFE_FILL 14
#define DISABLE_STORE_UPDATE 15
#define BL_4M 0x00400000
#define BL_16M 0x01000000
#define BL_20M 0x01400000
#define BL_24M 0x01800000
#define BL_28M 0x01C00000
#define BL_32M 0x02000000
#define BL_36M 0x02400000
#define BL_40M 0x02800000
#define BL_48M 0x03000000
#define BL_64M 0x04000000
#define BL_80M 0x05000000
#define TR_INFO_TABLE_SIZE 10
#define BL_SAL_INDEX 0
#define BL_KERNEL_INDEX 1
#define BL_DRIVER0_INDEX 2 // freed during the phase 0 initialization
#define BL_DRIVER1_INDEX 3 // freed during the phase 0 initialization
#define BL_DECOMPRESS_INDEX 4 // freed before entering kernel
#define BL_IO_PORT_INDEX 5 // freed before entering kernel
#define BL_PAL_INDEX 6
#define BL_LOADER_INDEX 7 // freed before entering kernel
//
// In NTOSKRNL
//
#define DTR_KIPCR_INDEX 0
#define DTR_KERNEL_INDEX 1
#define DTR_DRIVER0_INDEX 2 // freed during the phase 0 initialization
#define DTR_DRIVER1_INDEX 3 // freed during the phase 0 initialization
#define DTR_KTBASE_INDEX 2
#define DTR_UTBASE_INDEX 3
#define DTR_VIDEO_INDEX 3 // not used
#define DTR_KIPCR2_INDEX 4 // freed in the phase 0 initialization
#define DTR_STBASE_INDEX 4
#define DTR_IO_PORT_INDEX 5
#define DTR_KTBASE_INDEX_TMP 6 // freed during the phase 0 initialization
#define DTR_UTBASE_INDEX_TMP 7 // freed during the phase 0 initialization
#define DTR_HAL_INDEX 6
#define DTR_PAL_INDEX 6
#define ITR_EPC_INDEX 0
#define ITR_KERNEL_INDEX 1
#define ITR_DRIVER0_INDEX 2 // freed during the phase 0 initialization
#define ITR_DRIVER1_INDEX 3 // freed during the phase 0 initialization
#define ITR_HAL_INDEX 4
#define ITR_PAL_INDEX 4
//
// TLB forward progress queue
//
#define NUMBER_OF_FWP_ENTRIES 8
//
// Define the kernel base address
//
#define KERNEL_BASE KADDRESS_BASE+0x80000000
#define KERNEL_BASE2 KADDRESS_BASE+0x81000000
//
// Initial value of data TR's for kernel/user PCR
// ed ign res ppn ar pl d a ma p
// kernel: 0 000 0000 0x0 010 00 1 1 000 1
// user: 0 000 0000 0x0 000 11 1 1 000 1
//
#define PDR_TR_INITIAL TR_VALUE(0, 0, 2, 0, 1, 1, 0, 1)
#define KIPCR_TR_INITIAL TR_VALUE(0, 0, 2, 0, 1, 1, 0, 1)
#define USPCR_TR_INITIAL TR_VALUE(0, 0, 0, 3, 1, 1, 0, 1)
//
// Initial value of PTA (64-bits)
// base (region 0) res vf size res ve
// 0x00000000000 0 0 00000 1 000000 0 1
//
#define PTA_INITIAL 0x001
//
// Initial value of DCR (64-bits)
// res du dd da dr dx dk dp dm res lc be pp
// 0x000000000000 1 1 1 1 1 1 1 1 00000 1 0 1
//
#define DCR_INITIAL 0x0000000000007f05
//
// Initial value of PSR low (32-bits)
// res rt tb lp db si di pp sp dfh dfl dt rv pk i ic res mfh mfl ac up be res
// 0000 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0000 00 0 0 1 0 0 0
//
#define PSRL_INITIAL 0x086a2008
//
// Initial value of user PSR (64-bits)
// Bits 63-32
// res bn ed ri ss dd da id it mc is cpl
// 0000 0000 0000 0000 000 1 0 00 0 0 0 0 1 0 0 11
// Bits 31-0
// res rt tb lp db si di pp sp dfh dfl dt rv pk i ic res mfh mfl ac up be res
// 0000 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0000 00 0 0 1 0 0 0
//
#define USER_PSR_INITIAL 0x00001013082a6008i64
//
// Initial value of user FPSR (64-bits)
//
// all FP exceptions masked
//
// rounding to nearest, 64-bit precisoin, wide range enabled for FPSR.fs1
//
// rounding to nearest, 53-bit precision, wide range disabled for FPSR.fs0
//
#define USER_FPSR_INITIAL 0x9804C0270033F
//
// Initial value of DCR (64-bits)
// res dd da dr dx dk dp dm res lc be pp
// 0x000000000000 1 1 1 1 1 1 1 00000 1 0 1
//
#define USER_DCR_INITIAL 0x0000000000007f05i64
//
// Initial value of user RSC (low 32-bits)
// Mode: Lazy. Little endian. User PL.
//
#define USER_RSC_INITIAL ((RSC_MODE_LY<<RSC_MODE) \
| (RSC_BE_LITTLE<<RSC_BE) \
| (0x3<<RSC_PL))
//
//
// IA64 Software conventions
//
// Bytes in stack scratch area
#define STACK_SCRATCH_AREA 16
//
// Constants for trap
//
// Bits to shift for computing interrupt routine funtion pointer: fp = base + irql<<INT_ROUTINE_SHIFT
#ifdef _WIN64
#define INT_ROUTINES_SHIFT 3
#else
#define INT_ROUTINES_SHIFT 2
#endif
//
//
// Define disable and restore interrupt macros.
// Note: Serialization is implicit for rsm
//
#define DISABLE_INTERRUPTS(reg) \
mov reg = psr ;\
rsm 1 << PSR_I
//
// Restore psr.i bit based on value of bit PSR_I in reg
// Enable does not do serialization, so interrupts may not be enabeld for
// a number of cycles after ssm.
//
#define RESTORE_INTERRUPTS(reg) \
tbit##.##nz pt0,pt1 = reg, PSR_I;; ;\
(pt0) ssm 1 << PSR_I ;\
(pt1) rsm 1 << PSR_I
//
// The FAST versions can be used when it is not necessary to save/restore
// the previous interrupt enable state.
//
#define FAST_DISABLE_INTERRUPTS \
rsm 1 << PSR_I
//
// FAST ENABLE does not do serialization -- we don't care if interrupt
// enable is not visible for few instructions.
//
#define FAST_ENABLE_INTERRUPTS \
ssm 1 << PSR_I
//
//
// Define TB and cache parameters.
//
#define PCR_ENTRY 0 // TB entry numbers (2) for the PCR
#define PDR_ENTRY 2 // TB entry number (1) for the PDR
#define LARGE_ENTRY 3 // TB entry number (1) for large entry
#define DMA_ENTRY 4 // TB entry number (1) for DMA/InterruptSource
#define TB_ENTRY_SIZE (3 * 4) // size of TB entry
#define FIXED_BASE 0 // base index of fixed TB entries
#define FIXED_ENTRIES (DMA_ENTRY + 1) // number of fixed TB entries
//
// Define cache parameters
//
#define DCACHE_SIZE 4 * 1024 // size of data cache in bytes
#define ICACHE_SIZE 4 * 1024 // size of instruction cache in bytes
#define MINIMUM_CACHE_SIZE 4 * 1024 // minimum size of cache
#define MAXIMUM_CACHE_SIZE 128 * 1024 // maximum size fo cache
//
// RID and Sequence number limits.
// Start with 1 because 0 means not initialized.
// RID's are 24 bits.
//
#define KSEG3_RID 0x00000
#define START_GLOBAL_RID 0x00001
#define HAL_RID 0x00002
#define START_SESSION_RID 0x00003
#define START_PROCESS_RID 0x00004
//
// making the maximum RID to 18-bit, temp fix for Merced
//
#define MAXIMUM_RID 0x3FFFF
//
// Sequence numbers are 32 bits
// Start with 1 because 0 means not initialized.
//
#define START_SEQUENCE 1
#define MAXIMUM_SEQUENCE 0xFFFFFFFFFFFFFFFF
//
//
// Define subtitle macro
//
#define SBTTL(x)
//
// Define procedure entry macros
//
#define PROLOGUE_BEGIN .##prologue;
#define PROLOGUE_END .##body;
#define ALTERNATE_ENTRY(Name) \
.##global Name; \
.##type Name, @function; \
Name::
#define CPUBLIC_LEAF_ENTRY(Name,i) \
.##text; \
.##proc Name##@##i; \
Name##@##i::
#define LEAF_ENTRY(Name) \
.##text; \
.##global Name; \
.##proc Name; \
Name::
#define LEAF_SETUP(i,l,o,r) \
.##regstk i,l,o,r; \
alloc r31=ar##.##pfs,i,l,o,r
#define CPUBLIC_NESTED_ENTRY(Name,i) \
.##text; \
.##proc Name##@##i; \
.##unwentry; \
Name##@##i::
#define NESTED_ENTRY_EX(Name, Handler) \
.##text; \
.##global Name; \
.##proc Name; \
.##personality Handler; \
Name::
#define NESTED_ENTRY(Name) \
.##text; \
.##global Name; \
.##proc Name; \
Name::
// Note: use of NESTED_SETUP requires number of locals (l) >= 2
#define NESTED_SETUP(i,l,o,r) \
.##regstk i,l,o,r; \
.##prologue 0xC, loc0; \
alloc savedpfs=ar##.##pfs,i,l,o,r ;\
mov savedbrp=brp;
//
// Define procedure exit macros
//
#define LEAF_RETURN \
br##.##ret##.##sptk##.##few##.##clr brp
#define NESTED_RETURN \
mov ar##.##pfs = savedpfs; \
mov brp = savedbrp; \
br##.##ret##.##sptk##.##few##.##clr brp
#define LEAF_EXIT(Name) \
.##endp Name;
#define NESTED_EXIT(Name) \
.##endp Name;
//++
// Routine:
//
// LDPTR(rD, rPtr)
//
// Routine Description:
//
// load pointer value.
//
// Agruments:
//
// rD: destination register
// rPtr: register containing pointer
//
// Return Value:
//
// rD = load from address [rPtr]
//
// Notes:
//
// rPtr is unchanged
//
//--
#ifdef _WIN64
#define LDPTR(rD, rPtr) \
ld8 rD = [rPtr]
#else
#define LDPTR(rD, rPtr) \
ld4 rD = [rPtr] ;\
;; ;\
sxt4 rD = rD
#endif
//++
// Routine:
//
// LDPTRINC(rD, rPtr, imm)
//
// Routine Description:
//
// load pointer value and update base.
//
// Agruments:
//
// rD: destination register
// rPtr: register containing pointer
// imm: number to be incremented to base
//
// Return Value:
//
// rD = load from address [rPtr] and rPtr += imm
//
// Notes:
//
//--
#ifdef _WIN64
#define LDPTRINC(rD, rPtr, imm) \
ld8 rD = [rPtr], imm
#else
#define LDPTRINC(rD, rPtr, imm) \
ld4 rD = [rPtr], imm ;\
;; ;\
sxt4 rD = rD
#endif
//++
// Routine:
//
// PLDPTRINC(rP, rD, rPtr, imm)
//
// Routine Description:
//
// predicated load pointer value and update base.
//
// Agruments:
//
// rP: predicate register
// rD: destination register
// rPtr: register containing pointer
// imm: number to be incremented to base
//
// Return Value:
//
// if (rP) rD = load from address [rPtr] and rPtr += imm
//
// Notes:
//
//--
#ifdef _WIN64
#define PLDPTRINC(rP, rD, rPtr, imm) \
(rP) ld8 rD = [rPtr], imm
#else
#define PLDPTRINC(rP, rD, rPtr, imm) \
(rP) ld4 rD = [rPtr], imm ;\
;; ;\
(rP) sxt4 rD = rD
#endif
//++
// Routine:
//
// PLDPTR(rP, rD, rPtr)
//
// Routine Description:
//
// predicated load pointer value.
//
// Agruments:
//
// rP: predicate register
// rD: destination register
// rPtr: register containing pointer
//
// Return Value:
//
// if (rP == 1) rD = load from address [rPtr], else NO-OP
//
// Notes:
//
// rPtr is unchanged
//
//--
#ifdef _WIN64
#define PLDPTR(rP, rD, rPtr) \
(rP) ld8 rD = [rPtr]
#else
#define PLDPTR(rP, rD, rPtr) \
(rP) ld4 rD = [rPtr] ;\
;; ;\
(rP) sxt4 rD = rD
#endif
//++
// Routine:
//
// STPTR(rPtr, rS)
//
// Routine Description:
//
// store pointer value.
//
// Agruments:
//
// rPtr: register containing pointer
// rS : source pointer value
//
// Return Value:
//
// store [rPtr] = rS
//
// Notes:
//
// rPtr is unchanged
//
//--
#ifdef _WIN64
#define STPTR(rPtr, rS) \
st8 [rPtr] = rS
#else
#define STPTR(rPtr, rS) \
st4 [rPtr] = rS
#endif
//++
// Routine:
//
// PSTPTR(rP, rPtr, rS)
//
// Routine Description:
//
// predicated store pointer value.
//
// Agruments:
//
// rP: predicate register
// rPtr: register containing pointer
// rS : source pointer value
//
// Return Value:
//
// if (rP) store [rPtr] = rS
//
// Notes:
//
// rPtr is unchanged
//
//--
#ifdef _WIN64
#define PSTPTR(rP, rPtr, rS) \
(rP) st8 [rPtr] = rS
#else
#define PSTPTR(rP, rPtr, rS) \
(rP) st4 [rPtr] = rS
#endif
//++
// Routine:
//
// STPTRINC(rPtr, rS, imm)
//
// Routine Description:
//
// store pointer value.
//
// Agruments:
//
// rPtr: register containing pointer
// rS : source pointer value
// imm: number to be incremented to base
//
// Return Value:
//
// if (rP) store [rPtr] = rS, rPtr += imm
//
// Notes:
//
//--
#ifdef _WIN64
#define STPTRINC(rPtr, rS, imm) \
st8 [rPtr] = rS, imm
#else
#define STPTRINC(rPtr, rS, imm) \
st4 [rPtr] = rS, imm
#endif
//++
// Routine:
//
// ARGPTR(rPtr)
//
// Routine Description:
//
// sign extend the pointer argument for WIN32
//
// Agruments:
//
// rPtr: register containing pointer argument
//
// Return Value:
//
//
// Notes:
//
//
//
//--
#ifdef _WIN64
#define ARGPTR(rPtr)
#else
#define ARGPTR(rPtr) \
sxt4 rPtr = rPtr
#endif
//
// Assembler spinlock macros
//
//++
// Routine:
//
// ACQUIRE_SPINLOCK(rpLock, rOwn, Loop)
//
// Routine Description:
//
// Acquire a spinlock. Waits for lock to become free
// by spinning on the cached lock value.
//
// Agruments:
//
// rpLock: pointer to the spinlock (64-bit)
// rOwn: value to store in lock to indicate owner
// Depending on call location, it could be:
// - rpLock
// - pointer to process
// - pointer to thread
// - pointer to PRCB
// Loop: unique name for loop label
//
// Return Value:
//
// None
//
// Notes:
//
// Uses temporaries: predicates pt0, pt1, pt2, and GR t22.
//--
#define ACQUIRE_SPINLOCK(rpLock, rOwn, Loop) \
cmp##.##eq pt0, pt1 = zero, zero ;\
cmp##.##eq pt2 = zero, zero ;\
;; ;\
Loop: ;\
.pred.rel "mutex",pt0,pt1 ;\
(pt0) xchg8 t22 = [rpLock], rOwn ;\
(pt1) ld8##.##nt1 t22 = [rpLock] ;\
;; ;\
(pt0) cmp##.##ne pt2 = zero, t22 ;\
cmp##.##eq pt0, pt1 = zero, t22 ;\
(pt2) br##.##dpnt Loop
//++
// Routine:
//
// RELEASE_SPINLOCK(rpLock)
//
// Routine Description:
//
// Release a spinlock by setting lock to zero.
//
// Agruments:
//
// rpLock: pointer to the spinlock.
//
// Return Value:
//
// None
//
// Notes:
//
// Uses an ordered store to ensure previous memory accesses in
// critical section complete.
//--
#define RELEASE_SPINLOCK(rpLock) \
st8##.##rel [rpLock] = zero
//++
// Routine:
//
// PRELEASE_SPINLOCK(rpLock)
//
// Routine Description:
//
// Predicated release spinlock.
//
// Agruments:
//
// rpLock: pointer (swizzled) to the spinlock.
// spinlock itself is 32-bit.
//
// Return Value:
//
// None
//
// Notes:
//
// Uses an ordered store to ensure previous memory accesses in
// critical section complete.
//--
#define PRELEASE_SPINLOCK(px, rpLock) \
(px) st8##.##rel [rpLock] = zero
//
// Interrupt and IRQL macros
//
//++
// Routine:
//
// END_OF_INTERRUPT
//
// Routine Description:
//
// Hook to perform end-of-interrupt processing. Currently
// just writes to the EOI control register.
//
// Agruments:
//
// None
//
// Return Value:
//
// None
//
// Note:
//
// Writing EOI requires explicit data serialize. srlz must be preceded by
// stop bit.
//--
#define END_OF_INTERRUPT \
mov cr##.##eoi = zero ;\
;; ;\
srlz##.##d /* Requires data srlz */
//++
// Routine:
//
// GET_IRQL(rOldIrql)
//
// Routine Description:
//
// Read the current IRQL by reading the TPR control register.
//
// Agruments:
//
// Register to contain the result.
//
// Return Value:
//
// rOldIrql: the current value of the IRQL.
//
//--
#ifndef SHADOW_IRQL_IMPLEMENTATION
#define GET_IRQL(rOldIrql) \
mov rOldIrql = cr##.##tpr ;;\
extr##.##u rOldIrql = rOldIrql, TPR_MIC, TPR_MIC_LEN
#else
#define GET_IRQL(rOldIrql) \
movl rOldIrql = KiPcr+PcCurrentIrql;; \
ld1 rOldIrql = [rOldIrql]
#endif
//++
// Routine:
//
// SET_IRQL(rNewIrql)
//
// Routine Description:
//
// Update the IRQL by writing the TPR control register.
// register t21 & t22 are used as a scratch
//
// Agruments:
//
// Register with the new IRQL value. Contains the unshifted
// IRQL value (0-15).
//
// Return Value:
//
// None.
//
// Notes:
//
// Writing TPR requires explicit data serialize. srlz must be preceded by
// stop bit.
//
//--
#ifndef SHADOW_IRQL_IMPLEMENTATION
#define SET_IRQL(rNewIrql) \
dep##.##z t22 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\
mov cr##.##tpr = t22;; ;\
srlz##.##d
#else
#define SET_IRQL(rNewIrql) \
dep##.##z t22 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\
movl t21 = KiPcr+PcCurrentIrql;; ;\
mov cr##.##tpr = t22 ;\
st1 [t21] = rNewIrql
#endif
//++
// Routine:
//
// PSET_IRQL(pr, rNewIrql)
//
// Routine Description:
//
// Update the IRQL by writing the TPR control register, predicated
// on pr
// register t21 & t22 are used as a scratch
//
// Agruments:
//
// pr: predicate -- set irql if pr true.
//
// rNewIrql: Register with the new IRQL value. Contains the unshifted
// IRQL value (0-15).
//
// Return Value:
//
// None.
//
// Notes:
//
// Relies on TPR.mi always 0.
// Writing TPR requires explicit data serialize. srlz must be preceded by
// stop bit.
//--
#ifndef SHADOW_IRQL_IMPLEMENTATION
#define PSET_IRQL(pr, rNewIrql) \
dep##.##z t22 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\
(pr) mov cr##.##tpr = t22;; ;\
(pr) srlz##.##d
#else
#define PSET_IRQL(pr, rNewIrql) \
mov t21 = rNewIrql ;\
dep##.##z t22 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\
(pr) mov cr##.##tpr = t22 ;\
(pr) movl t22 = KiPcr+PcCurrentIrql;; ;\
(pr) st1 [t22] = t21
#endif
//++
// Routine:
//
// SWAP_IRQL(rNewIrql)
//
// Routine Description:
//
// get the current IRQL value and set the IRQL to the new value
// register t21 and t22 are used as a scratch
//
// Agruments:
//
// Register with the new IRQL value. Contains the unshifted
// IRQL value (0-15).
//
// Return Value:
//
// v0 - current IRQL
//
//--
#define SWAP_IRQL(rNewIrql) \
movl t22 = KiPcr+PcCurrentIrql;; ;\
ld1 v0 = [t22] ;\
dep##.##z t21 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\
mov cr##.##tpr = t21 ;\
st1 [t22] = rNewIrql
//++
// Routine:
//
// GET_IRQL_FOR_VECTOR(pGet,rIrql,rVector)
//
// Routine Description:
//
// Hook to get the IRQL associated with an interrupt vector.
// Currently just returns bit {7:4} of the 8-bit vector number.
//
// Agruments:
//
// pGet: Predicate: if true then get, else skip.
// rIrql: Register to contain the associated IRQL.
// rVector: Register containing the vector number.
//
// Return Value:
//
// rIrql: The IRQL value. A 4-bit value in bits {3:0}. All
// other bits are zero.
//
//--
#define GET_IRQL_FOR_VECTOR(pGet,rIrql,rVector) \
(pGet) shr rIrql = rVector, VECTOR_IRQL_SHIFT
//++
// Routine:
//
// GET_VECTOR_FOR_IRQL(pGet,rVector,rIrql)
//
// Routine Description:
//
// Hook to get the interrupt vector associated with an IRQL.
// Currently just returns IRQL << 4.
//
// Agruments:
//
// pGet: Predicate: if true then get, else skip.
// rVector: Register containing the associated vector number.
// rIrql: Register to containing the IRQL.
//
// Return Value:
//
// rVector: The vector value. An 8-bit value in bits {7:0}. All
// other bits are zero.
//
//--
#define GET_VECTOR_FOR_IRQL(pGet, rVector, rIrql) \
(pGet) shl rVector = rIrql, VECTOR_IRQL_SHIFT
// Routine:
//
// REQUEST_APC_INT(pReq)
// REQUEST_DISPATCH_INT(pReq)
//
// Routine Description:
//
// Request a software interrupt. Used to request
// APC and DPC interrupts.
//
// Agruments:
//
// pReq: Predicate: if true then do request, else skip
//
// Return Value:
//
// None
//
// Notes:
//
// Uses temporary registers t20, t21
//--
#define REQUEST_APC_INT(pReq) \
mov t20 = 1 ;\
movl t21 = KiPcr+PcApcInterrupt ;\
;; ;\
(pReq) st1 [t21] = t20
#define REQUEST_DISPATCH_INT(pReq) \
mov t20 = 1 ;\
movl t21 = KiPcr+PcDispatchInterrupt ;\
;; ;\
(pReq) st1 [t21] = t20
#ifdef __assembler
//++
// Routine:
//
// LOWER_IRQL(rNewIrql)
//
// Routine Description:
//
// Check for pending s/w interrupts and lower Irql
//
// Agruments:
//
// rNewIrql: interrupt request level
//
// Return Value:
//
// None
//
// Notes:
//
// Pending s/w interrupts are dispatched if new IRQL is low enough,
// even though interrupts are disabled
//--
#define LOWER_IRQL(rNewIrql) \
cmp##.##gtu pt0, pt1 = DISPATCH_LEVEL, rNewIrql ;\
movl t22 = KiPcr+PcSoftwareInterruptPending;; ;\
ld2 t22 = [t22] ;\
mov out0 = rNewIrql;; ;\
(pt0) cmp##.##ne pt0, pt1 = r0, t22 ;\
PSET_IRQL(pt1, rNewIrql) ;\
(pt0) br##.##call##.##spnt brp = KiCheckForSoftwareInterrupt
//++
//
// Routine:
//
// LEAF_LOWER_IRQL_AND_RETURN(rNewIrql)
//
// Routine Description:
//
// Check for pending s/w interrupts and lower Irql
//
// If a software interupt is in fact pending and would
// logically fire if IRQL is lowered to the new level,
// branch to code that will promote to a nested function
// and handle the interrupt, otherwise, lower IRQL and
// return from this leaf function.
//
// Agruments:
//
// rNewIrql: interrupt request level
//
// Return Value:
//
// None
//
// Notes:
//
// Pending s/w interrupts are dispatched if new IRQL is low enough,
// even though interrupts are disabled
//--
#define LEAF_LOWER_IRQL_AND_RETURN(rNewIrql) \
cmp##.##gtu pt0 = DISPATCH_LEVEL, rNewIrql ;\
movl t21 = KiPcr+PcSoftwareInterruptPending;; ;\
(pt0) rsm 1 << PSR_I ;\
(pt0) ld2 t21 = [t21] ;\
mov t22 = rNewIrql;; ;\
(pt0) cmp##.##ltu##.##unc pt1 = rNewIrql, t21 ;\
(pt1) br##.##spnt KiLowerIrqlSoftwareInterruptPending ;\
SET_IRQL(rNewIrql) ;\
ssm 1 << PSR_I ;\
br##.##ret##.##spnt##.##few##.##clr brp
#endif // __assembler
//*******
//*
//* The following macros are used in C runtime asm code
//*
//* beginSection - a macro for declaring and beginning a section
//* .sdata is used to create short data section, if it does not exist
//*
//* endSection - a macro for ending a previously declared section
//*
//*******
#define beginSection(SectName) .##section .CRT$##SectName, "a", "progbits"
#define endSection(SectName)
#define PublicFunction(Name) .##global Name; .##type Name,@function
// XIA Begin C Initializer Sections
// XIC Microsoft Reserved
// XIU User
// XIZ End C Initializer Sections
//
// XCA Begin C++ Constructor Sections
// XCC Compiler (MS)
// XCL Library
// XCU User
// XCZ End C++ Constructor Sections
//
// XPA Begin C Pre-Terminator Sections
// XPU User
// XPX Microsoft Reserved
// XPZ End C Pre-Terminator Sections
//
// XTA Begin C Pre-Terminator Sections
// XTU User
// XTX Microsoft Reserved
// XTZ End C Pre-Terminator Sections
//