windows-nt/Source/XPSP1/NT/com/rpc/ndr64/bufsize.cxx
2020-09-26 16:20:57 +08:00

1630 lines
45 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Copyright (c) 1993 - 2000 Microsoft Corporation
Module Name :
bufsize.c
Abstract :
This file contains the routines called by MIDL 2.0 stubs and the
interpreter for computing the buffer size needed for a parameter.
Author :
David Kays dkays September 1993.
Revision History :
---------------------------------------------------------------------*/
#include "precomp.hxx"
#include "..\..\ndr20\ndrole.h"
void
Ndr64UDTSimpleTypeSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Get the size a top level or embedded simple type.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the data being sized.
pFormat - Pointer's format string description.
Return :
None.
--*/
{
LENGTH_ALIGN( pStubMsg->BufferLength,
NDR64_SIMPLE_TYPE_BUFALIGN(*(PFORMAT_STRING)pFormat) );
pStubMsg->BufferLength += NDR64_SIMPLE_TYPE_BUFSIZE(*(PFORMAT_STRING)pFormat);
pMemory += NDR64_SIMPLE_TYPE_MEMSIZE(*(PFORMAT_STRING)pFormat);
}
void
Ndr64pInterfacePointerBufferSize (
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for an interface pointer.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - The interface pointer being sized.
pFormat - Interface pointer's format string description.
Return :
None.
// wire representation of a marshalled interface pointer
typedef struct tagMInterfacePointer
{
ULONG ulCntData; // size of data
[size_is(ulCntData)] BYTE abData[]; // data (OBJREF)
} MInterfacePointer;
--*/
{
const NDR64_CONSTANT_IID_FORMAT *pConstInterfaceFormat =
(NDR64_CONSTANT_IID_FORMAT*)pFormat;
const NDR64_IID_FORMAT *pInterfaceFormat =
(NDR64_IID_FORMAT*)pFormat;
//
// Get an IID pointer.
//
IID *piid;
if ( ((NDR64_IID_FLAGS*)&pInterfaceFormat->Flags)->ConstantIID )
{
piid = (IID*)&pConstInterfaceFormat->Guid;
}
else
{
piid = (IID *) Ndr64EvaluateExpr( pStubMsg,
pInterfaceFormat->IIDDescriptor,
EXPR_IID );
if(piid == 0)
{
RpcRaiseException( RPC_S_INVALID_ARG );
}
}
// Allocate space for the length and array bounds.
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN );
pStubMsg->BufferLength += sizeof(NDR64_WIRE_COUNT_TYPE);
pStubMsg->BufferLength += sizeof(ulong);
unsigned long size;
HRESULT hr = (*pfnCoGetMarshalSizeMax)(&size, *piid, (IUnknown *)pMemory,
pStubMsg->dwDestContext, pStubMsg->pvDestContext, 0);
if(FAILED(hr))
{
RpcRaiseException(hr);
}
pStubMsg->BufferLength += size;
}
__forceinline void
Ndr64pPointerBufferSizeInternal(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Private routine for sizing a pointee. This is the entry
point for pointers embedded in structures, arrays, or unions.
Used for FC64_RP, FC64_UP, FC64_FP, FC64_OP.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the data being sized.
pFormat - Pointer's format string description.
pStubMsg->BufferLength - ready for the pointee.
Return :
None.
--*/
{ const NDR64_POINTER_FORMAT *pPointerFormat = (NDR64_POINTER_FORMAT*) pFormat;
PFORMAT_STRING pPointeeFormat = (PFORMAT_STRING)pPointerFormat->Pointee;
if ( ! pMemory )
return;
switch( pPointerFormat->FormatCode )
{
case FC64_IP:
Ndr64pInterfacePointerBufferSize( pStubMsg,
pMemory,
pPointeeFormat
);
return;
case FC64_FP:
//
// Check if we have already sized this full pointer.
//
if ( Ndr64pFullPointerQueryPointer( pStubMsg,
pMemory,
FULL_POINTER_BUF_SIZED,
0 ) )
return;
break;
default:
break;
}
if ( NDR64_SIMPLE_POINTER( pPointerFormat->Flags ) )
{
// Pointer to simple type.
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_SIMPLE_TYPE_BUFALIGN(*pPointeeFormat));
pStubMsg->BufferLength += NDR64_SIMPLE_TYPE_BUFSIZE(*pPointeeFormat);
return;
}
//
// Pointer to complex type.
//
if ( NDR64_POINTER_DEREF( pPointerFormat->Flags ) )
pMemory = *((uchar **)pMemory);
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
NDR64_RESET_EMBEDDED_FLAGS_TO_STANDALONE(pStubMsg->uFlags);
Ndr64TopLevelTypeSize( pStubMsg,
pMemory,
pPointeeFormat );
}
NDR64_BUFSIZE_POINTER_QUEUE_ELEMENT::NDR64_BUFSIZE_POINTER_QUEUE_ELEMENT(
MIDL_STUB_MESSAGE *pStubMsg,
uchar * const pMemoryNew,
const PFORMAT_STRING pFormatNew) :
pMemory(pMemoryNew),
pFormat(pFormatNew),
uFlags(pStubMsg->uFlags),
pCorrMemory(pStubMsg->pCorrMemory)
{
}
void
NDR64_BUFSIZE_POINTER_QUEUE_ELEMENT::Dispatch(
MIDL_STUB_MESSAGE *pStubMsg)
{
SAVE_CONTEXT<uchar> uFlagsSave(pStubMsg->uFlags, uFlags );
CORRELATION_CONTEXT CorrCtxt(pStubMsg, pCorrMemory);
Ndr64pPointerBufferSizeInternal( pStubMsg,
pMemory,
pFormat);
}
#if defined(DBG)
void
NDR64_BUFSIZE_POINTER_QUEUE_ELEMENT::Print()
{
DbgPrint("NDR64_BUFSIZE_POINTER_QUEUE_ELEMENT\n");
DbgPrint("pNext: %p\n", pNext );
DbgPrint("pMemory: %p\n", pMemory );
DbgPrint("pFormat: %p\n", pFormat );
DbgPrint("uFlags: %x\n", uFlags );
DbgPrint("pCorrMemory: %p\n", pCorrMemory );
}
#endif
void
Ndr64pEnquePointerBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
NDR64_POINTER_CONTEXT PointerContext( pStubMsg );
RpcTryFinally
{
NDR64_BUFSIZE_POINTER_QUEUE_ELEMENT *pElement =
new(PointerContext.GetActiveState())
NDR64_BUFSIZE_POINTER_QUEUE_ELEMENT(pStubMsg,
pMemory,
(PFORMAT_STRING)pFormat);
PointerContext.Enque( pElement );
PointerContext.DispatchIfRequired();
}
RpcFinally
{
PointerContext.EndContext();
}
RpcEndFinally
}
void
Ndr64pPointerBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
if (!NdrIsLowStack(pStubMsg))
{
Ndr64pPointerBufferSizeInternal(
pStubMsg,
pMemory,
pFormat );
return;
}
Ndr64pEnquePointerBufferSize(
pStubMsg,
pMemory,
pFormat );
}
__forceinline void
Ndr64TopLevelPointerBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
if ( *(PFORMAT_STRING)pFormat != FC64_RP )
{
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_PTR_WIRE_ALIGN );
pStubMsg->BufferLength += sizeof(NDR64_PTR_WIRE_TYPE);
}
Ndr64pPointerBufferSize( pStubMsg,
pMemory,
pFormat );
}
__forceinline void
Ndr64EmbeddedPointerBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_PTR_WIRE_ALIGN );
pStubMsg->BufferLength += sizeof(NDR64_PTR_WIRE_TYPE);
if ( pStubMsg->IgnoreEmbeddedPointers )
return;
POINTER_BUFFERLENGTH_SWAP_CONTEXT SwapContext( pStubMsg );
Ndr64pPointerBufferSize( pStubMsg,
*(uchar**)pMemory,
pFormat );
}
void
Ndr64pRangeBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a simple type with range on it.
Used for FC64_RANGE.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the structure being sized.
pFormat - Structure's format string description.
Return :
None.
--*/
{
const NDR64_RANGE_FORMAT * pRangeFormat =
(const NDR64_RANGE_FORMAT*)pFormat;
LENGTH_ALIGN( pStubMsg->BufferLength, NDR64_SIMPLE_TYPE_BUFALIGN(pRangeFormat->RangeType) );
pStubMsg->BufferLength += NDR64_SIMPLE_TYPE_BUFSIZE(pRangeFormat->RangeType);
}
void
Ndr64SimpleStructBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a simple structure.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the structure being sized.
pFormat - Structure's format string description.
Return :
None.
--*/
{
const NDR64_STRUCTURE_HEADER_FORMAT * const pStructFormat =
(NDR64_STRUCTURE_HEADER_FORMAT*) pFormat;
LENGTH_ALIGN( pStubMsg->BufferLength, pStructFormat->Alignment );
pStubMsg->BufferLength += pStructFormat->MemorySize;
if ( pStructFormat->Flags.HasPointerInfo )
{
CORRELATION_CONTEXT CorrCtxt( pStubMsg, pMemory );
Ndr64pPointerLayoutBufferSize( pStubMsg,
pStructFormat + 1,
0,
pMemory );
}
}
void
Ndr64ConformantStructBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a conformant structure.
Used for FC64_CSTRUCT and FC64_CPSTRUCT.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the structure being sized.
pFormat - Structure's format string description.
Return :
None.
--*/
{
const NDR64_CONF_STRUCTURE_HEADER_FORMAT * const pStructFormat =
(NDR64_CONF_STRUCTURE_HEADER_FORMAT*) pFormat;
const NDR64_CONF_ARRAY_HEADER_FORMAT * const pArrayFormat =
(NDR64_CONF_ARRAY_HEADER_FORMAT *)pStructFormat->ArrayDescription;
CORRELATION_CONTEXT CorrCtxt( pStubMsg, pMemory );
if ( ! NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
// Align and add size for conformance count.
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN);
pStubMsg->BufferLength += sizeof(NDR64_WIRE_COUNT_TYPE);
}
// Align
LENGTH_ALIGN(pStubMsg->BufferLength, pStructFormat->Alignment );
NDR64_WIRE_COUNT_TYPE MaxCount =
Ndr64EvaluateExpr( pStubMsg,
pArrayFormat->ConfDescriptor,
EXPR_MAXCOUNT );
pStubMsg->BufferLength += pStructFormat->MemorySize +
Ndr64pConvertTo2GB(MaxCount *
(NDR64_UINT64)pArrayFormat->ElementSize );
if ( pStructFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutBufferSize( pStubMsg,
pStructFormat + 1,
(NDR64_UINT32)MaxCount,
pMemory );
}
}
void
Ndr64ComplexStructBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a complex structure.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the structure being sized.
pFormat - Structure's format string description.
Return :
None.
--*/
{
const NDR64_BOGUS_STRUCTURE_HEADER_FORMAT * pStructFormat =
(NDR64_BOGUS_STRUCTURE_HEADER_FORMAT*) pFormat;
const NDR64_CONF_BOGUS_STRUCTURE_HEADER_FORMAT * pConfStructFormat =
(NDR64_CONF_BOGUS_STRUCTURE_HEADER_FORMAT*) pFormat;
bool fSetPointerBufferMark = !pStubMsg->IgnoreEmbeddedPointers &&
!pStubMsg->PointerBufferMark;
if ( fSetPointerBufferMark )
{
pStubMsg->IgnoreEmbeddedPointers = TRUE;
ulong BufferLengthSave = pStubMsg->BufferLength;
Ndr64ComplexStructBufferSize(
pStubMsg,
pMemory,
pFormat );
// complex struct may not have a zero length
NDR_ASSERT( pStubMsg->BufferLength, "Flat part of struct had a zero length!" );
pStubMsg->IgnoreEmbeddedPointers = FALSE;
pStubMsg->PointerBufferMark = (uchar*) ULongToPtr(pStubMsg->BufferLength);
pStubMsg->BufferLength = BufferLengthSave;
}
PFORMAT_STRING pFormatPointers = (PFORMAT_STRING) pStructFormat->PointerLayout;
PFORMAT_STRING pFormatArray = NULL;
PFORMAT_STRING pMemberLayout = ( *(PFORMAT_STRING)pFormat == FC64_CONF_BOGUS_STRUCT ||
*(PFORMAT_STRING)pFormat == FC64_FORCED_CONF_BOGUS_STRUCT ) ?
(PFORMAT_STRING)( pConfStructFormat + 1) :
(PFORMAT_STRING)( pStructFormat + 1);
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
CORRELATION_CONTEXT CorrCtxt( pStubMsg, pMemory );
// Get conformant array description.
if ( pStructFormat->Flags.HasConfArray )
{
pFormatArray = (PFORMAT_STRING)pConfStructFormat->ConfArrayDescription;
// accounted for by the outermost embedding complex struct
if ( ! NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
//
// Align and add size of conformance count(s).
//
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN );
pStubMsg->BufferLength += pConfStructFormat->Dimensions * sizeof(NDR64_WIRE_COUNT_TYPE);
NDR64_SET_CONF_MARK_VALID( pStubMsg->uFlags );
}
}
else
pFormatArray = 0;
LENGTH_ALIGN(pStubMsg->BufferLength, pStructFormat->Alignment);
//
// Shallow size the structure member by member.
//
for ( ; ; )
{
switch ( *pMemberLayout )
{
case FC64_STRUCT:
{
const NDR64_SIMPLE_REGION_FORMAT *pRegion =
(NDR64_SIMPLE_REGION_FORMAT*) pMemberLayout;
LENGTH_ALIGN(pStubMsg->BufferLength, pRegion->Alignment );
pStubMsg->BufferLength += pRegion->RegionSize;
pMemory += pRegion->RegionSize;
pMemberLayout += sizeof( *pRegion );
break;
}
case FC64_STRUCTPADN :
{
const NDR64_MEMPAD_FORMAT *pMemPad = (NDR64_MEMPAD_FORMAT*)pMemberLayout;
pMemory += pMemPad->MemPad;
pMemberLayout += sizeof(*pMemPad);
break;
}
case FC64_POINTER :
{
Ndr64EmbeddedPointerBufferSize(
pStubMsg,
pMemory,
pFormatPointers );
pMemory += PTR_MEM_SIZE;
pFormatPointers += sizeof(NDR64_POINTER_FORMAT);
pMemberLayout += sizeof(NDR64_SIMPLE_MEMBER_FORMAT);
break;
}
//
// Embedded complex types.
//
case FC64_EMBEDDED_COMPLEX :
{
const NDR64_EMBEDDED_COMPLEX_FORMAT * pEmbeddedFormat =
(NDR64_EMBEDDED_COMPLEX_FORMAT*) pMemberLayout;
PFORMAT_STRING pTypeFormat = (PFORMAT_STRING)pEmbeddedFormat->Type;
Ndr64EmbeddedTypeSize( pStubMsg,
pMemory,
pTypeFormat );
pMemory = Ndr64pMemoryIncrement( pStubMsg,
pMemory,
pTypeFormat,
FALSE );
pMemberLayout += sizeof( *pEmbeddedFormat );
break;
}
case FC64_BUFFER_ALIGN:
{
const NDR64_BUFFER_ALIGN_FORMAT *pBufAlign =
(NDR64_BUFFER_ALIGN_FORMAT*) pMemberLayout;
LENGTH_ALIGN(pStubMsg->BufferLength, pBufAlign->Alignment);
pMemberLayout += sizeof( *pBufAlign );
break;
}
//
// simple types
//
case FC64_CHAR :
case FC64_WCHAR :
case FC64_INT8:
case FC64_UINT8:
case FC64_INT16:
case FC64_UINT16:
case FC64_INT32:
case FC64_UINT32:
case FC64_INT64:
case FC64_UINT64:
case FC64_FLOAT32 :
case FC64_FLOAT64 :
case FC64_ERROR_STATUS_T:
LENGTH_ALIGN( pStubMsg->BufferLength,
NDR64_SIMPLE_TYPE_BUFALIGN(*pMemberLayout) );
pStubMsg->BufferLength += NDR64_SIMPLE_TYPE_BUFSIZE(*pMemberLayout);
pMemory += NDR64_SIMPLE_TYPE_MEMSIZE(*pMemberLayout);
pMemberLayout += sizeof(NDR64_SIMPLE_MEMBER_FORMAT);
break;
case FC64_IGNORE :
LENGTH_ALIGN( pStubMsg->BufferLength, NDR64_PTR_WIRE_ALIGN );
pStubMsg->BufferLength += sizeof(NDR64_PTR_WIRE_TYPE);
pMemory += PTR_MEM_SIZE;
pMemberLayout += sizeof(NDR64_SIMPLE_MEMBER_FORMAT);
break;
//
// Done with layout.
//
case FC64_END :
goto ComplexStructBufferSizeEnd;
default :
NDR_ASSERT(0,"Ndr64ComplexStructBufferSize : bad format char");
RpcRaiseException( RPC_S_INTERNAL_ERROR );
return;
} // switch
} // for
ComplexStructBufferSizeEnd:
//
// Size any conformant array.
//
if ( pFormatArray )
{
Ndr64EmbeddedTypeSize( pStubMsg,
pMemory,
pFormatArray );
}
else
{
// If the structure doesn't have a conformant array, align it again
LENGTH_ALIGN( pStubMsg->BufferLength, pStructFormat->Alignment );
}
if ( fSetPointerBufferMark )
{
pStubMsg->BufferLength = PtrToUlong(pStubMsg->PointerBufferMark);
pStubMsg->PointerBufferMark = NULL;
}
}
void
Ndr64FixedArrayBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a fixed array of any number of
dimensions.
Used for FC64_SMFARRAY and FC64_LGFARRAY.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the array being sized.
pFormat - Array's format string description.
Return :
None.
--*/
{
const NDR64_FIX_ARRAY_HEADER_FORMAT * pArrayFormat =
(NDR64_FIX_ARRAY_HEADER_FORMAT*) pFormat;
LENGTH_ALIGN(pStubMsg->BufferLength, pArrayFormat->Alignment );
pStubMsg->BufferLength += pArrayFormat->TotalSize;
if ( pArrayFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutBufferSize( pStubMsg,
pArrayFormat + 1,
0,
pMemory );
}
}
void
Ndr64ConformantArrayBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a top level one dimensional conformant
array.
Used for FC64_CARRAY.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the array being sized.
pFormat - Array's format string description.
Return :
None.
--*/
{
const NDR64_CONF_ARRAY_HEADER_FORMAT *pArrayFormat =
(NDR64_CONF_ARRAY_HEADER_FORMAT*) pFormat;
if ( ! NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN);
pStubMsg->BufferLength += sizeof(NDR64_WIRE_COUNT_TYPE);
}
NDR64_WIRE_COUNT_TYPE ConformanceCount =
Ndr64EvaluateExpr( pStubMsg,
pArrayFormat->ConfDescriptor,
EXPR_MAXCOUNT );
NDR64_UINT32 BufferSize = Ndr64pConvertTo2GB( (NDR64_UINT64)pArrayFormat->ElementSize *
ConformanceCount );
LENGTH_ALIGN(pStubMsg->BufferLength,pArrayFormat->Alignment);
pStubMsg->BufferLength += BufferSize;
if ( pArrayFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutBufferSize( pStubMsg,
pArrayFormat + 1,
(NDR64_UINT32)ConformanceCount,
pMemory );
}
}
void
Ndr64ConformantVaryingArrayBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a top level one dimensional conformant
varying array.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the array being sized.
pFormat - Array's format string description.
Return :
None.
--*/
{
const NDR64_CONF_VAR_ARRAY_HEADER_FORMAT * pArrayFormat =
(NDR64_CONF_VAR_ARRAY_HEADER_FORMAT*) pFormat;
if ( ! NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN );
pStubMsg->BufferLength += sizeof( NDR64_WIRE_COUNT_TYPE );
}
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN );
pStubMsg->BufferLength += sizeof(NDR64_WIRE_COUNT_TYPE) * 2;
NDR64_WIRE_COUNT_TYPE ActualCount =
Ndr64EvaluateExpr( pStubMsg,
pArrayFormat->VarDescriptor,
EXPR_ACTUALCOUNT );
NDR64_UINT32 CopySize = Ndr64pConvertTo2GB( ActualCount *
(NDR64_UINT64)pArrayFormat->ElementSize );
LENGTH_ALIGN(pStubMsg->BufferLength, pArrayFormat->Alignment );
pStubMsg->BufferLength += CopySize;
if ( pArrayFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutBufferSize( pStubMsg,
pArrayFormat + 1,
(NDR64_UINT32)ActualCount,
pMemory );
}
}
void
Ndr64VaryingArrayBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a top level or embedded one
dimensional varying array.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the array being sized.
pFormat - Array's format string description.
Return :
None.
Arguments :
pMemory - pointer to the parameter to size
pFormat - pointer to the format string description of the parameter
--*/
{
const NDR64_VAR_ARRAY_HEADER_FORMAT * pArrayFormat =
(NDR64_VAR_ARRAY_HEADER_FORMAT*) pFormat;
//
// Align and add size for offset and actual count.
//
LENGTH_ALIGN( pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN);
pStubMsg->BufferLength += (sizeof(NDR64_WIRE_COUNT_TYPE) * 2);
NDR64_WIRE_COUNT_TYPE ActualCount =
Ndr64EvaluateExpr( pStubMsg,
pArrayFormat->VarDescriptor,
EXPR_ACTUALCOUNT );
// Check if the bounds are valid
NDR64_UINT32 BufferSize = Ndr64pConvertTo2GB( ActualCount *
(NDR64_UINT64)pArrayFormat->ElementSize );
if ( BufferSize > pArrayFormat->TotalSize )
RpcRaiseException( RPC_X_INVALID_BOUND );
LENGTH_ALIGN(pStubMsg->BufferLength, pArrayFormat->Alignment );
pStubMsg->BufferLength += BufferSize;
if ( pArrayFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutBufferSize( pStubMsg,
pArrayFormat + 1,
(NDR64_UINT32)ActualCount,
pMemory );
}
}
void
Ndr64ComplexArrayBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a top level complex array.
Used for FC64_BOGUS_STRUCT.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the array being sized.
pFormat - Array's format string description.
Return :
None.
--*/
{
const NDR64_BOGUS_ARRAY_HEADER_FORMAT *pArrayFormat =
(NDR64_BOGUS_ARRAY_HEADER_FORMAT *) pFormat;
bool fSetPointerBufferMark = !pStubMsg->IgnoreEmbeddedPointers &&
(! pStubMsg->PointerBufferMark );
if ( fSetPointerBufferMark )
{
ulong BufferLengthSave = pStubMsg->BufferLength;
pStubMsg->IgnoreEmbeddedPointers = TRUE;
Ndr64ComplexArrayBufferSize(
pStubMsg,
pMemory,
pFormat );
// In NDR64 the flat part of a array may not have a zero length.
NDR_ASSERT( pStubMsg->BufferLength, "Flat part of array had a zero length!" );
pStubMsg->PointerBufferMark = (uchar*)ULongToPtr(pStubMsg->BufferLength);
pStubMsg->IgnoreEmbeddedPointers = FALSE;
pStubMsg->BufferLength = BufferLengthSave;
}
BOOL IsFixed = ( pArrayFormat->FormatCode == FC64_FIX_BOGUS_ARRAY ) ||
( pArrayFormat->FormatCode == FC64_FIX_FORCED_BOGUS_ARRAY );
PFORMAT_STRING pElementFormat = (PFORMAT_STRING) pArrayFormat->Element;
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
NDR64_WIRE_COUNT_TYPE Elements = pArrayFormat->NumberElements;
NDR64_WIRE_COUNT_TYPE Count = Elements;
NDR64_WIRE_COUNT_TYPE Offset = 0;
if ( !IsFixed )
{
const NDR64_CONF_VAR_BOGUS_ARRAY_HEADER_FORMAT* pConfVarFormat =
(NDR64_CONF_VAR_BOGUS_ARRAY_HEADER_FORMAT*)pFormat;
if ( pConfVarFormat->ConfDescription )
{
Elements = Ndr64EvaluateExpr( pStubMsg,
pConfVarFormat->ConfDescription,
EXPR_MAXCOUNT );
Count = Elements;
Offset = 0;
if ( ! NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN);
pStubMsg->BufferLength += pArrayFormat->NumberDims *
sizeof(NDR64_WIRE_COUNT_TYPE);
NDR64_SET_CONF_MARK_VALID( pStubMsg->uFlags );
}
}
if ( pConfVarFormat->VarDescription )
{
Count =
Ndr64EvaluateExpr( pStubMsg,
pConfVarFormat->VarDescription,
EXPR_ACTUALCOUNT );
Offset =
Ndr64EvaluateExpr( pStubMsg,
pConfVarFormat->OffsetDescription,
EXPR_OFFSET);
if ( ! NDR64_IS_VAR_MARK_VALID( pStubMsg->uFlags ) )
{
NDR64_UINT32 Dimensions;
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN );
Dimensions = ( pArrayFormat->Flags.IsArrayofStrings ) ? ( pArrayFormat->NumberDims - 1 ) :
( pArrayFormat->NumberDims );
pStubMsg->BufferLength += Dimensions * sizeof(NDR64_WIRE_COUNT_TYPE) * 2;
if ( NDR64_IS_ARRAY_OR_STRING( *pElementFormat ) )
NDR64_SET_VAR_MARK_VALID( pStubMsg->uFlags );
}
else if ( !NDR64_IS_ARRAY_OR_STRING( *pElementFormat ) )
NDR64_RESET_VAR_MARK_VALID( pStubMsg->uFlags );
}
}
NDR64_UINT32 ElementMemorySize =
Ndr64pMemorySize( pStubMsg,
pElementFormat,
FALSE );
pMemory += Ndr64pConvertTo2GB(Offset *
(NDR64_UINT64)ElementMemorySize);
Ndr64pConvertTo2GB( Elements *
(NDR64_UINT64)ElementMemorySize );
Ndr64pConvertTo2GB( Count *
(NDR64_UINT64)ElementMemorySize );
if ( (Offset + Count) > Elements )
RpcRaiseException( RPC_X_INVALID_BOUND );
LENGTH_ALIGN( pStubMsg->BufferLength, pArrayFormat->Alignment );
for ( ; Count--; )
{
Ndr64EmbeddedTypeSize( pStubMsg,
pMemory,
pElementFormat );
pMemory += ElementMemorySize;
}
if ( fSetPointerBufferMark )
{
pStubMsg->BufferLength = PtrToUlong(pStubMsg->PointerBufferMark);
pStubMsg->PointerBufferMark = NULL;
}
}
void
Ndr64NonConformantStringBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a non conformant string.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the array being sized.
pFormat - Array's format string description.
Return :
None.
--*/
{
const NDR64_NON_CONFORMANT_STRING_FORMAT * pStringFormat =
(NDR64_NON_CONFORMANT_STRING_FORMAT*) pFormat;
NDR64_UINT32 CopySize =
Ndr64pCommonStringSize(pStubMsg,
pMemory,
&pStringFormat->Header);
if ( CopySize > pStringFormat->TotalSize )
RpcRaiseException( RPC_X_INVALID_BOUND );
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN );
pStubMsg->BufferLength += sizeof(NDR64_WIRE_COUNT_TYPE) * 2;
pStubMsg->BufferLength += CopySize;
}
void
Ndr64ConformantStringBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Routine for computing the buffer size needed for a conformant
string.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the array being sized.
pFormat - Array's format string description.
Return :
None.
--*/
{
const NDR64_CONFORMANT_STRING_FORMAT * pStringFormat =
(NDR64_CONFORMANT_STRING_FORMAT*) pFormat;
const NDR64_SIZED_CONFORMANT_STRING_FORMAT * pSizedStringFormat =
(NDR64_SIZED_CONFORMANT_STRING_FORMAT*) pFormat;
NDR64_UINT32 CopySize =
Ndr64pCommonStringSize(pStubMsg,
pMemory,
&pStringFormat->Header);
if ( pStringFormat->Header.Flags.IsSized )
{
Ndr64EvaluateExpr( pStubMsg,
pSizedStringFormat->SizeDescription,
EXPR_MAXCOUNT );
if ( pStubMsg->ActualCount > pStubMsg->MaxCount )
RpcRaiseException(RPC_X_INVALID_BOUND);
}
if ( !NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
LENGTH_ALIGN( pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN );
pStubMsg->BufferLength += sizeof(NDR64_WIRE_COUNT_TYPE);
}
// Align and add size for variance.
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_WIRE_COUNT_ALIGN);
pStubMsg->BufferLength += sizeof(NDR64_WIRE_COUNT_TYPE) * 2;
pStubMsg->BufferLength += CopySize;
}
void
Ndr64UnionBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for an encapsulated union.
Used for FC64_ENCAPSULATED_UNION.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the union being sized.
pFormat - Union's format string description.
Return :
None.
--*/
{
const NDR64_UNION_ARM_SELECTOR* pArmSelector;
EXPR_VALUE SwitchIs;
NDR64_FORMAT_CHAR SwitchType;
uchar *pArmMemory;
switch(*(PFORMAT_STRING)pFormat)
{
case FC64_NON_ENCAPSULATED_UNION:
{
const NDR64_NON_ENCAPSULATED_UNION* pNonEncapUnionFormat =
(const NDR64_NON_ENCAPSULATED_UNION*) pFormat;
LENGTH_ALIGN(pStubMsg->BufferLength, pNonEncapUnionFormat->Alignment);
SwitchType = pNonEncapUnionFormat->SwitchType;
pArmSelector = (NDR64_UNION_ARM_SELECTOR*)(pNonEncapUnionFormat + 1);
SwitchIs = Ndr64EvaluateExpr( pStubMsg,
pNonEncapUnionFormat->Switch,
EXPR_SWITCHIS );
pArmMemory = pMemory;
break;
}
case FC64_ENCAPSULATED_UNION:
{
const NDR64_ENCAPSULATED_UNION* pEncapUnionFormat =
(const NDR64_ENCAPSULATED_UNION*)pFormat;
LENGTH_ALIGN(pStubMsg->BufferLength, pEncapUnionFormat->Alignment);
SwitchType = pEncapUnionFormat->SwitchType;
pArmSelector = (NDR64_UNION_ARM_SELECTOR*)(pEncapUnionFormat + 1);
SwitchIs = Ndr64pSimpleTypeToExprValue(SwitchType,
pMemory);
pArmMemory = pMemory + pEncapUnionFormat->MemoryOffset;
break;
}
default:
NDR_ASSERT("Bad union format\n", 0);
return;
}
//
// Size the switch_is.
//
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_SIMPLE_TYPE_BUFALIGN(SwitchType));
pStubMsg->BufferLength += NDR64_SIMPLE_TYPE_BUFSIZE(SwitchType);
LENGTH_ALIGN( pStubMsg->BufferLength, pArmSelector->Alignment);
PNDR64_FORMAT pArmFormat =
Ndr64pFindUnionArm( pStubMsg,
pArmSelector,
SwitchIs );
if ( ! pArmFormat )
return;
Ndr64EmbeddedTypeSize( pStubMsg,
pArmMemory,
pArmFormat );
}
void
Ndr64XmitOrRepAsBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat,
bool IsEmbedded )
/*++
Routine Description :
Computes the buffer size needed for a transmit as or represent as object.
See mrshl.c for the description of the FC layout.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the transmit/represent as object being sized.
pFormat - Object's format string description.
Return :
None.
--*/
{
NDR64_TRANSMIT_AS_FORMAT *pTransFormat = ( NDR64_TRANSMIT_AS_FORMAT *) pFormat;
NDR_ASSERT( pTransFormat->FormatCode == FC64_TRANSMIT_AS || pTransFormat->FormatCode , "invalid format string for user marshal" );
unsigned short QIndex = pTransFormat->RoutineIndex;
NDR64_UINT32 XmitTypeSize = pTransFormat->TransmittedTypeBufferSize;
const XMIT_ROUTINE_QUINTUPLE * pQuintuple = pStubMsg->StubDesc->aXmitQuintuple;
if ( XmitTypeSize )
{
LENGTH_ALIGN( pStubMsg->BufferLength, pTransFormat->TransmittedTypeWireAlignment );
pStubMsg->BufferLength += XmitTypeSize;
}
else
{
// We have to create an object to size it.
// First translate the presented type into the transmitted type.
// This includes an allocation of a transmitted type object.
pStubMsg->pPresentedType = pMemory;
pStubMsg->pTransmitType = NULL;
pQuintuple[ QIndex ].pfnTranslateToXmit( pStubMsg );
// bufsize the transmitted type.
unsigned char * pTransmittedType = pStubMsg->pTransmitType;
// In NDR64, Xmit/Rep cannot be a pointer or contain a pointer.
// So we don't need to worry about the pointer queue here.
if ( IsEmbedded )
{
Ndr64EmbeddedTypeSize( pStubMsg,
pTransmittedType,
pTransFormat->TransmittedType );
}
else
{
Ndr64TopLevelTypeSize( pStubMsg,
pTransmittedType,
pTransFormat->TransmittedType );
}
pStubMsg->pTransmitType = pTransmittedType;
// Free the temporary transmitted object (it was alloc'ed by the user).
pQuintuple[ QIndex ].pfnFreeXmit( pStubMsg );
}
}
void
Ndr64TopLevelXmitOrRepAsBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
Ndr64XmitOrRepAsBufferSize( pStubMsg,
pMemory,
pFormat,
false );
}
void
Ndr64EmbeddedXmitOrRepAsBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
Ndr64XmitOrRepAsBufferSize( pStubMsg,
pMemory,
pFormat,
true );
}
void
Ndr64UserMarshallBufferSizeInternal(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
NDR64_USER_MARSHAL_FORMAT *pUserFormat = ( NDR64_USER_MARSHAL_FORMAT *) pFormat;
// We are here to size a flat object or a pointee object.
// Optimization: if we know the wire size, don't call the user to size it.
if ( pUserFormat->TransmittedTypeBufferSize != 0 )
{
pStubMsg->BufferLength += pUserFormat->TransmittedTypeBufferSize;
}
else
{
// Unknown wire size: Call the user to size his stuff.
USER_MARSHAL_CB UserMarshalCB;
Ndr64pInitUserMarshalCB( pStubMsg,
pUserFormat,
USER_MARSHAL_CB_BUFFER_SIZE,
& UserMarshalCB);
unsigned long UserOffset = pStubMsg->BufferLength;
unsigned short QIndex = pUserFormat->RoutineIndex;
const USER_MARSHAL_ROUTINE_QUADRUPLE * pQuadruple =
(const USER_MARSHAL_ROUTINE_QUADRUPLE *)( ( NDR_PROC_CONTEXT *)pStubMsg->pContext )->pSyntaxInfo->aUserMarshalQuadruple;
UserOffset = pQuadruple[ QIndex ].pfnBufferSize( (ulong*) &UserMarshalCB,
UserOffset,
pMemory );
pStubMsg->BufferLength = UserOffset;
}
}
void
NDR64_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT::Dispatch(MIDL_STUB_MESSAGE *pStubMsg)
{
Ndr64UserMarshallBufferSizeInternal( pStubMsg,
pMemory,
pFormat );
}
#if defined(DBG)
void
NDR64_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT::Print()
{
DbgPrint("NDR_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT\n");
DbgPrint("pMemory: %p\n", pMemory );
DbgPrint("pFormat: %p\n", pFormat );
}
#endif
void
Ndr64UserMarshallPointeeBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
if ( pStubMsg->IgnoreEmbeddedPointers )
return;
if ( !pStubMsg->pPointerQueueState ||
!pStubMsg->pPointerQueueState->GetActiveQueue() )
{
POINTER_BUFFERLENGTH_SWAP_CONTEXT SwapContext( pStubMsg );
Ndr64UserMarshallBufferSizeInternal( pStubMsg,
pMemory,
pFormat );
return;
}
NDR64_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT*pElement =
new(pStubMsg->pPointerQueueState)
NDR64_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT(pMemory,
(PFORMAT_STRING)pFormat );
pStubMsg->pPointerQueueState->GetActiveQueue()->Enque( pElement );
}
void
Ndr64UserMarshalBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat,
bool bIsEmbedded )
/*++
Routine Description :
Computes the buffer size needed for a usr_marshall object.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Pointer to the usr_marshall object to buffer size.
pFormat - Object's format string description.
Return :
None.
--*/
{
NDR64_USER_MARSHAL_FORMAT *pUserFormat = ( NDR64_USER_MARSHAL_FORMAT *) pFormat;
NDR_ASSERT( pUserFormat->FormatCode == FC64_USER_MARSHAL, "invalid format string for user marshal" );
// Align for the flat object or a pointer to the user object.
LENGTH_ALIGN( pStubMsg->BufferLength, pUserFormat->TransmittedTypeWireAlignment );
if ( pUserFormat->Flags & USER_MARSHAL_POINTER )
{
if ( ( pUserFormat->Flags & USER_MARSHAL_UNIQUE) ||
( ( pUserFormat->Flags & USER_MARSHAL_REF) && bIsEmbedded ) )
{
LENGTH_ALIGN(pStubMsg->BufferLength, NDR64_PTR_WIRE_ALIGN );
pStubMsg->BufferLength += sizeof( NDR64_PTR_WIRE_TYPE );
}
Ndr64UserMarshallPointeeBufferSize( pStubMsg,
pMemory,
pFormat );
return;
}
Ndr64UserMarshallBufferSizeInternal( pStubMsg,
pMemory,
pFormat );
}
void
Ndr64TopLevelUserMarshalBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
Ndr64UserMarshalBufferSize(
pStubMsg,
pMemory,
pFormat,
false );
}
void
Ndr64EmbeddedUserMarshallBufferSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
Ndr64UserMarshalBufferSize(
pStubMsg,
pMemory,
pFormat,
true );
}
void
Ndr64ContextHandleSize(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Computes the buffer size needed for a context handle.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Ignored.
pFormat - Ignored.
Return :
None.
--*/
{
LENGTH_ALIGN(pStubMsg->BufferLength,0x3);
pStubMsg->BufferLength += CONTEXT_HANDLE_WIRE_SIZE;
}
// define the jump table
#define NDR64_BEGIN_TABLE \
PNDR64_SIZE_ROUTINE extern const Ndr64SizeRoutinesTable[] = \
{
#define NDR64_TABLE_END \
};
#define NDR64_ZERO_ENTRY NULL
#define NDR64_UNUSED_TABLE_ENTRY( number, tokenname ) ,NULL
#define NDR64_UNUSED_TABLE_ENTRY_NOSYM( number ) ,NULL
#define NDR64_TABLE_ENTRY( number, tokenname, marshall, embeddedmarshall, unmarshall, embeddedunmarshall, buffersize, embeddedbuffersize, memsize, embeddedmemsize, free, embeddedfree, typeflags ) \
,buffersize
#define NDR64_SIMPLE_TYPE_TABLE_ENTRY( number, tokenname, buffersize, memorysize ) \
,Ndr64UDTSimpleTypeSize
#include "tokntbl.h"
C_ASSERT( sizeof(Ndr64SizeRoutinesTable)/sizeof(PNDR64_SIZE_ROUTINE) == 256 );
#undef NDR64_BEGIN_TABLE
#undef NDR64_TABLE_ENTRY
#define NDR64_BEGIN_TABLE \
PNDR64_SIZE_ROUTINE extern const Ndr64EmbeddedSizeRoutinesTable[] = \
{
#define NDR64_TABLE_ENTRY( number, tokenname, marshall, embeddedmarshall, unmarshall, embeddedunmarshall, buffersize, embeddedbuffersize, memsize, embeddedmemsize, free, embeddedfree, typeflags ) \
,embeddedbuffersize
#include "tokntbl.h"
C_ASSERT( sizeof(Ndr64EmbeddedSizeRoutinesTable) / sizeof(PNDR64_SIZE_ROUTINE) == 256 );