windows-nt/Source/XPSP1/NT/base/cluster/service/mm/srgpos.c
2020-09-26 16:20:57 +08:00

1622 lines
54 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifdef __TANDEM
#pragma columns 79
#pragma page "srgpos.c - T9050 - OS-dependent routines for Regroup Module"
#endif
/* @@@ START COPYRIGHT @@@
** Tandem Confidential: Need to Know only
** Copyright (c) 1995, Tandem Computers Incorporated
** Protected as an unpublished work.
** All Rights Reserved.
**
** The computer program listings, specifications, and documentation
** herein are the property of Tandem Computers Incorporated and shall
** not be reproduced, copied, disclosed, or used in whole or in part
** for any reason without the prior express written permission of
** Tandem Computers Incorporated.
**
** @@@ END COPYRIGHT @@@
**/
/*---------------------------------------------------------------------------
* This file (srgpos.c) contains OS-specific code used by Regroup.
*---------------------------------------------------------------------------*/
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
#include <wrgp.h>
#ifdef NSK
#include <pmsgrgp.h>
#endif /* NSK */
#if defined(NT)
DWORD
MmSetThreadPriority(
VOID
);
void
NT_timer_thread(
void
);
PWCHAR
RgpGetNodeNameFromId(
node_t
);
#endif // NT
/* The global pointer to regroup's internal data structure. */
#ifdef NSK
/* The global regroup pointer is #defined to a pointer in the message
* system root structure.
*/
#endif
#if defined(LCU) || defined(UNIX) || defined(NT)
rgp_control_t *rgp = (rgp_control_t *) RGP_NULL_PTR;
DWORD QuorumOwner = MM_INVALID_NODE;
/* quorum owner can be set by the forming node before rgp is initialized */
#endif /* LCU || UNIX || NT */
#ifdef LCU
/************************************************************************
* rgp_lcu_serv_listen
* ===================
*
* Description:
*
* This is an LCU-specific routine that gets called in IPC interrupt
* context when a datagram addressed to the Regroup Module is received.
*
* Parameters:
*
* void *listen_callarg - required param, unused by regroup
* lcumsg_t *lcumsgp - pointer to message
* uint moredata - required param, unused by regroup
*
* Returns:
*
* int - Always returns ELCU_OK
*
* Algorithm:
*
* The routine simply picks apart the arguments and calls
* rgp_received_packet().
*
*
************************************************************************/
_priv _resident int
rgp_lcu_serv_listen(void *listen_callarg, lcumsg_t *lcumsgp, uint moredata)
{
/* Ignore if the packet is not from the local system. */
if (lcumsgp->lcu_sysnum == rgp->OS_specific_control.my_sysnum)
rgp_received_packet(lcumsgp->lcu_node,
lcumsgp->lcu_reqmbuf.lcu_ctrlbuf,
lcumsgp->lcu_reqmbuf.lcu_ctrllen);
return(ELCU_OK);
}
/************************************************************************
* rgp_lcu_event_callback
* ======================
*
* Description:
*
* This is an LCU-specific routine that gets called in IPC interrupt
* context when the LCUEV_NODE_UNREACHABLE event is generated.
*
* Parameters:
*
* ulong event - event # (= LCUEV_NODE_UNREACHABLE)
* sysnum_t sysnum - system # (= local system #)
* nodenum_t node - # of node that is unreachable
* int event_info - required parameter, unused by regroup
*
* Returns:
*
* void - no return value
*
* Algorithm:
*
* The routine simply transforms the LCU event into the regroup event
* RGP_EVT_NODE_UNREACHABLE and calls rgp_event_handler().
*
************************************************************************/
_priv _resident void
rgp_lcu_event_callback(
ulong event,
sysnum_t sysnum,
nodenum_t node,
int event_info)
{
/* Sanity checks:
* (1) The event must be LCUEV_NODE_UNREACHABLE, the only event
* we asked for.
* (1) The event must be for the local system, the only system
* we asked for.
*/
if ((event != LCUEV_NODE_UNREACHABLE) ||
(sysnum != rgp->OS_specific_control.my_sysnum))
RGP_ERROR(RGP_INTERNAL_ERROR);
rgp_event_handler(RGP_EVT_NODE_UNREACHABLE, node);
}
#endif /* LCU */
/************************************************************************
* rgp_init_OS
* ===========
*
* Description:
*
* This routine does OS-dependent regroup initialization such as
* initializing the regroup data structure lock, requesting a
* periodic timer to be installed and registering the callback
* routine for receiving regroup's unacknowledged packets.
*
* Parameters:
*
* None
*
* Returns:
*
* void - no return value
*
* Algorithm:
*
* OS-dependent initializations.
*
************************************************************************/
_priv _resident void
rgp_init_OS(void)
{
#ifdef UNIX
struct sigaction sig_action; /* to install signals */
#endif
#ifdef LCU
sysnum_t sysnum;
lcumsg_t *lcumsgp;
#endif
#ifdef NT
HANDLE tempHandle;
DWORD threadID = 0;
#endif
#if defined(NSK) || defined(UNIX) || defined(NT)
/*
* In NSK, the regroup caller ensures that timer and IPC interrupts
* are disabled before the regroup routines are called. Therefore,
* there is no regroup lock initialization. Also, rather than using
* registration of callback routines, the appropriate routine names
* are hard coded into routines that must call them. Thus, the timer
* routine is called from POLLINGCHECK, the periodic message system
* routine, and the packet reception routine is called from the
* IPC interrupt handler.
*/
/* Initialize the unchanging fields in the rgp_msgsys struct. */
rgp->rgp_msgsys_p->regroup_data = (void *) &(rgp->rgppkt_to_send);
rgp->rgp_msgsys_p->regroup_datalen = RGPPKTLEN;
rgp->rgp_msgsys_p->iamalive_data = (void *) &(rgp->iamalive_pkt);
rgp->rgp_msgsys_p->iamalive_datalen = IAMALIVEPKTLEN;
rgp->rgp_msgsys_p->poison_data = (void *) &(rgp->poison_pkt);
rgp->rgp_msgsys_p->poison_datalen = POISONPKTLEN;
#endif /* NSK || UNIX || NT */
#ifdef LCU
if (itimeout(rgp_periodic_check,
NULL, /* parameter pointer */
((RGP_CLOCK_PERIOD * HZ) / 100) | TO_PERIODIC,
plstr /* interrupt priority level */
) == 0)
RGP_ERROR(RGP_INTERNAL_ERROR);
if (lcuxprt_listen(LCU_RGP_PORT,
rgp_lcu_serv_listen,
NULL /* no call arg */,
NULL /* no options */
) != ELCU_OK)
RGP_ERROR(RGP_INTERNAL_ERROR);
if (lcuxprt_config(LCU_GET_MYSYSNUM, &sysnum) != ELCU_OK)
RGP_ERROR(RGP_INTERNAL_ERROR);
rgp->OS_specific_control.my_sysnum = sysnum;
/* Allocate 3 message buffers to send regroup packets, iamalive packets
* and poison packets.
*/
if ((lcumsgp = lcuxprt_msg_alloc(LCU_UNACKMSG, LCU_RGP_FLAGS)) == NULL)
RGP_ERROR(RGP_INTERNAL_ERROR); /* no memory */
rgp->OS_specific_control.lcumsg_regroup_p = lcumsgp;
lcumsgp->lcu_tag = NULL;
lcumsgp->lcu_sysnum = sysnum;
lcumsgp->lcu_port = LCU_RGP_PORT;
lcumsgp->lcu_flags = LCUMSG_CRITICAL;
lcumsgp->lcu_reqmbuf.lcu_ctrllen = RGPPKTLEN;
lcumsgp->lcu_reqmbuf.lcu_ctrlbuf = (char *)&(rgp->rgppkt_to_send);
if ((lcumsgp = lcuxprt_msg_alloc(LCU_UNACKMSG, LCU_RGP_FLAGS)) == NULL)
RGP_ERROR(RGP_INTERNAL_ERROR); /* no memory */
rgp->OS_specific_control.lcumsg_iamalive_p = lcumsgp;
lcumsgp->lcu_tag = NULL;
lcumsgp->lcu_sysnum = sysnum;
lcumsgp->lcu_port = LCU_RGP_PORT;
lcumsgp->lcu_reqmbuf.lcu_ctrllen = IAMALIVEPKTLEN;
lcumsgp->lcu_reqmbuf.lcu_ctrlbuf = (char *)&(rgp->iamalive_pkt);
if ((lcumsgp = lcuxprt_msg_alloc(LCU_UNACKMSG, LCU_RGP_FLAGS)) == NULL)
RGP_ERROR(RGP_INTERNAL_ERROR); /* no memory */
rgp->OS_specific_control.lcumsg_poison_p = lcumsgp;
lcumsgp->lcu_tag = NULL;
lcumsgp->lcu_sysnum = sysnum;
lcumsgp->lcu_port = LCU_RGP_PORT;
lcumsgp->lcu_reqmbuf.lcu_ctrllen = POISONPKTLEN;
lcumsgp->lcu_reqmbuf.lcu_ctrlbuf = (char *)&(rgp->poison_pkt);
/* Register to get the LCUEV_NODE_UNREACHABLE event. */
if (lcuxprt_events(LCU_CATCH_EVENTS, sysnum, LCUEV_NODE_UNREACHABLE,
rgp_lcu_event_callback) != ELCU_OK)
RGP_ERROR(RGP_INTERNAL_ERROR);
#endif /* LCU */
#ifdef UNIX
/* For testing on UNIX at user level, we use alarm() to simulate timer
* ticks. */
/* Install the alarm handler. */
sig_action.sa_flags = 0;
sig_action.sa_handler = alarm_handler;
sigemptyset(&(sig_action.sa_mask));
/* Block messages when handling timer pops. */
sigaddset(&(sig_action.sa_mask), SIGPOLL);
sigaction(SIGALRM, &sig_action, NULL);
alarm_callback = rgp_periodic_check;
/* Round up the alarm period to the next higher second. */
alarm_period = (RGP_CLOCK_PERIOD + 99) / 100;
/* Get first timer tick as soon as possible; subsequent ones will be
* at alarm_period.
*/
alarm(1);
#endif /* UNIX */
#ifdef NT
/* On NT we create a separate thread that will be our timer. */
/* The Timer Thread waits on TimerSignal Event to indicate an RGP rate change. */
/* An RGP rate of 0 is a signal for the Timer Thread to exit */
tempHandle = CreateEvent ( NULL, /* no security */
FALSE, /* Autoreset */
TRUE, /* Initial State is Signalled */
NULL); /* No name */
if ( !tempHandle )
{
RGP_ERROR (RGP_INTERNAL_ERROR);
}
rgp->OS_specific_control.TimerSignal = tempHandle;
tempHandle = CreateEvent ( NULL, /* no security */
TRUE, /* Manual reset */
TRUE, /* Initial State is Signalled */
NULL); /* No name */
if ( !tempHandle )
{
RGP_ERROR (RGP_INTERNAL_ERROR);
}
rgp->OS_specific_control.Stabilized = tempHandle;
rgp->OS_specific_control.ArbitrationInProgress = FALSE;
rgp->OS_specific_control.ArbitratingNode = MM_INVALID_NODE;
rgp->OS_specific_control.ApproxArbitrationWinner = MM_INVALID_NODE;
rgp->OS_specific_control.ShuttingDown = FALSE;
tempHandle = CreateThread( 0, /* security */
0, /* stack size - use same as primary thread */
(LPTHREAD_START_ROUTINE)NT_timer_thread, /* starting point */
(VOID *) NULL, /* no parameter */
0, /* create flags - start immediately */
&threadID ); /* thread ID returned here */
if ( !tempHandle )
{
RGP_ERROR( RGP_INTERNAL_ERROR ); /* at least for now */
}
rgp->OS_specific_control.TimerThread = tempHandle;
rgp->OS_specific_control.TimerThreadId = threadID;
rgp->OS_specific_control.UpDownCallback = RGP_NULL_PTR;
rgp->OS_specific_control.NodesDownCallback = RGP_NULL_PTR;
rgp->OS_specific_control.EventEpoch = 0;
#if defined TDM_DEBUG
rgp->OS_specific_control.debug.frozen = 0;
rgp->OS_specific_control.debug.reload_in_progress = 0;
rgp->OS_specific_control.debug.timer_frozen = 0;
rgp->OS_specific_control.debug.doing_tracing = 0;
rgp->OS_specific_control.debug.MyTestPoints.TestPointWord = 0;
// seed the random number function used in testing
srand((unsigned) time( NULL ) );
#endif
#endif /* NT */
}
/************************************************************************
* rgp_cleanup_OS
* ===========
*
* Description:
*
* This routine does OS-dependent cleanup of regroup structures
* and timer thread activity to ready for a new JOIN attempt.
*
* Parameters:
*
* None
*
* Returns:
*
* void - no return value
*
* Algorithm:
*
* OS-dependent initializations.
*
************************************************************************/
_priv _resident void
rgp_cleanup_OS(void)
{
#if defined (NT)
// Tell Timer Thread to restart RGP Timer
// a_tick might have changed.
SetEvent( rgp->OS_specific_control.TimerSignal);
#endif // NT
}
/************************************************************************
* rgp_update_regroup_packet
* =========================
*
* Description:
*
* Macro to copy the current regroup status into the regroup packet
* sending buffer.
*
* Parameters:
*
* None
*
* Algorithm:
*
* Copies the status (which is already in the form of a regroup status
* packet) into the packet buffer. Then, if we should let others (and
* ourselves) know of our stage, the current knownstage field is
* updated to include the local node number.
*
************************************************************************/
#define rgp_update_regroup_packet \
do \
{ \
/* Copy the regroup status to the sending packet area. */ \
rgp->rgppkt_to_send = rgp->rgppkt; \
\
/* If we should let others know of our stage, we must modify the \
* current stage mask to include ourselves. \
*/ \
if (rgp->sendstage) \
switch (rgp->rgppkt.stage) \
{ \
case RGP_ACTIVATED: \
ClusterInsert(rgp->rgppkt_to_send.knownstage1, rgp->mynode); \
break; \
case RGP_CLOSING: \
ClusterInsert(rgp->rgppkt_to_send.knownstage2, rgp->mynode); \
break; \
case RGP_PRUNING: \
ClusterInsert(rgp->rgppkt_to_send.knownstage3, rgp->mynode); \
break; \
case RGP_PHASE1_CLEANUP: \
ClusterInsert(rgp->rgppkt_to_send.knownstage4, rgp->mynode); \
break; \
case RGP_PHASE2_CLEANUP: \
ClusterInsert(rgp->rgppkt_to_send.knownstage5, rgp->mynode); \
break; \
default: \
break; \
} \
} while(0)
/************************************************************************
* rgp_update_poison_packet
* ========================
*
* Description:
*
* Macro to copy the current regroup status into the poison packet
* sending buffer.
*
* Parameters:
*
* None
*
* Algorithm:
*
* Copies the appropriate regroup status fields into the poison
* packet buffer to help debugging when a dump of a poisoned
* node is examined.
*
************************************************************************/
#define rgp_update_poison_packet \
do \
{ \
rgp->poison_pkt.seqno = rgp->rgppkt.seqno; \
rgp->poison_pkt.reason = rgp->rgppkt.reason; \
rgp->poison_pkt.activatingnode = rgp->rgppkt.activatingnode; \
rgp->poison_pkt.causingnode = rgp->rgppkt.causingnode; \
ClusterCopy(rgp->poison_pkt.initnodes, rgp->initnodes); \
ClusterCopy(rgp->poison_pkt.endnodes, rgp->endnodes); \
} while(0)
/************************************************************************
* rgp_broadcast
* =============
*
* Description:
*
* This routine asks the message system to broadcast an unacknowledged
* packet of subtype "packet_subtype" to a set of nodes indicated in
* an appropriate field in the rgp control struct. How the broadcast
* is implemented depends on the OS.
*
* Parameters:
*
* uint8 packet_subtype - type of unsequenced packet to send
*
* Returns:
*
* void - no return value
*
* Algorithm:
*
* The same data packet is to be sent to the set of nodes indicated
* in the rgp control struct field. The sending can be done by queueing
* the packets directly to the send engine or the send can be deferred
* to a lower priority interrupt level. The former approach reduces
* the latency for sending these urgent packets while the latter
* approach may reduce the number of sends if several requests to
* send the same type of packets (this is true only of regroup
* packets) are made in quick succession. In this case, previous
* requests are overwritten by later requests. This is OK since the
* regroup algorithm has enough redundancy in packet sending.
*
* In NSK, the message system provides a broadcast facility for
* unacknowledged packets. It copies regroup's packet into its own
* buffer and issues multiple requests to the SNet services layer.
* When it copies the buffer, it disables the timer and IPC
* interrupts ensuring that there will be no contention with Regroup.
* Therefore, this routine can safely update the packet area here
* without checking if the sending apparatus has completed sending
* the previous packet.
*
* This is not true of LCU where the message system does not
* provide a broadcast facility. In LCU, the updating of the packet
* buffer can be done only when the send engine has completed
* sending. This is assured only in the send completion interrupt
* handler (rgp_msgsys_work).
*
************************************************************************/
_priv _resident void
rgp_broadcast(uint8 packet_subtype)
{
cluster_t temp_cluster;
switch (packet_subtype)
{
case RGP_UNACK_REGROUP :
/* Trace the queueing of regroup status packets. */
RGP_TRACE( "RGP Send packets",
rgp->rgppkt.stage, /* TRACE */
RGP_MERGE_TO_32( rgp->status_targets, /* TRACE */
rgp->rgppkt.knownstage1 ), /* TRACE */
RGP_MERGE_TO_32( rgp->rgppkt.knownstage2, /* TRACE */
rgp->rgppkt.knownstage3 ), /* TRACE */
RGP_MERGE_TO_32( rgp->rgppkt.knownstage4, /* TRACE */
rgp->rgppkt.knownstage5 ) ); /* TRACE */
#if defined(NSK) || defined(UNIX) || defined(NT)
/* In NSK, the packet buffer can be updated even if the send
* engine is working on the previous send. See algorithm
* description above.
*/
if ((rgp->rgppkt.reason == MM_EVT_LEAVE) &&
(rgp->rgppkt.causingnode == rgp->mynode))
// If a LEAVE event is in progress exclude our node from knownstage mask
rgp->rgppkt_to_send = rgp->rgppkt;
else
// copy regroup packet and insert our node number into knownstage mask
rgp_update_regroup_packet;
#endif /* NSK || UNIX || NT */
ClusterUnion(rgp->rgp_msgsys_p->regroup_nodes,
rgp->status_targets,
rgp->rgp_msgsys_p->regroup_nodes);
/* Clear the targets field in the rgp_control struct after
* copying this info. The message system must clear the target
* bits in the common regroup/msgsys struct after sending the
* packets.
*/
ClusterInit(rgp->status_targets);
rgp->rgp_msgsys_p->sendrgppkts = 1;
break;
case RGP_UNACK_IAMALIVE :
/* Count number of IamAlive requests queued. */
RGP_INCREMENT_COUNTER( QueuedIAmAlive );
ClusterUnion(rgp->rgp_msgsys_p->iamalive_nodes,
rgp->rgpinfo.cluster,
rgp->rgp_msgsys_p->iamalive_nodes);
rgp->rgp_msgsys_p->sendiamalives = 1;
/* No targets field to clear in the rgp_control struct.
* The message system must clear the target bits in the common
* regroup/msgsys struct after sending the packets.
*/
break;
case RGP_UNACK_POISON :
/* Trace the sending of poison packets. */
RGP_TRACE( "RGP Send poison ",
rgp->rgppkt.stage, /* TRACE */
RGP_MERGE_TO_32( rgp->poison_targets, /* TRACE */
rgp->rgppkt.knownstage1 ), /* TRACE */
RGP_MERGE_TO_32( rgp->rgppkt.knownstage2, /* TRACE */
rgp->rgppkt.knownstage3 ), /* TRACE */
RGP_MERGE_TO_32( rgp->rgppkt.knownstage4, /* TRACE */
rgp->rgppkt.knownstage5 ) ); /* TRACE */
/* The poison packet targets must NOT be considered alive. */
ClusterIntersection(temp_cluster, rgp->rgpinfo.cluster,
rgp->poison_targets);
ClusterDifference(temp_cluster,
temp_cluster,
rgp->OS_specific_control.Banished);
if (ClusterNumMembers(temp_cluster) != 0)
RGP_ERROR(RGP_INTERNAL_ERROR);
#if defined(NSK) || defined(NT)
/* In NSK, the packet buffer can be updated even if the send
* engine is working on the previous send. See algorithm
* description above.
*/
rgp_update_poison_packet;
#endif /* NSK || NT */
ClusterUnion(rgp->rgp_msgsys_p->poison_nodes,
rgp->poison_targets,
rgp->rgp_msgsys_p->poison_nodes);
/* Clear the targets field in the rgp_control struct after
* copying this info. The message system must clear the target
* bits in the common regroup/msgsys struct after sending the
* packets.
*/
ClusterInit(rgp->poison_targets);
rgp->rgp_msgsys_p->sendpoisons = 1;
break;
default :
RGP_ERROR(RGP_INTERNAL_ERROR);
break;
}
QUEUESEND; /* invoke OS-specific sending function/macro */
}
/************************************************************************
* rgp_had_power_failure
* =====================
*
* Description:
*
* Tells the OS at the end of a regroup incident if a surviving node
* had a power failure. The message system can use this to clear all
* bus errors collected so far to node because node seems to have
* had a power failure and has now recovered from it. Perhaps, the
* bus errors were due to the power failure.
*
* Parameters:
*
* None
*
* Returns:
*
* void - no return value
*
* Algorithm:
*
* Calls a message system routine to perform any error clearing.
*
************************************************************************/
_priv _resident void
rgp_had_power_failure(node_t node)
{
/* Currently, there is nothing to do. */
RGP_TRACE( "RGP Power fail ", node, 0, 0, 0);
}
/************************************************************************
* rgp_status_of_node
* ==================
*
* Description:
*
* Ask the SP to return the status of a node. The SP must return the
* current status and not return a stale status. This routine is
* called by the split-brain avoidance algorithm in the two-node
* case, for the non-tie-breaker to get the status of the tie-breaker
* node.
*
* Parameters:
*
* node_t node
* the node whose status is to be obtained.
*
* Returns:
*
* int - the status code of the node returned by the SP, appropriately
* encoded into one of the values known to regroup.
*
* Algorithm:
*
* Calls a millicode routine to ask the SP for the status of the node.
*
************************************************************************/
_priv _resident int
rgp_status_of_node(node_t node)
{
#if defined(NT)
/* noone home */
return RGP_NODE_UNREACHABLE;
#else
return _get_remote_cpu_state_( node ); /*F40:MB06452.1*/
#endif
}
/************************************************************************
* rgp_newnode_online
* ==================
*
* Description:
*
* This routine is called if the first IamAlive is received from a
* newly booted node before the cluster manager gets a chance to
* call rgp_monitor_node(). The OS can use this routine to mark the
* node as up if it does not have any other means to detect that
* a node has come up.
*
* Parameters:
*
* node_t node -
* the new node that has just been detected to be up
*
* Returns:
*
* void - no return value
*
* Algorithm:
*
* This routine marks the state of the node as up as seen by the
* native OS.
*
* In NSK, on the reloader node, the marking of the reloadee as up
* is done by the message system when the initial address handshake
* packet is received from the reloadee. NSK does not require the
* regroup module to report the fact that the reloadee is online.
*
* The above is probably true for LCU as well. However, the details
* are not yet worked out. For now, this routine is a no-op for LCU.
*
************************************************************************/
_priv _resident void
rgp_newnode_online(node_t newnode)
{
RGP_TRACE( "RGP New node up ", newnode, 0, 0, 0);
}
/************************************************************************
* rgp_select_cluster_ex
* =====================
*
* Description:
*
* Given an array of cluster choices, this routine picks the best
* cluster to keep alive. cluster_choices[] is the array of choices
* and num_clusters is the number of entries in the array.
*
* Parameters:
*
* cluster_t cluster_choices[]
* array of cluster choices
*
* int num_clusters
* number of entries (choices) in the array
*
* node_t key_node
* internal node number of the key node or RGP_NULL_NODE
*
* Returns:
*
* int - the index of the selected cluster; if no cluster
* is viable, -1 is returned.
*
* Algorithm:
*
* By default, the best cluster is defined as the largest cluster.
* Optionally, a node called key_node can be required to be present
* for a cluster to be viable. key_node can be set to RGP_NULL_NODE
* to imply that no specific node is required to be present. The
* routine returns the index of the best cluster and -1 if none of
* the clusters is viable (that is, does not include the key node).
*
************************************************************************/
_priv _resident int
rgp_select_cluster_ex(cluster_t cluster_choices[], int num_clusters, node_t key_node)
{
int max_members = 0, num_members;
int cluster_selected = -1;
int i;
#if defined(UNIX)
printf("rgp_select_cluster() called with %d choices:", num_clusters);
for (i = 0; i < num_clusters; i++)
{
node_t j;
printf("(");
for (j = 0; j < (node_t) rgp->num_nodes; j++)
{
if (ClusterMember(cluster_choices[i], j))
printf("%d,", EXT_NODE(j));
}
printf(")");
}
printf("\n");
fflush(stdout);
#endif /* UNIX */
for (i = 0; i < num_clusters; i++)
{
/* Skip the current cluster if a key node is defined and is not
* in the cluster.
*/
if ((key_node != RGP_NULL_NODE) &&
!ClusterMember(cluster_choices[i], key_node))
continue;
if ((num_members = ClusterNumMembers(cluster_choices[i])) > max_members)
{
cluster_selected = i;
max_members = num_members;
}
}
#if defined(UNIX)
printf("Node %d: rgp_select_cluster() returned %d.\n",
EXT_NODE(rgp->mynode), cluster_selected);
fflush(stdout);
#endif /* UNIX */
return (cluster_selected);
}
/************************************************************************
* rgp_select_cluster
* ==================
*
* Description:
*
* Given an array of cluster choices, this routine picks the best
* cluster to keep alive. cluster_choices[] is the array of choices
* and num_clusters is the number of entries in the array.
*
* Parameters:
*
* cluster_t cluster_choices[]
* array of cluster choices
*
* int num_clusters
* number of entries (choices) in the array
*
* Returns:
*
* int - the index of the selected cluster; if no cluster
* is viable, -1 is returned.
*
* Algorithm:
*
* By default, the best cluster is defined as the largest cluster.
* Optionally, a node called RGP_KEY_NODE can be required to be present
* for a cluster to be viable. RGP_KEY_NODE can be set to RGP_NULL_NODE
* to imply that no specific node is required to be present. The
* routine returns the index of the best cluster and -1 if none of
* the clusters is viable (that is, does not include the key node).
*
************************************************************************/
_priv _resident int
rgp_select_cluster(cluster_t cluster_choices[], int num_clusters)
{
node_t key_node;
if (RGP_KEY_NODE == RGP_NULL_NODE) {
key_node = RGP_NULL_NODE;
} else {
key_node = INT_NODE(RGP_KEY_NODE);
}
return rgp_select_cluster_ex(cluster_choices , num_clusters, key_node);
}
#ifdef LCU
/************************************************************************
* rgp_msgsys_work
* ===============
*
* Description:
*
* LCU-specific routine that implements broadcasting of packets by
* sending them serially.
*
* This routine is called from rgp_broadcast() to initiate new sends.
* It is also the packet send completion interrupt handler (callback
* routine), invoked by the LCU message system when the packet buffer
* can be reused.
*
* Parameters:
*
* lcumsg_t *lcumsgp -
* pointer to lcu message if called from the transport's send
* completion interrupt handler; NULL if called from
* rgp_broadcast() to send a new packet.
*
* int status -
* the message completion status if called from the transport's
* send completion interrupt handler; 0 if called from
* rgp_broadcast() to send a new packet.
*
* Returns:
*
* void - no return value
*
* Algorithm:
*
* If called from the send completion interrupt, the routine checks
* to see if the packet buffer needs to be refreshed. This is true
* if the appropriate bit in the rgp_msgsys struct is set. If so,
* the buffer is updated with the current info (using an update
* macro). This update is relevant to regroup status packets and
* poison packets, but not to IamAlives packets whose contents are
* always the same. The bit is cleared after the packet is updated.
*
* Next, the routine checks if there are more destinations to send
* the packet to. If so, it finds the next higher numbered node to
* send to, issues a send and returns.
*
* If invoked from rgp_broadcast() to start a new broadcast, the
* routine first checks to see if the previous broadcast of the
* same packet is complete. This is indicated by the tag field in
* the message struct. The tag is NULL if the broadcast has
* completed or has not been initiated. In this case, the tag is
* set to a non-NULL value and a new broadcast initiated, with
* this routine specified as the callback routine.
*
* If the previous broadcast has not completed, nothing needs to
* be done. The completion interrupt will cause the buffer to be
* refreshed and the broadcast to be continued. The broadcast
* will then include new targets that may be included in this
* new request.
*
************************************************************************/
_priv _resident void
rgp_msgsys_work(lcumsg_t *lcumsgp, int status)
{
rgp_unseq_pkt_t *packet;
cluster_t *sending_cluster;
node_t node;
if (lcumsgp == NULL)
{
/* New work requested. Only one type of work is requested at
* a time.
*/
if (rgp->rgp_msgsys_p->sendrgppkts)
{
/* Have new regroup status packets to send. First check
* if the last regroup status send completed. If so,
* we can update the packet and initiate a new send.
* If not, we must defer to the completion interrupt
* (invocation of this routine with a non-NULL lcumsgp).
*/
lcumsgp = rgp->OS_specific_control.lcumsg_regroup_p;
if (lcumsgp->lcu_tag == NULL)
{
/* Last send completed. Initiate new send. */
rgp_update_regroup_packet;
rgp->rgp_msgsys_p->sendrgppkts = 0;
for (node = 0; node < rgp->num_nodes; node++)
{
if (ClusterMember(rgp->rgp_msgsys_p->regroup_nodes, node))
{
ClusterDelete(rgp->rgp_msgsys_p->regroup_nodes, node);
lcumsgp->lcu_node = node;
lcumsgp->lcu_tag = &(rgp->rgp_msgsys_p->regroup_nodes);
if (lcuxprt_msg_send(lcumsgp, NULL, rgp_msgsys_work, 0) !=
ELCU_OK)
RGP_ERROR(RGP_INTERNAL_ERROR);
break; /* can send only to one node at a time */
}
}
}
}
else if (rgp->rgp_msgsys_p->sendiamalives)
{
/* Need to send IamAlives again. First check if the last
* IamAlive send completed. If so, we can initiate a new send.
* If not, we must defer to the completion interrupt
* (invocation of this routine with a non-NULL lcumsgp).
*/
lcumsgp = rgp->OS_specific_control.lcumsg_iamalive_p;
if (lcumsgp->lcu_tag == NULL)
{
/* Last send completed. Initiate new send. */
rgp->rgp_msgsys_p->sendiamalives = 0;
for (node = 0; node < rgp->num_nodes; node++)
{
if (ClusterMember(rgp->rgp_msgsys_p->iamalive_nodes, node))
{
ClusterDelete(rgp->rgp_msgsys_p->iamalive_nodes, node);
lcumsgp->lcu_node = node;
lcumsgp->lcu_tag = &(rgp->rgp_msgsys_p->iamalive_nodes);
if (lcuxprt_msg_send(lcumsgp, NULL, rgp_msgsys_work, 0) !=
ELCU_OK)
RGP_ERROR(RGP_INTERNAL_ERROR);
break; /* can send only to one node at a time */
}
}
}
}
else if (rgp->rgp_msgsys_p->sendpoisons)
{
/* Have new poison packets to send. First check
* if the last poison packet send completed. If so,
* we can update the packet and initiate a new send.
* If not, we must defer to the completion interrupt
* (invocation of this routine with a non-NULL lcumsgp).
*/
lcumsgp = rgp->OS_specific_control.lcumsg_poison_p;
if (lcumsgp->lcu_tag == NULL)
{
/* Last send completed. Initiate new send. */
rgp_update_poison_packet;
rgp->rgp_msgsys_p->sendpoisons = 0;
for (node = 0; node < rgp->num_nodes; node++)
{
if (ClusterMember(rgp->rgp_msgsys_p->poison_nodes, node))
{
ClusterDelete(rgp->rgp_msgsys_p->poison_nodes, node);
lcumsgp->lcu_node = node;
lcumsgp->lcu_tag = &(rgp->rgp_msgsys_p->poison_nodes);
if (lcuxprt_msg_send(lcumsgp, NULL, rgp_msgsys_work, 0) !=
ELCU_OK)
RGP_ERROR(RGP_INTERNAL_ERROR);
break; /* can send only to one node at a time */
}
}
}
}
} /* new work */
else
{
/* Send completion interrupt; continue the broadcast if
* there are targets remaining.
*/
RGP_LOCK;
/* Find what type of packet completed; send the same type. */
packet = (rgp_unseq_pkt_t *) lcumsgp->lcu_reqmbuf.lcu_ctrlbuf;
switch (packet->pktsubtype)
{
case RGP_UNACK_REGROUP :
/* Check if packet needs to be updated. */
if (rgp->rgp_msgsys_p->sendrgppkts)
{
rgp_update_regroup_packet;
rgp->rgp_msgsys_p->sendrgppkts = 0;
}
break;
case RGP_UNACK_IAMALIVE :
break;
case RGP_UNACK_POISON :
/* Check if packet needs to be updated. */
if (rgp->rgp_msgsys_p->sendpoisons)
{
rgp_update_poison_packet;
rgp->rgp_msgsys_p->sendpoisons = 0;
}
break;
}
/* Check if there is any more node to send the same packet
* type to. If not, set the tag to NULL and return.
*/
sending_cluster = (cluster_t *) (lcumsgp->lcu_tag);
if (ClusterNumMembers(*sending_cluster) == 0)
{
lcumsgp->lcu_tag = NULL; /* indicate that broadcast is complete. */
return;
}
/* There is at least one more node to send to. Start with
* the node with the next higher number than the node we
* just finished sending to.
*
* The loop terminates after posting a send to the next
* node to send to. We know there is at least one such node.
*/
for (node = lcumsgp->lcu_node + 1; node < rgp->num_nodes + 1; node++)
{
if (node == rgp->num_nodes)
node = 0; /* continue the search starting at node 0 */
if (ClusterMember(*sending_cluster, node))
{
ClusterDelete(*sending_cluster, node);
lcumsgp->lcu_node = node;
if (lcuxprt_msg_send(lcumsgp, NULL, rgp_msgsys_work, 0) !=
ELCU_OK)
RGP_ERROR(RGP_INTERNAL_ERROR);
break; /* can send only to one node at a time */
}
}
RGP_UNLOCK;
}
}
#endif /* LCU */
/*---------------------------------------------------------------------------*/
#if defined(LCU) || defined(UNIX) || defined(NT)
/*---------------------------------------------------------------------------*/
void
rgp_hold_all_io(void)
/* Simulates the TNet services routine to pause IO. */
{
#if defined (NT)
(*(rgp->OS_specific_control.HoldIOCallback))();
#endif
RGP_TRACE( "RGP Hold all IO ", 0, 0, 0, 0);
}
/*---------------------------------------------------------------------------*/
void
rgp_resume_all_io(void)
/* Simulates the TNet services routine to resume IO. */
{
#if defined (NT)
(*(rgp->OS_specific_control.ResumeIOCallback))();
#endif
RGP_TRACE( "RGP Resume IO ", 0, 0, 0, 0);
}
/*---------------------------------------------------------------------------*/
void
RGP_ERROR_EX (uint16 halt_code, char* fname, DWORD lineno)
/* Halt node with error code. */
{
char *halt_string;
node_t node = RGP_NULL_NODE;
#if defined( NT )
char halt_buffer[ 256 ];
DWORD eventMsgId;
BOOL skipFormatting = FALSE;
//
// If a user initiated a shutdown, (s)he wants to see the node
// to go down and wait for an explicit start command.
//
// We map RGP_RELOADFAILED to SHUTDOWN_DURING_REGROUP_ERROR since
// HaltCallback does a graceful stop for the latter one.
// SCM won't restart the node after a graceful stop unless
// it is explicitly told to do so
//
if (halt_code == RGP_RELOADFAILED &&
rgp->OS_specific_control.ShuttingDown)
{
halt_code = RGP_SHUTDOWN_DURING_RGP;
}
#endif
if (halt_code == RGP_RELOADFAILED) {
halt_string = "[RGP] Node %d: REGROUP WARNING: reload failed.";
eventMsgId = MM_EVENT_RELOAD_FAILED;
}
else if (halt_code == RGP_INTERNAL_ERROR) {
halt_string = "[RGP] Node %d: REGROUP ERROR: consistency check failed in file %s, line %u.";
eventMsgId = MM_EVENT_INTERNAL_ERROR;
skipFormatting = TRUE;
_snprintf(halt_buffer, sizeof( halt_buffer ) - 1,
halt_string,
EXT_NODE(rgp->mynode),
fname,
lineno);
}
else if (halt_code == RGP_MISSED_POLL_TO_SELF) {
halt_string = "[RGP] Node %d: REGROUP ERROR: cannot talk to self.";
eventMsgId = NM_EVENT_MEMBERSHIP_HALT;
}
#if !defined(NT)
else if (halt_code == RGP_AVOID_SPLIT_BRAIN) {
halt_string = "[RGP] Node %d: REGROUP ERROR: commiting suicide to avoid split brain.";
}
#endif
else if (halt_code == RGP_PRUNED_OUT) {
halt_string = "[RGP] Node %d: REGROUP ERROR: pruned out due to communication failure.";
eventMsgId = MM_EVENT_PRUNED_OUT;
}
else if ((halt_code >= RGP_PARIAH_FIRST) && (halt_code <= RGP_PARIAH_LAST)) {
halt_string = "[RGP] Node %d: REGROUP ERROR: poison packet received from node %d.";
eventMsgId = MM_EVENT_PARIAH;
node = (node_t)(halt_code - RGP_PARIAH);
}
else if (halt_code == RGP_ARBITRATION_FAILED) {
halt_string = "[RGP] Node %d: REGROUP ERROR: arbitration failed.";
eventMsgId = MM_EVENT_ARBITRATION_FAILED;
}
else if (halt_code == RGP_ARBITRATION_STALLED) {
halt_string = "[RGP] Node %d: REGROUP ERROR: arbitration stalled.";
eventMsgId = MM_EVENT_ARBITRATION_STALLED;
}
else if (halt_code == RGP_SHUTDOWN_DURING_RGP) {
halt_string = "[RGP] Node %d: REGROUP INFO: regroup engine requested immediate shutdown.";
eventMsgId = MM_EVENT_SHUTDOWN_DURING_RGP;
}
else {
halt_string = "[RGP] Node %d: REGROUP ERROR: unknown halt code (%d).";
eventMsgId = NM_EVENT_MEMBERSHIP_HALT;
node = halt_code; // get it printed out by borrowing node
}
#if defined(UNIX)
printf(halt_string, EXT_NODE(rgp->mynode), node);
fflush(stdout);
/* Simulate a halt by dumping core and exiting the process. */
abort();
#elif defined(NT)
if ( !skipFormatting ) {
_snprintf(halt_buffer, sizeof( halt_buffer ) - 1,
halt_string,
EXT_NODE(rgp->mynode),
node);
}
#if CLUSTER_BETA
ClRtlLogPrint(LOG_CRITICAL, "%1!hs!\t%2!hs!:%3!d!\n", halt_buffer, fname, lineno);
#else
ClRtlLogPrint(LOG_CRITICAL, "%1!hs!\n", halt_buffer );
#endif
if ((halt_code >= RGP_PARIAH_FIRST) && (halt_code <= RGP_PARIAH_LAST)) {
WCHAR nodeString[ 16 ];
PWCHAR nodeName;
_snwprintf( nodeString, sizeof( nodeString ) / sizeof ( WCHAR ), L"%d", node );
nodeName = RgpGetNodeNameFromId( node );
CsLogEvent2( LOG_CRITICAL, eventMsgId, nodeString, nodeName );
if ( nodeName != NULL ) {
LocalFree( nodeName );
}
}
else if ( eventMsgId == NM_EVENT_MEMBERSHIP_HALT ) {
WCHAR haltString[ 16 ];
_snwprintf( haltString, sizeof( haltString ) / sizeof ( WCHAR ), L"%d", halt_code );
CsLogEvent1( LOG_CRITICAL, eventMsgId, haltString );
}
else {
CsLogEvent( LOG_CRITICAL, eventMsgId );
}
/* we rely on RGP_ERROR_EX to kill the node immediately
rgp_cleanup() can potentially slow us down.
435977 showed that it can take upto 25 seconds, if we
have a lot IP addr activity.
since in the end of the function we execute HaltCallback which kills the cluster,
we can safely omit doing rgp_cleanup and rgp_cleanup_OS
If JoinFailedCallback will be ever enabled, the fate of rgp_cleanup and rgp_cleanup_OS
should be reevaluated.
*/
#if 0
rgp_cleanup();
rgp_cleanup_OS();
if (halt_code == RGP_RELOADFAILED)
(*(rgp->OS_specific_control.JoinFailedCallback))();
else
#endif
(*(rgp->OS_specific_control.HaltCallback))(halt_code); // does not return */
#else
cmn_err(CE_PANIC, halt_string, EXT_NODE(rgp->mynode), node);
#endif /* UNIX */
}
/*---------------------------------------------------------------------------*/
void
rgp_start_phase1_cleanup(void)
/* Tells the OS to start cleanup actions for all failed nodes. */
{
#if defined (NT)
node_t i;
//
// On NT we saved the nodes to be downed bitmask in NeedsNodeDownCallback.
//
for ( i=0; i < (node_t) rgp->num_nodes; i++)
{
if ( ClusterMember( rgp->OS_specific_control.NeedsNodeDownCallback, i ) )
{
(*(rgp->OS_specific_control.MsgCleanup1Callback))(EXT_NODE(i));
}
}
#endif
RGP_TRACE( "RGP Ph1 cleanup ", 0, 0, 0, 0);
rgp_event_handler(RGP_EVT_PHASE1_CLEANUP_DONE, RGP_NULL_NODE);
}
/*---------------------------------------------------------------------------*/
void
rgp_start_phase2_cleanup(void)
/* The equivalent of NSK's regroupstage4action(). */
{
#if defined (NT)
BITSET bitset;
node_t i;
//
// On NT we saved the nodes to be downed bitmask in NeedsNodeDownCallback.
//
BitsetInit(bitset);
for ( i=0; i < (node_t) rgp->num_nodes; i++)
{
if ( ClusterMember( rgp->OS_specific_control.NeedsNodeDownCallback, i ) )
{
BitsetAdd(bitset, EXT_NODE(i));
}
}
(*(rgp->OS_specific_control.MsgCleanup2Callback))(bitset);
#endif
RGP_TRACE( "RGP Ph2 cleanup ", 0, 0, 0, 0);
rgp_event_handler(RGP_EVT_PHASE2_CLEANUP_DONE, RGP_NULL_NODE);
}
/*---------------------------------------------------------------------------*/
void
rgp_cleanup_complete(void)
/* The equivalent of NSK's regroupstage5action(). */
{
#if defined(NT)
#endif
RGP_TRACE( "RGP completed ", 0, 0, 0, 0);
}
/*---------------------------------------------------------------------------*/
#endif /* LCU || UNIX || NT */
#if defined(NT)
/************************************************************************
* NT_timer_callback
* =================
*
* Description:
*
* This routine is the callback function that gets invoked whenever a
* timer pops. The routine will call rgp_periodic_check. This function
* is defined by the Win32 TimerProc procedure.
*
* Parameters:
*
* See below. We don't use any of them.
*
* Returns:
*
* none.
*
* Algorithm:
*
* This routine just calls rgp_periodic_check. The existense of this
* routine is solely due to a fixed format callback defined by
* Microsoft.
*
************************************************************************/
VOID CALLBACK NT_timer_callback(
VOID
)
{
#if defined(TDM_DEBUG)
if ( !(rgp->OS_specific_control.debug.timer_frozen) &&
!(rgp->OS_specific_control.debug.frozen) )
#endif
rgp_periodic_check( );
}
/************************************************************************
* NT_timer_thread
* ===============
*
* Description:
*
* This routine is executed as a separate thread in the Windows NT
* implementation. This thread controls generates periodic regroup
* clock ticks. It is signalled via an event whenever the rate changes
* or to cause termination.
*
* Parameters:
*
* None.
*
* Returns:
*
* This thread should not go away.
*
* Algorithm:
*
* This routine is run as a separate thread. It sets up a timer to pop
* every <time_interval> * 10 milliseconds.
*
************************************************************************/
void NT_timer_thread( void )
{
BOOL Success;
LARGE_INTEGER DueTime;
DWORD Error, MyHandleIndex;
HANDLE MyHandles[2]; /* for use by WaitForMultiple */
DWORD status;
DWORD msDueTime;
#define MyHandleSignalIx 0
#define MyHandleTimerIx 1
MyHandles[MyHandleSignalIx] = rgp->OS_specific_control.TimerSignal; /* Event signals HB rate change */
rgp->OS_specific_control.RGPTimer = CreateWaitableTimer(
NULL, // no security
FALSE, // Initial State FALSE
NULL
); // No name
if (rgp->OS_specific_control.RGPTimer == NULL) {
Error = GetLastError();
RGP_ERROR(RGP_INTERNAL_ERROR);
}
status = MmSetThreadPriority();
if ( status != ERROR_SUCCESS ) {
ClRtlLogPrint(LOG_CRITICAL,
"[MM] Unable to set timer thread priority, status %1!u!\n",
status
);
RGP_ERROR((uint16) status);
ExitThread(status);
}
MyHandles[MyHandleTimerIx] = rgp->OS_specific_control.RGPTimer;
while (TRUE)
{
MyHandleIndex = WaitForMultipleObjects (
2, /* Number of Events */
MyHandles, /* Handle Array */
FALSE, /* Wait for ANY event */
INFINITE ); /* Wait forever */
if (MyHandleIndex == MyHandleSignalIx) // Timer Change Signal Event
{
// RGP rate has changed
CancelWaitableTimer ( rgp->OS_specific_control.RGPTimer );
if ( rgp->rgpinfo.a_tick == 0 ) // Time to quit
{
CloseHandle ( rgp->OS_specific_control.RGPTimer );
rgp->OS_specific_control.RGPTimer = 0;
ExitThread ( 0 );
}
// a_tick has new RGP rate in milliseconds.
msDueTime = rgp->rgpinfo.a_tick;
DueTime.QuadPart = -10 * 1000 * msDueTime;
Success = SetWaitableTimer(
rgp->OS_specific_control.RGPTimer,
&DueTime,
rgp->rgpinfo.a_tick,
NULL,
NULL,
FALSE);
if (!Success) {
Error = GetLastError();
RGP_ERROR(RGP_INTERNAL_ERROR);
}
} // Timer Change Signal
else
{ // RGP Timer Tick
NT_timer_callback();
NmTimerTick(msDueTime);
}
} // while
}
PWCHAR
RgpGetNodeNameFromId(
node_t NodeID
)
/*++
Routine Description:
given a node ID, issue a get name node control to get the computer name of
the node. Returned buffer to be freed by caller.
Arguments:
NodeID - ID ( 1, 2, 3, ..) of the node
Return Value:
pointer to buffer containing name
--*/
{
PWCHAR buffer;
DWORD bufferSize = MAX_COMPUTERNAME_LENGTH * sizeof( WCHAR );
DWORD bytesReturned;
DWORD bytesRequired;
PNM_NODE node;
buffer = LocalAlloc( LMEM_FIXED, bufferSize );
if ( buffer != NULL ) {
node = NmReferenceNodeById( NodeID );
if ( node != NULL ) {
NmNodeControl(node,
NULL, // HostNode OPTIONAL,
CLUSCTL_NODE_GET_NAME,
NULL, // InBuffer,
0, // InBufferSize,
(PUCHAR)buffer,
bufferSize,
&bytesReturned,
&bytesRequired);
OmDereferenceObject( node );
}
}
return buffer;
}
#endif /* NT */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#if 0
History of changes to this file:
-------------------------------------------------------------------------
1995, December 13 F40:KSK0610 /*F40:KSK06102.2*/
This file is part of the portable Regroup Module used in the NonStop
Kernel (NSK) and Loosely Coupled UNIX (LCU) operating systems. There
are 10 files in the module - jrgp.h, jrgpos.h, wrgp.h, wrgpos.h,
srgpif.c, srgpos.c, srgpsm.c, srgputl.c, srgpcli.c and srgpsvr.c.
The last two are simulation files to test the Regroup Module on a
UNIX workstation in user mode with processes simulating processor nodes
and UDP datagrams used to send unacknowledged datagrams.
This file was first submitted for release into NSK on 12/13/95.
------------------------------------------------------------------------------
This change occurred on 19 Jan 1996 /*F40:MB06458.1*/
Changes for phase IV Sierra message system release. Includes: /*F40:MB06458.2*/
- Some cleanup of the code /*F40:MB06458.3*/
- Increment KCCB counters to count the number of setup messages and /*F40:MB06458.4*/
unsequenced messages sent. /*F40:MB06458.5*/
- Fixed some bugs /*F40:MB06458.6*/
- Disable interrupts before allocating broadcast sibs. /*F40:MB06458.7*/
- Change per-packet-timeout to 5ms /*F40:MB06458.8*/
- Make the regroup and powerfail broadcast use highest priority /*F40:MB06458.9*/
tnet services queue. /*F40:MB06458.10*/
- Call the millicode backdoor to get the processor status from SP /*F40:MB06458.11*/
- Fixed expand bug in msg_listen_ and msg_readctrl_ /*F40:MB06458.12*/
- Added enhancement to msngr_sendmsg_ so that clients do not need /*F40:MB06458.13*/
to be unstoppable before calling this routine. /*F40:MB06458.14*/
- Added new steps in the build file called /*F40:MB06458.15*/
MSGSYS_C - compiles all the message system C files /*F40:MB06458.16*/
MSDRIVER - compiles all the MSDriver files /*F40:MB06458.17*/
REGROUP - compiles all the regroup files /*F40:MB06458.18*/
- remove #pragma env libspace because we set it as a command line /*F40:MB06458.19*/
parameter. /*F40:MB06458.20*/
----------------------------------------------------------------------- /*F40:MB06458.21*/
#endif /* 0 - change descriptions */