329 lines
9.1 KiB
C
329 lines
9.1 KiB
C
|
|
#include <precomp.h>
|
|
|
|
/*
|
|
redblack.c
|
|
|
|
Implementation of red-black binary tree insertion, deletion, and search.
|
|
This algorithm efficiently guarantees that the tree depth will never exceed
|
|
2*Lg(N), so a one million node tree would have a worst case depth of 40.
|
|
This insertion implementation is non-recursive and very efficient (the
|
|
average insertion speed is less than twice the average search speed).
|
|
|
|
Author: Tom McGuire (tommcg) 1/98
|
|
|
|
Copyright (C) Microsoft, 1998.
|
|
|
|
2/98, modified this version of redblack.c for debug symbol lookups.
|
|
|
|
*/
|
|
|
|
#ifndef PATCH_APPLY_CODE_ONLY
|
|
|
|
//
|
|
// Rather than storing NULL links as NULL, we point NULL links to a special
|
|
// "Empty" node which is always black and its children links point to itself.
|
|
// We do this to simplify the color testing for children and grandchildren
|
|
// such that any link can be dereferenced and even double-dereferenced without
|
|
// explicitly checking for NULL. The empty node must be colored black.
|
|
//
|
|
|
|
const SYMBOL_NODE SymRBEmptyNode = { RBNIL, RBNIL };
|
|
|
|
|
|
VOID
|
|
SymRBInitTree(
|
|
IN OUT PSYMBOL_TREE Tree,
|
|
IN HANDLE SubAllocator
|
|
)
|
|
{
|
|
#if defined( DEBUG ) || defined( DBG ) || defined( TESTCODE )
|
|
Tree->CountNodes = 0;
|
|
Tree->DeletedAny = FALSE;
|
|
#endif
|
|
Tree->Root = RBNIL;
|
|
Tree->SubAllocator = SubAllocator;
|
|
}
|
|
|
|
|
|
PSYMBOL_NODE
|
|
SymRBFind(
|
|
IN PSYMBOL_TREE Tree,
|
|
IN LPSTR SymbolName
|
|
)
|
|
{
|
|
PSYMBOL_NODE Node = Tree->Root;
|
|
ULONG Hash;
|
|
int Compare;
|
|
|
|
Hash = HashName( SymbolName );
|
|
|
|
while ( Node != RBNIL ) {
|
|
|
|
if ( Hash < Node->Hash ) {
|
|
Node = Node->Left;
|
|
}
|
|
else if ( Hash > Node->Hash ) {
|
|
Node = Node->Right;
|
|
}
|
|
else {
|
|
|
|
Compare = strcmp( SymbolName, Node->SymbolName );
|
|
|
|
if ( Compare == 0 ) {
|
|
return Node;
|
|
}
|
|
else if ( Compare < 0 ) {
|
|
Node = Node->Left;
|
|
}
|
|
else {
|
|
Node = Node->Right;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
PSYMBOL_NODE
|
|
SymRBInsert(
|
|
IN OUT PSYMBOL_TREE Tree,
|
|
IN LPSTR SymbolName,
|
|
IN ULONG Rva
|
|
)
|
|
{
|
|
PSYMBOL_NODE * Stack[ MAX_DEPTH ];
|
|
PSYMBOL_NODE **StackPointer = Stack;
|
|
PSYMBOL_NODE * Link;
|
|
PSYMBOL_NODE Node;
|
|
PSYMBOL_NODE Sibling;
|
|
PSYMBOL_NODE Parent;
|
|
PSYMBOL_NODE Child;
|
|
PSYMBOL_NODE NewNode;
|
|
ULONG NameLength;
|
|
ULONG Hash;
|
|
int Compare;
|
|
|
|
ASSERT( ! Tree->DeletedAny );
|
|
|
|
Hash = HashName( SymbolName );
|
|
|
|
//
|
|
// Walk down the tree to find either an existing node with the same key
|
|
// (in which case we simply return) or the insertion point for the new
|
|
// node. At each traversal we need to store the address of the link to
|
|
// the next node so we can retrace the traversal path for balancing.
|
|
// The speed of insertion is highly dependent on traversing the tree
|
|
// quickly, so all balancing operations are deferred until after the
|
|
// traversal is complete.
|
|
//
|
|
|
|
*StackPointer++ = &Tree->Root;
|
|
|
|
Node = Tree->Root;
|
|
|
|
while ( Node != RBNIL ) {
|
|
|
|
if ( Hash < Node->Hash ) {
|
|
*StackPointer++ = &Node->Left;
|
|
Node = Node->Left;
|
|
}
|
|
else if ( Hash > Node->Hash ) {
|
|
*StackPointer++ = &Node->Right;
|
|
Node = Node->Right;
|
|
}
|
|
else {
|
|
|
|
Compare = strcmp( SymbolName, Node->SymbolName );
|
|
|
|
if ( Compare == 0 ) {
|
|
|
|
//
|
|
// Found a matching symbol.
|
|
//
|
|
|
|
return Node;
|
|
}
|
|
|
|
else if ( Compare < 0 ) {
|
|
*StackPointer++ = &Node->Left;
|
|
Node = Node->Left;
|
|
}
|
|
else {
|
|
*StackPointer++ = &Node->Right;
|
|
Node = Node->Right;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Didn't find a matching entry, so allocate a new node and add it
|
|
// to the tree.
|
|
//
|
|
|
|
NameLength = (ULONG) strlen( SymbolName ) + 1;
|
|
|
|
NewNode = SubAllocate( Tree->SubAllocator, ( sizeof( SYMBOL_NODE ) + NameLength ));
|
|
|
|
if ( NewNode == NULL ) {
|
|
return NULL;
|
|
}
|
|
|
|
#if defined( DEBUG ) || defined( DBG ) || defined( TESTCODE )
|
|
Tree->CountNodes++;
|
|
#endif
|
|
|
|
NewNode->Left = RBNIL;
|
|
NewNode->Right = RBNIL;
|
|
NewNode->Hash = Hash;
|
|
NewNode->RvaWithStatusBits = Rva | 0x80000000; // make new node RED, not hit
|
|
memcpy( NewNode->SymbolName, SymbolName, NameLength );
|
|
|
|
//
|
|
// Insert new node under last link we traversed. The top of the stack
|
|
// contains the address of the last link we traversed.
|
|
//
|
|
|
|
Link = *( --StackPointer );
|
|
*Link = NewNode;
|
|
|
|
//
|
|
// Now walk back up the traversal chain to see if any balancing is
|
|
// needed. This terminates in one of three ways: we walk all the way
|
|
// up to the root (StackPointer == Stack), or find a black node that
|
|
// we don't need to change (no balancing needs to be done above a
|
|
// black node), or we perform a balancing rotation (only one necessary).
|
|
//
|
|
|
|
Node = NewNode;
|
|
Child = RBNIL;
|
|
|
|
while ( StackPointer > Stack ) {
|
|
|
|
Link = *( --StackPointer );
|
|
Parent = *Link;
|
|
|
|
//
|
|
// Node is always red here.
|
|
//
|
|
|
|
if ( IS_BLACK( Parent )) {
|
|
|
|
Sibling = ( Parent->Left == Node ) ? Parent->Right : Parent->Left;
|
|
|
|
if ( IS_RED( Sibling )) {
|
|
|
|
//
|
|
// Both Node and its Sibling are red, so change them both to
|
|
// black and make the Parent red. This essentially moves the
|
|
// red link up the tree so balancing can be performed at a
|
|
// higher level.
|
|
//
|
|
// Pb Pr
|
|
// / \ ----> / \
|
|
// Cr Sr Cb Sb
|
|
//
|
|
|
|
MARK_BLACK( Sibling );
|
|
MARK_BLACK( Node );
|
|
MARK_RED( Parent );
|
|
}
|
|
|
|
else {
|
|
|
|
//
|
|
// This is a terminal case. The Parent is black, and it's
|
|
// not going to be changed to red. If the Node's child is
|
|
// red, we perform an appropriate rotation to balance the
|
|
// tree. If the Node's child is black, we're done.
|
|
//
|
|
|
|
if ( IS_RED( Child )) {
|
|
|
|
if ( Node->Left == Child ) {
|
|
|
|
if ( Parent->Left == Node ) {
|
|
|
|
//
|
|
// Pb Nb
|
|
// / \ / \
|
|
// Nr Z to Cr Pr
|
|
// / \ / \
|
|
// Cr Y Y Z
|
|
//
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Left = Node->Right;
|
|
Node->Right = Parent;
|
|
MARK_BLACK( Node );
|
|
*Link = Node;
|
|
}
|
|
|
|
else {
|
|
|
|
//
|
|
// Pb Cb
|
|
// / \ / \
|
|
// W Nr to Pr Nr
|
|
// / \ / \ / \
|
|
// Cr Z W X Y Z
|
|
// / \
|
|
// X Y
|
|
//
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Right = Child->Left;
|
|
Child->Left = Parent;
|
|
Node->Left = Child->Right;
|
|
Child->Right = Node;
|
|
MARK_BLACK( Child );
|
|
*Link = Child;
|
|
}
|
|
}
|
|
|
|
else {
|
|
|
|
if ( Parent->Right == Node ) {
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Right = Node->Left;
|
|
Node->Left = Parent;
|
|
MARK_BLACK( Node );
|
|
*Link = Node;
|
|
}
|
|
|
|
else {
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Left = Child->Right;
|
|
Child->Right = Parent;
|
|
Node->Right = Child->Left;
|
|
Child->Left = Node;
|
|
MARK_BLACK( Child );
|
|
*Link = Child;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NewNode;
|
|
}
|
|
}
|
|
|
|
Child = Node;
|
|
Node = Parent;
|
|
}
|
|
|
|
//
|
|
// We bubbled red up to the root -- restore it to black.
|
|
//
|
|
|
|
MARK_BLACK( Tree->Root );
|
|
return NewNode;
|
|
}
|
|
|
|
#endif // ! PATCH_APPLY_CODE_ONLY
|
|
|
|
|
|
|