windows-nt/Source/XPSP1/NT/com/rpc/ndr20/cvtg.cxx
2020-09-26 16:20:57 +08:00

532 lines
14 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* file: cvt_vax_g.c */
/*
**
** COPYRIGHT (c) 1989, 1990 BY
** DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
** ALL RIGHTS RESERVED.
**
** THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
** ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
** INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
** COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
** OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
** TRANSFERRED.
**
** THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
** AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
** CORPORATION.
**
** DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
** SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
**
*/
/*
**++
** Facility:
**
** CVT Run-Time Library
**
** Abstract:
**
** This module contains routines to convert VAX G_Float floating
** point data into other supported floating point formats.
**
** Authors:
**
** Math RTL
**
** Creation Date: December 5, 1989.
**
** Modification History:
**
** 1-001 Original created. MRTL 5-Dec-1989.
** 1-002 Add VMS and F77 bindings. TS 26-Mar-1990.
**
**--
*/
/*
**
** TABLE OF CONTENTS
**
** cvt_vax_g_to_cray
** cvt_vax_g_to_ibm_long
** cvt_vax_g_to_ieee_double
**
*/
#include <stdio.h>
#include <sysinc.h>
#include <rpc.h>
#include "cvt.h"
#include "cvtpvt.h"
//
// Added for the MS NT environment
//
#include <stdlib.h>
/*
**
** Routine:
**
** cvt_vax_g_to_ieee_double
**
** Functional Description:
**
** This routine converts a VAX G_Float floating point number
** into an IEEE double precision floating point number.
**
** Formal Parameters:
**
** input_value A VAX G_Float floating point number.
**
** options An integer bit mask. Set bits in the mask represent
** selected routine options. Applicable options are:
**
** CVT_C_BIG_ENDIAN - default is little endian
** CVT_C_ERR_UNDERFLOW - Raise underflows
** CVT_C_TRUNCATE - truncate
** CVT_C_ROUND_TO_POS - round to +infinity
** CVT_C_ROUND_TO_NEG - round to -infinity
** CVT_C_ROUND_TO_NEAREST - round to nearest
** CVT_C_VAX_ROUNDING - VAX rounding
**
** NOTE: If no rounding mode is selected the following
** default rounding mode is assumed:
**
** CVT_C_ROUND_TO_NEAREST.
**
** output_value The IEEE double precision representation of the VAX
** G_Float number.
**
** Side Effects/Signaled Errors:
**
** cvt__invalid_value - an invalid input value was specified.
** cvt__invalid_option - an invalid option was specified.
** cvt__underflow - an underlow occurred during conversion while
** Raise underflow was set.
**
*/
/*
* C binding
*/
void cvt_vax_g_to_ieee_double(
CVT_VAX_G input_value,
CVT_SIGNED_INT options,
CVT_IEEE_DOUBLE output_value )
{
int i, round_bit_position;
UNPACKED_REAL r;
switch ( options & ~(CVT_C_BIG_ENDIAN | CVT_C_ERR_UNDERFLOW) ) {
case 0 : options |= CVT_C_ROUND_TO_NEAREST;
case CVT_C_ROUND_TO_NEAREST :
case CVT_C_TRUNCATE :
case CVT_C_ROUND_TO_POS :
case CVT_C_ROUND_TO_NEG :
case CVT_C_VAX_ROUNDING : break;
default : RAISE(cvt__invalid_option);
}
// ===========================================================================
//
// This file used to be included as a separate file.
//#include "unp_vaxg.c"
//
// ===========================================================================
/* file: unpack_vax_g.c */
/*
**
** COPYRIGHT (c) 1989 BY
** DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
** ALL RIGHTS RESERVED.
**
** THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
** ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
** INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
** COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
** OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
** TRANSFERRED.
**
** THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
** AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
** CORPORATION.
**
** DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
** SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
**
*/
/*
**++
** Facility:
**
** CVT Run-Time Library
**
** Abstract:
**
** This module contains code to extract information from a VAX
** g_floating number and to initialize an UNPACKED_REAL structure
** with those bits.
**
** This module is meant to be used as an include file.
**
** Author: Math RTL
**
** Creation Date: November 24, 1989.
**
** Modification History:
**
**--
*/
/*
**++
** Functional Description:
**
** This module contains code to extract information from a VAX
** g_floating number and to initialize an UNPACKED_REAL structure
** with those bits.
**
** See the header files for a description of the UNPACKED_REAL
** structure.
**
** A VAX g_floating number in (16 bit words) looks like:
**
** [0]: Sign bit, 11 exp bits (bias 1024), 4 fraction bits
** [1]: 16 more fraction bits
** [2]: 16 more fraction bits
** [3]: 16 more fraction bits
**
** 0.5 <= fraction < 1.0, MSB implicit
**
**
** Implicit parameters:
**
** input_value: a pointer to the input parameter.
**
** r: an UNPACKED_REAL structure
**
**--
*/
RpcpMemoryCopy(&r[1], input_value, 8);
/* Initialize FLAGS and perhaps set NEGATIVE bit */
r[U_R_FLAGS] = (r[1] >> 15) & U_R_NEGATIVE;
/* Extract VAX biased exponent */
r[U_R_EXP] = (r[1] >> 4) & 0x000007FFL;
if (r[U_R_EXP] == 0) {
if (r[U_R_FLAGS])
r[U_R_FLAGS] |= U_R_INVALID;
else
r[U_R_FLAGS] = U_R_ZERO;
} else {
/* Adjust for VAX 16 bit floating format */
r[1] = ((r[1] << 16) | (r[1] >> 16));
r[2] = ((r[2] << 16) | (r[2] >> 16));
/* Add unpacked real bias and subtract VAX bias */
r[U_R_EXP] += (U_R_BIAS - 1024);
/* Set hidden bit */
r[1] |= 0x00100000L;
/* Left justify fraction bits */
r[1] <<= 11;
r[1] |= (r[2] >> 21);
r[2] <<= 11;
/* Clear uninitialized part of unpacked real */
r[3] = 0;
r[4] = 0;
}
// end of file: unpack_vax_g.c
//
// ===========================================================================
//
// This file used to be included as a separate file.
//#include "pack_iet.c"
//
// ===========================================================================
/* file: pack_ieee_t.c */
/*
**
** COPYRIGHT (c) 1989 BY
** DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
** ALL RIGHTS RESERVED.
**
** THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
** ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
** INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
** COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
** OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
** TRANSFERRED.
**
** THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
** AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
** CORPORATION.
**
** DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
** SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
**
*/
/*
**++
** Facility:
**
** CVT Run-Time Library
**
** Abstract:
**
** This module contains code to extract information from an
** UNPACKED_REAL structure and to create an IEEE double floating number
** with those bits.
**
** This module is meant to be used as an include file.
**
** Author: Math RTL
**
** Creation Date: November 24, 1989.
**
** Modification History:
**
**--
*/
/*
**++
** Functional Description:
**
** This module contains code to extract information from an
** UNPACKED_REAL structure and to create an IEEE double floating number
** with those bits.
**
** See the header files for a description of the UNPACKED_REAL
** structure.
**
** A normalized IEEE double precision floating number looks like:
**
** [0]: 32 low order fraction bits
** [1]: Sign bit, 11 exp bits (bias 1023), 20 fraction bits
**
** 1.0 <= fraction < 2.0, MSB implicit
**
** For more details see "Mips R2000 Risc Architecture"
** by Gerry Kane, page 6-8 or ANSI/IEEE Std 754-1985.
**
**
** Implicit parameters:
**
** options: a word of flags, see include files.
**
** output_value: a pointer to the input parameter.
**
** r: an UNPACKED_REAL structure.
**
** i: a temporary integer variable
**
**--
*/
if (r[U_R_FLAGS] & U_R_UNUSUAL) {
if (r[U_R_FLAGS] & U_R_ZERO)
if (r[U_R_FLAGS] & U_R_NEGATIVE)
RpcpMemoryCopy(output_value, IEEE_T_NEG_ZERO, 8);
else
RpcpMemoryCopy(output_value, IEEE_T_POS_ZERO, 8);
else if (r[U_R_FLAGS] & U_R_INFINITY) {
if (r[U_R_FLAGS] & U_R_NEGATIVE)
RpcpMemoryCopy(output_value, IEEE_T_NEG_INFINITY, 8);
else
RpcpMemoryCopy(output_value, IEEE_T_POS_INFINITY, 8);
} else if (r[U_R_FLAGS] & U_R_INVALID) {
RpcpMemoryCopy(output_value, IEEE_T_INVALID, 8);
RAISE(cvt__invalid_value);
}
} else {
/* Precision varies if value will be a denorm */
/* So, figure out where to round (0 <= i <= 53). */
round_bit_position = r[U_R_EXP] - ((U_R_BIAS - 1022) - 52);
if (round_bit_position < 0)
round_bit_position = 0;
else if (round_bit_position > 53)
round_bit_position = 53;
#include "round.cxx"
if (r[U_R_EXP] < (U_R_BIAS - 1021)) {
/* Denorm or underflow */
if (r[U_R_EXP] < ((U_R_BIAS - 1021) - 52)) {
/* Value is too small for a denorm, so underflow */
if (r[U_R_FLAGS] & U_R_NEGATIVE)
RpcpMemoryCopy(output_value, IEEE_T_NEG_ZERO, 8);
else
RpcpMemoryCopy(output_value, IEEE_T_POS_ZERO, 8);
if (options & CVT_C_ERR_UNDERFLOW) {
RAISE(cvt__underflow);
}
} else {
/* Figure leading zeros for denorm and right-justify fraction */
i = 64 - (r[U_R_EXP] - ((U_R_BIAS - 1022) - 52));
if (i > 31) {
i -= 32;
r[2] = (r[1] >> i);
r[1] = 0;
} else {
r[2] >>= i;
r[2] |= (r[1] << (32 - i));
r[1] >>= i;
}
/* OR in sign bit */
r[1] |= (r[U_R_FLAGS] << 31);
if (options & CVT_C_BIG_ENDIAN) {
r[0] = ((r[1] << 24) | (r[1] >> 24));
r[0] |= ((r[1] << 8) & 0x00FF0000L);
r[0] |= ((r[1] >> 8) & 0x0000FF00L);
r[1] = ((r[2] << 24) | (r[2] >> 24));
r[1] |= ((r[2] << 8) & 0x00FF0000L);
r[1] |= ((r[2] >> 8) & 0x0000FF00L);
} else {
r[0] = r[2];
}
RpcpMemoryCopy(output_value, r, 8);
}
} else if (r[U_R_EXP] > (U_R_BIAS + 1024)) {
/* Overflow */
if (options & CVT_C_TRUNCATE) {
if (r[U_R_FLAGS] & U_R_NEGATIVE)
RpcpMemoryCopy(output_value, IEEE_T_NEG_HUGE, 8);
else
RpcpMemoryCopy(output_value, IEEE_T_POS_HUGE, 8);
} else if ((options & CVT_C_ROUND_TO_POS)
&& (r[U_R_FLAGS] & U_R_NEGATIVE)) {
RpcpMemoryCopy(output_value, IEEE_T_NEG_HUGE, 8);
} else if ((options & CVT_C_ROUND_TO_NEG)
&& !(r[U_R_FLAGS] & U_R_NEGATIVE)) {
RpcpMemoryCopy(output_value, IEEE_T_POS_HUGE, 8);
} else {
if (r[U_R_FLAGS] & U_R_NEGATIVE)
RpcpMemoryCopy(output_value, IEEE_T_NEG_INFINITY, 8);
else
RpcpMemoryCopy(output_value, IEEE_T_POS_INFINITY, 8);
}
RAISE(cvt__overflow);
} else {
/* Adjust bias of exponent */
r[U_R_EXP] -= (U_R_BIAS - 1022);
/* Make room for exponent and sign bit */
r[2] >>= 11;
r[2] |= (r[1] << 21);
r[1] >>= 11;
/* Clear implicit bit */
r[1] &= 0x000FFFFFL;
/* OR in exponent and sign bit */
r[1] |= (r[U_R_EXP] << 20);
r[1] |= (r[U_R_FLAGS] << 31);
if (options & CVT_C_BIG_ENDIAN) {
r[0] = ((r[1] << 24) | (r[1] >> 24));
r[0] |= ((r[1] << 8) & 0x00FF0000L);
r[0] |= ((r[1] >> 8) & 0x0000FF00L);
r[1] = ((r[2] << 24) | (r[2] >> 24));
r[1] |= ((r[2] << 8) & 0x00FF0000L);
r[1] |= ((r[2] >> 8) & 0x0000FF00L);
} else {
r[0] = r[2];
}
RpcpMemoryCopy(output_value, r, 8);
}
}
// end of file: pack_iet.c
}