811 lines
22 KiB
C++
811 lines
22 KiB
C++
//#pragma title( "TNode.cpp - List/Tree base classes" )
|
|
/*
|
|
Copyright (c) 1995-1998, Mission Critical Software, Inc. All rights reserved.
|
|
===============================================================================
|
|
Module - TNode.cpp
|
|
System - Common
|
|
Author - Tom Bernhardt
|
|
Created - 1989-11-19
|
|
Description - List/Tree base classes.
|
|
TNode is a base class to define a collection element. It
|
|
contains a left and right pointer to another TNode item and
|
|
these may be organized as a double-linked linear list or
|
|
binary tree in the collection classes that use TNode items.
|
|
|
|
Central to its utility are member functions to convert between
|
|
binary tree, sorted 2-way linear linked lists, and unsorted 2-way
|
|
linked linear lists.
|
|
|
|
Collection and enum classes
|
|
TNodeList A simple collection of TNode elements.
|
|
TNodeListSortable A TNodeList that is sortable by one or more compare functions.
|
|
|
|
|
|
Conversion member functions for TNodeListSortable:
|
|
The form of the list may be easily changed from binary tree to sorted list or
|
|
vice versa. The following member functions support these transformations:
|
|
ToSorted Converts the tree form into a sorted linear list form without
|
|
need for comparisons; the order is preserved.
|
|
SortedToTree Converts the sorted linear list form into a perfectly
|
|
balanced binary tree without comparisons; the order is preserved.
|
|
UnsortedToTree Converts the sorted linear list form into a binary tree
|
|
that is not necesarily balanced. It uses the PCompare function
|
|
to form the order of the tree. Thus if the list order closely
|
|
matches the PCompare directed order, the resulting tree will be
|
|
grossly unbalanced. This has a bearing on the performance and
|
|
memory requirements of the ToSorted function which is recursive.
|
|
So be careful, especially with large lists.
|
|
Sort This resorts either a tree or list form according to the argument
|
|
pCompare function pointer provided. Note the above admonition.
|
|
|
|
In either form, exposed are also Insert and Remove member functions. The functions
|
|
are wrappers for TreeInsert and SortedInsert function depending upon the current
|
|
list type.
|
|
Updates -
|
|
1995-05-01 TPB Converted to C++ classes.
|
|
===============================================================================
|
|
*/
|
|
|
|
#ifdef USE_STDAFX
|
|
# include "stdafx.h"
|
|
#else
|
|
# include <windows.h>
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <malloc.h>
|
|
#include "TNode.hpp"
|
|
#include "common.hpp"
|
|
|
|
|
|
#pragma page()
|
|
//------------------------------------------------------------------------------
|
|
// Warning: Must not pass top == NULL
|
|
//------------------------------------------------------------------------------
|
|
TNode * // ret-head of sorted list
|
|
TNodeListSortable::TreeToSortedList(
|
|
TNode * top ,// i/o-top of [sub]tree to squash
|
|
TNode ** newhead ,// out-leftmost branch from tree
|
|
TNode ** newtail // out-rightmost branch from tree
|
|
)
|
|
{
|
|
TNode * temp; // temporary pointer placeholder
|
|
|
|
if ( top->left == NULL )
|
|
*newhead = top; // this is leftmost of parent node
|
|
else
|
|
{
|
|
TreeToSortedList(top->left, newhead, &temp);
|
|
top->left = temp; // left = tail of sub-list
|
|
top->left->right = top;
|
|
}
|
|
if ( top->right == NULL )
|
|
*newtail = top; // tree is rightmost of parent node
|
|
else
|
|
{
|
|
TreeToSortedList(top->right, &temp, newtail);
|
|
top->right = temp; // right = head of sub-list
|
|
top->right->left = top;
|
|
}
|
|
return *newhead;
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// converts sorted 2-linked list into balanced binary tree
|
|
//------------------------------------------------------------------------------
|
|
TNode * // ret-middle of list (head of Btree)
|
|
TNodeListSortable::ListSortedToTree(
|
|
TNode * top // i/o-top of [sub]list to tree-ify
|
|
)
|
|
{
|
|
TNode * mid = top ,// middle of list
|
|
* curr;
|
|
int odd = 1;
|
|
|
|
if ( top == NULL )
|
|
return NULL;
|
|
for ( curr = top; curr; curr = curr->right ) // find list middle
|
|
{
|
|
if ( odd ^= 1 )
|
|
mid = mid->right;
|
|
}
|
|
if ( mid->left ) // split list around mid point
|
|
{
|
|
mid->left->right = NULL; // right terminate new sublist
|
|
mid->left = ListSortedToTree(top); // recursive call to set left side
|
|
}
|
|
if ( mid->right )
|
|
{
|
|
mid->right->left = NULL; // left terminate new sublist
|
|
mid->right = ListSortedToTree(mid->right);// recursive call to set right side
|
|
}
|
|
return mid;
|
|
}
|
|
|
|
|
|
#pragma page()
|
|
TNode * // ret-new head of tree
|
|
TNodeListSortable::UnsortedToTree()
|
|
{
|
|
TNode * treehead = NULL,
|
|
* tree,
|
|
* curr,
|
|
* next;
|
|
|
|
MCSASSERTSZ( !IsTree(), "TNodeListSortable::UnsortedToTree - list is already a tree" );
|
|
|
|
if ( !IsTree() )
|
|
{
|
|
for ( curr = head; curr; curr = next )// insert each node into BinTree
|
|
{
|
|
next = curr->right; // save right pointer
|
|
curr->right = curr->left = NULL; // break chains for insertion node
|
|
if ( treehead == NULL )
|
|
treehead = curr; // first node become BinTree head
|
|
else
|
|
{
|
|
for ( tree = treehead; ; ) // iterative BinTree insert algorithm
|
|
{
|
|
if ( PCompare(curr, tree) <=0 )// if belongs left of current node
|
|
if ( tree->left == NULL ) // if left tree empty
|
|
{
|
|
tree->left = curr; // insert here
|
|
break; // and process right node
|
|
}
|
|
else // else
|
|
tree = tree->left; // go down left side 1 level
|
|
else // must be right side
|
|
{
|
|
if ( tree->right == NULL )
|
|
{
|
|
tree->right = curr;
|
|
break;
|
|
}
|
|
else
|
|
tree = tree->right;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
TypeSetTree();
|
|
}
|
|
return treehead;
|
|
}
|
|
|
|
#pragma page()
|
|
|
|
//------------------------------------------------------------------------------
|
|
// comparison function used for scrambling a sorted linked list
|
|
//------------------------------------------------------------------------------
|
|
TNodeCompare(ScrambledCompare)
|
|
{
|
|
return (rand() - RAND_MAX/2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// converts sorted 2-linked list into a scrambled random binary tree
|
|
//------------------------------------------------------------------------------
|
|
void
|
|
TNodeListSortable::SortedToScrambledTree()
|
|
{
|
|
MCSASSERTSZ( !IsTree(), "TNodeListSortable::SortedToScrambledTree - list is already a tree" );
|
|
|
|
if ( !IsTree() )
|
|
{
|
|
TNodeCompare((*pOldCompare));
|
|
pOldCompare = PCompare;
|
|
CompareSet(ScrambledCompare);
|
|
UnsortedToTree();
|
|
CompareSet(pOldCompare);
|
|
}
|
|
}
|
|
|
|
#pragma page()
|
|
TNodeList::~TNodeList()
|
|
{
|
|
|
|
// _ASSERTE( (count == 0) && (head == NULL) );
|
|
|
|
if ( (count == 0) && (head == NULL) )
|
|
;
|
|
else
|
|
{
|
|
//printf( "\aTNodeList destructor failure - list is not empty!\a\n" );
|
|
}
|
|
}
|
|
|
|
void
|
|
TNodeList::InsertTop(
|
|
TNode * eIns // i/o-element to be inserted
|
|
)
|
|
{
|
|
MCSVERIFY(this);
|
|
MCSVERIFY(eIns);
|
|
|
|
eIns->right = head;
|
|
eIns->left = NULL;
|
|
if ( head )
|
|
head->left = eIns;
|
|
else
|
|
tail = eIns;
|
|
head = eIns;
|
|
count++;
|
|
return;
|
|
}
|
|
|
|
void
|
|
TNodeList::InsertBottom(
|
|
TNode * eIns // i/o-element to be inserted
|
|
)
|
|
{
|
|
MCSVERIFY(this);
|
|
MCSVERIFY(eIns);
|
|
|
|
eIns->right = NULL;
|
|
eIns->left = tail;
|
|
if ( tail )
|
|
tail->right = eIns;
|
|
else
|
|
head = eIns;
|
|
tail = eIns;
|
|
count++;
|
|
return;
|
|
}
|
|
|
|
void
|
|
TNodeList::InsertAfter(
|
|
TNode * eIns ,// i/o-element to be inserted
|
|
TNode * eAft // i/o-element insert point
|
|
)
|
|
{
|
|
TNode * eFwd; // element after inserted element
|
|
|
|
MCSVERIFY(this);
|
|
MCSVERIFY(eIns);
|
|
|
|
if ( !eAft )
|
|
InsertTop( eIns );
|
|
else
|
|
{
|
|
eFwd = eAft->right;
|
|
eIns->right = eFwd;
|
|
eIns->left = eAft;
|
|
if ( eFwd )
|
|
eFwd->left = eIns;
|
|
else
|
|
tail = eIns;
|
|
eAft->right = eIns;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
void
|
|
TNodeList::InsertBefore(
|
|
TNode * eIns ,// i/o-element to be inserted
|
|
TNode * eBef // i/o-element insert point
|
|
)
|
|
{
|
|
TNode * eBwd; // element before inserted element
|
|
|
|
MCSVERIFY(this);
|
|
MCSVERIFY(eIns);
|
|
|
|
if ( !eBef )
|
|
InsertBottom( eIns );
|
|
else
|
|
{
|
|
eBwd = eBef->left;
|
|
eIns->right = eBef;
|
|
eIns->left = eBwd;
|
|
if ( eBwd )
|
|
eBwd->right = eIns;
|
|
else
|
|
head = eIns;
|
|
eBef->left = eIns;
|
|
count++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void
|
|
TNodeList::Remove(
|
|
TNode const * t // i/o-new node to remove from list but not delete
|
|
)
|
|
{
|
|
MCSVERIFY(this);
|
|
MCSVERIFY(t);
|
|
|
|
if ( t->left )
|
|
t->left->right = t->right;
|
|
else
|
|
head = t->right;
|
|
|
|
if ( t->right )
|
|
t->right->left = t->left;
|
|
else
|
|
tail = t->left;
|
|
count--;
|
|
|
|
//Remove links to the list from t. We cant do this because
|
|
// t is a const *
|
|
//t->left = t->right = NULL;
|
|
}
|
|
|
|
|
|
void
|
|
TNodeList::Reverse()
|
|
{
|
|
TNode * node;
|
|
TNode * swap;
|
|
|
|
MCSVERIFY(this);
|
|
|
|
for ( node = head; node; node = node->left )
|
|
{
|
|
swap = node->left;
|
|
node->left = node->right;
|
|
node->right = swap;
|
|
}
|
|
swap = head;
|
|
head = tail;
|
|
tail = swap;
|
|
}
|
|
|
|
|
|
TNode *
|
|
TNodeList::Find(
|
|
TNodeCompareValue( (* Compare) ) ,// in -compares value in TNode to other value
|
|
void const * findval
|
|
) const
|
|
{
|
|
TNode * curr;
|
|
|
|
MCSASSERT(this);
|
|
|
|
for ( curr = head; curr; curr = curr->right )
|
|
{
|
|
if ( !Compare( curr, findval ) )
|
|
break;
|
|
}
|
|
return curr;
|
|
}
|
|
|
|
BOOL // ret-TRUE if valid
|
|
TNodeListSortable::CountTree(
|
|
TNode * pCurrentTop ,// i/o-top of [sub]tree to count nodes
|
|
DWORD * pCount // i/o-Number of nodes encountered in the tree
|
|
)
|
|
{
|
|
if ( !pCurrentTop )
|
|
return TRUE;
|
|
|
|
(*pCount)++;
|
|
|
|
if( (*pCount) > count )
|
|
return FALSE;
|
|
|
|
if(!CountTree(pCurrentTop->left,pCount))
|
|
return FALSE;
|
|
|
|
if(!CountTree(pCurrentTop->right,pCount))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
BOOL // TRUE if Valid and FALSE if not
|
|
TNodeListSortable::ValidateTree()
|
|
{
|
|
DWORD dwTempCount=0;
|
|
DWORD bValid;
|
|
|
|
MCSVERIFY(listType == TNodeTypeTree);
|
|
|
|
bValid = CountTree(head,&dwTempCount);
|
|
|
|
return bValid;
|
|
}
|
|
|
|
// Routine to validate the state of the list
|
|
DWORD
|
|
TNodeList::Validate(
|
|
TNode ** pErrorNode
|
|
)
|
|
{
|
|
DWORD dwError=0;
|
|
DWORD nNodesVisited=0;
|
|
TNode * pCurrentNode;
|
|
DWORD dwNodeCount = Count();
|
|
|
|
if(pErrorNode)
|
|
*pErrorNode = NULL;
|
|
|
|
#ifndef WIN16_VERSION
|
|
try
|
|
{
|
|
#endif
|
|
pCurrentNode = head;
|
|
|
|
if ( pCurrentNode) // If the list is not empty
|
|
{
|
|
if ( pCurrentNode->left)
|
|
{
|
|
dwError = MCS_ListError_InvalidHead;
|
|
}
|
|
else
|
|
{
|
|
while ( pCurrentNode->right )
|
|
{
|
|
if(pCurrentNode->right->left != pCurrentNode)
|
|
{
|
|
dwError = MCS_ListError_InvalidPtr;
|
|
if(pErrorNode)
|
|
*pErrorNode = pCurrentNode->right;
|
|
break;
|
|
}
|
|
|
|
nNodesVisited++;
|
|
|
|
if ( nNodesVisited > dwNodeCount )
|
|
{
|
|
dwError = MCS_ListError_InvalidCount;
|
|
break;
|
|
}
|
|
pCurrentNode = pCurrentNode->right;
|
|
}
|
|
|
|
if ( (!dwError) && (!pCurrentNode->right) )
|
|
{
|
|
if ( pCurrentNode != tail)
|
|
{
|
|
dwError = MCS_ListError_InvalidTail;
|
|
if(pErrorNode)
|
|
*pErrorNode = pCurrentNode->right;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else // if the list is empty
|
|
{
|
|
if(dwNodeCount)
|
|
{
|
|
dwError = MCS_ListError_InvalidCount;
|
|
}
|
|
}
|
|
#ifndef WIN16_VERSION
|
|
}
|
|
catch(...)
|
|
{
|
|
dwError = MCS_ListError_Exception;
|
|
}
|
|
#endif
|
|
|
|
return dwError;
|
|
}
|
|
|
|
void
|
|
TNodeListSortable::TreeRemove(
|
|
TNode * item // i/o-node to remove from binary tree
|
|
)
|
|
{
|
|
TNode ** prevNext = &head,
|
|
* rep,
|
|
* repLeft,
|
|
* temp;
|
|
int cmp;
|
|
|
|
MCSVERIFY(listType == TNodeTypeTree);
|
|
|
|
while ( *prevNext )
|
|
{
|
|
cmp = PCompare( item, *prevNext );
|
|
if ( cmp < 0 )
|
|
prevNext = &(*prevNext)->left;
|
|
else if ( cmp > 0 )
|
|
prevNext = &(*prevNext)->right;
|
|
else
|
|
{
|
|
// we've found a matching 'name' (they compare equal)
|
|
if ( *prevNext == item )
|
|
{
|
|
// we've found the address we're looking for
|
|
if ( (*prevNext)->right )
|
|
{
|
|
rep = repLeft = (*prevNext)->right;
|
|
for ( temp = rep->left; temp; temp = temp->left )
|
|
repLeft = temp;
|
|
repLeft->left = (*prevNext)->left;
|
|
temp = *prevNext;
|
|
*prevNext = rep;
|
|
}
|
|
else
|
|
{
|
|
temp = *prevNext;
|
|
*prevNext = (*prevNext)->left; // simple case
|
|
}
|
|
|
|
// break removed nodes links to existing tree
|
|
temp->left = temp->right = NULL;
|
|
count--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// returns the insert point in a sorted list for a prospective node
|
|
TNode * // ret-insert before point or NULL
|
|
TNodeListSortable::SortedFindInsertBefore(
|
|
TNode * item ,// i/o-node to insert into TNode
|
|
BOOL * exists // out-TRUE if already exists
|
|
)
|
|
{
|
|
int c;
|
|
TNode * curr;
|
|
|
|
*exists = FALSE;
|
|
if ( !lastInsert )
|
|
{
|
|
if ( !head ) // if null head, empty list, return NULL
|
|
return NULL;
|
|
lastInsert = head;
|
|
}
|
|
|
|
c = PCompare(item, lastInsert);
|
|
if ( c < 0 )
|
|
lastInsert = head;
|
|
|
|
for ( curr = lastInsert; curr; curr = curr->right )
|
|
{
|
|
c = PCompare(item, curr);
|
|
if ( c <= 0 )
|
|
if ( c == 0 )
|
|
*exists = TRUE;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return curr;
|
|
}
|
|
|
|
// inserts node into sorted linear list
|
|
void
|
|
TNodeListSortable::SortedInsert(
|
|
TNode * item // i/o-node to insert into TNode
|
|
)
|
|
{
|
|
BOOL exists;
|
|
|
|
MCSVERIFY(listType != TNodeTypeTree);
|
|
|
|
TNode * insertPoint = SortedFindInsertBefore(item, &exists);
|
|
|
|
InsertBefore(item, insertPoint);
|
|
lastInsert = item;
|
|
}
|
|
|
|
|
|
BOOL
|
|
TNodeListSortable::SortedInsertIfNew(
|
|
TNode * item // i/o-node to insert into TNode
|
|
)
|
|
{
|
|
BOOL exists;
|
|
TNode * insertPoint = SortedFindInsertBefore(item, &exists);
|
|
|
|
if ( !exists )
|
|
{
|
|
InsertBefore(item, insertPoint);
|
|
lastInsert = item;
|
|
}
|
|
return !exists;
|
|
}
|
|
|
|
|
|
void
|
|
TNodeListSortable::TreeInsert(
|
|
TNode * item ,// i/o-node to insert into binary tree
|
|
short * depth // out-tree/recursion depth of new item
|
|
)
|
|
{
|
|
TNode ** prevNext = &head;
|
|
int cmp;
|
|
|
|
MCSVERIFY(listType == TNodeTypeTree);
|
|
|
|
for ( *depth = 0; *prevNext; (*depth)++ )
|
|
{
|
|
cmp = PCompare( item, *prevNext );
|
|
if ( cmp <= 0 )
|
|
prevNext = &(*prevNext)->left;
|
|
else
|
|
prevNext = &(*prevNext)->right;
|
|
}
|
|
*prevNext = item;
|
|
item->left = item->right = NULL;
|
|
count++;
|
|
return;
|
|
}
|
|
|
|
|
|
TNode *
|
|
TNodeListSortable::TreeFind(
|
|
TNodeCompareValue( (* Compare) ) ,// in -compares value in TNode to other value
|
|
void const * findval
|
|
) const
|
|
{
|
|
TNode * curr = head;
|
|
int cmp;
|
|
|
|
while ( curr )
|
|
{
|
|
cmp = Compare( curr, findval );
|
|
if ( cmp > 0 )
|
|
curr = curr->left;
|
|
else if ( cmp < 0 )
|
|
curr = curr->right;
|
|
else // cmp == 0
|
|
break;
|
|
}
|
|
return curr;
|
|
}
|
|
|
|
|
|
TNode * // ret-TNode at pos n or NULL
|
|
TNodeListOrdEnum::Get(
|
|
long n // in -new position
|
|
)
|
|
{
|
|
long disCurr = n - nCurr, // distance to curr
|
|
disTop = n < (long)list->Count()/2 ? n : n - list->Count();
|
|
|
|
#ifdef WIN16_VERSION
|
|
long absDisTop = (disTop<0) ? -disTop : disTop;
|
|
long absDisCurr = (disCurr<0) ? -disCurr : disCurr;
|
|
if ( absDisTop < absDisCurr )
|
|
#else
|
|
if ( abs(disTop) < abs(disCurr) )
|
|
#endif
|
|
{
|
|
Top();
|
|
disCurr = disTop;
|
|
}
|
|
if ( disCurr < 0 )
|
|
for ( Prev(); n < nCurr && Prev(); );
|
|
else
|
|
for ( ; n > nCurr && Next(); );
|
|
|
|
return curr;
|
|
}
|
|
|
|
// returns the first node of the tree
|
|
TNode *
|
|
TNodeTreeEnum::First()
|
|
{
|
|
stackPos = stackBase;
|
|
if ( top )
|
|
Push(top);
|
|
return Next();
|
|
}
|
|
|
|
// Returns the tree node logically following the value per the sort organization
|
|
// specified by Compare, and sets up the enumeration to continue from that point.
|
|
TNode *
|
|
TNodeTreeEnum::FirstAfter(
|
|
TNodeCompareValue( (* Compare) ) ,// in -compares value in TNode to other value
|
|
void const * findVal // in -findVal to position after
|
|
)
|
|
{
|
|
TNode * tn;
|
|
int cmp;
|
|
|
|
stackPos = stackBase;
|
|
for ( tn = top; tn; )
|
|
{
|
|
Push(tn);
|
|
cmp = Compare( tn, findVal );
|
|
if ( cmp < 0 )
|
|
{
|
|
stackPos->state = Sright;
|
|
if ( tn->right )
|
|
tn = tn->right;
|
|
else
|
|
return Next();
|
|
}
|
|
else if ( cmp > 0 )
|
|
{
|
|
stackPos->state = Sleft;
|
|
if ( tn->left )
|
|
tn = tn->left;
|
|
else
|
|
{
|
|
stackPos->state = Sused;
|
|
return tn;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
stackPos->state = Sused;
|
|
return Next();
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// returns the Next logical node of the tree ending with NULL when complete
|
|
TNode *
|
|
TNodeTreeEnum::Next()
|
|
{
|
|
for ( ;; )
|
|
{
|
|
switch ( stackPos->state )
|
|
{
|
|
case Snone: // we've done nothing here
|
|
stackPos->state = Sleft;
|
|
if ( stackPos->save->left )
|
|
Push(stackPos->save->left);
|
|
break;
|
|
case Sleft: // we've gone left and are back
|
|
stackPos->state = Sused;
|
|
return stackPos->save;
|
|
case Sused: // we've used the node
|
|
stackPos->state = Sright;
|
|
if ( stackPos->save->right )
|
|
Push(stackPos->save->right);// process right side of branch
|
|
break;
|
|
case Sright: // we've gone right and are back
|
|
if ( !Pop() )
|
|
return NULL;
|
|
break;
|
|
case SComplete:
|
|
return NULL;
|
|
break; // Do we need this?
|
|
default: // bad error
|
|
MCSASSERT(FALSE);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return NULL; // can't get here
|
|
}
|
|
|
|
// Returns the address of the forward (left/right) pointer where the find node
|
|
// already exists or would be inserted. If the singly deferenced result is not
|
|
// null, the node's key value already exists in the tree.
|
|
// If, after obtaining the insertion point, you want to insert the node, just
|
|
// assign its address to the singly deferenced return value. The following inserts
|
|
// the node "f" if it is not alread in the tree:
|
|
// TNode **r = tree.TreeFindInsert(f);
|
|
// if ( !*r )
|
|
// *r = f;
|
|
TNode ** // ret-pointer forward pointer to find
|
|
TNodeListSortable::TreeFindInsert(
|
|
TNode const * find ,// in -node to find
|
|
short * depth // out-tree depth of insertion point
|
|
)
|
|
{
|
|
TNode ** prevNext = &head;
|
|
int cmp;
|
|
|
|
for ( *depth = 0; *prevNext; (*depth)++ )
|
|
{
|
|
cmp = PCompare( find, *prevNext );
|
|
if ( cmp < 0 )
|
|
prevNext = &(*prevNext)->left;
|
|
else if ( cmp > 0 )
|
|
prevNext = &(*prevNext)->right;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return prevNext;
|
|
}
|
|
|
|
// TNode.cpp - end of file
|