468 lines
16 KiB
C++
468 lines
16 KiB
C++
/**
|
|
*** Copyright (C) 1985-1999 Intel Corporation. All rights reserved.
|
|
***
|
|
*** The information and source code contained herein is the exclusive
|
|
*** property of Intel Corporation and may not be disclosed, examined
|
|
*** or reproduced in whole or in part without explicit written authorization
|
|
*** from the company.
|
|
***
|
|
**/
|
|
|
|
/*
|
|
* Definition of a C++ class interface to Streaming SIMD Extension intrinsics.
|
|
*
|
|
*
|
|
* File name : fvec.h Fvec class definitions
|
|
*
|
|
* Concept: A C++ abstraction of Streaming SIMD Extensions designed to improve
|
|
*
|
|
* programmer productivity. Speed and accuracy are sacrificed for utility.
|
|
*
|
|
* Facilitates an easy transition to compiler intrinsics
|
|
*
|
|
* or assembly language.
|
|
*
|
|
* F32vec4: 4 packed single precision
|
|
* 32-bit floating point numbers
|
|
*/
|
|
|
|
#ifndef FVEC_H_INCLUDED
|
|
#define FVEC_H_INCLUDED
|
|
|
|
#if !defined __cplusplus
|
|
#error ERROR: This file is only supported in C++ compilations!
|
|
#endif /* !__cplusplus */
|
|
|
|
#include <xmmintrin.h> /* Streaming SIMD Extensions Intrinsics include file */
|
|
#include <assert.h>
|
|
#include <ivec.h>
|
|
|
|
/* Define _ENABLE_VEC_DEBUG to enable std::ostream inserters for debug output */
|
|
#if defined(_ENABLE_VEC_DEBUG)
|
|
#include <iostream>
|
|
#endif
|
|
|
|
#pragma pack(push,16) /* Must ensure class & union 16-B aligned */
|
|
|
|
/* If using MSVC5.0, explicit keyword should be used */
|
|
#if (_MSC_VER >= 1100)
|
|
#define EXPLICIT explicit
|
|
#else
|
|
#if (__ICL)
|
|
#define EXPLICIT __explicit /* If MSVC4.x & ICL, use __explicit */
|
|
#else
|
|
#define EXPLICIT /* nothing */
|
|
#pragma message( "explicit keyword not recognized")
|
|
#endif
|
|
#endif
|
|
|
|
class F32vec4
|
|
{
|
|
protected:
|
|
__m128 vec;
|
|
public:
|
|
|
|
/* Constructors: __m128, 4 floats, 1 float */
|
|
F32vec4() {}
|
|
|
|
/* initialize 4 SP FP with __m128 data type */
|
|
F32vec4(__m128 m) { vec = m;}
|
|
|
|
/* initialize 4 SP FPs with 4 floats */
|
|
F32vec4(float f3, float f2, float f1, float f0) { vec= _mm_set_ps(f3,f2,f1,f0); }
|
|
|
|
/* Explicitly initialize each of 4 SP FPs with same float */
|
|
EXPLICIT F32vec4(float f) { vec = _mm_set_ps1(f); }
|
|
|
|
/* Explicitly initialize each of 4 SP FPs with same double */
|
|
EXPLICIT F32vec4(double d) { vec = _mm_set_ps1((float) d); }
|
|
|
|
/* Assignment operations */
|
|
|
|
F32vec4& operator =(float f) { vec = _mm_set_ps1(f); return *this; }
|
|
|
|
F32vec4& operator =(double d) { vec = _mm_set_ps1((float) d); return *this; }
|
|
|
|
/* Conversion functions */
|
|
operator __m128() const { return vec; } /* Convert to __m128 */
|
|
|
|
/* Logical Operators */
|
|
friend F32vec4 operator &(const F32vec4 &a, const F32vec4 &b) { return _mm_and_ps(a,b); }
|
|
friend F32vec4 operator |(const F32vec4 &a, const F32vec4 &b) { return _mm_or_ps(a,b); }
|
|
friend F32vec4 operator ^(const F32vec4 &a, const F32vec4 &b) { return _mm_xor_ps(a,b); }
|
|
|
|
/* Arithmetic Operators */
|
|
friend F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) { return _mm_add_ps(a,b); }
|
|
friend F32vec4 operator -(const F32vec4 &a, const F32vec4 &b) { return _mm_sub_ps(a,b); }
|
|
friend F32vec4 operator *(const F32vec4 &a, const F32vec4 &b) { return _mm_mul_ps(a,b); }
|
|
friend F32vec4 operator /(const F32vec4 &a, const F32vec4 &b) { return _mm_div_ps(a,b); }
|
|
|
|
F32vec4& operator =(const F32vec4 &a) { vec = a.vec; return *this; }
|
|
F32vec4& operator =(const __m128 &avec) { vec = avec; return *this; }
|
|
F32vec4& operator +=(F32vec4 &a) { return *this = _mm_add_ps(vec,a); }
|
|
F32vec4& operator -=(F32vec4 &a) { return *this = _mm_sub_ps(vec,a); }
|
|
F32vec4& operator *=(F32vec4 &a) { return *this = _mm_mul_ps(vec,a); }
|
|
F32vec4& operator /=(F32vec4 &a) { return *this = _mm_div_ps(vec,a); }
|
|
F32vec4& operator &=(F32vec4 &a) { return *this = _mm_and_ps(vec,a); }
|
|
F32vec4& operator |=(F32vec4 &a) { return *this = _mm_or_ps(vec,a); }
|
|
F32vec4& operator ^=(F32vec4 &a) { return *this = _mm_xor_ps(vec,a); }
|
|
|
|
/* Horizontal Add */
|
|
friend float add_horizontal(F32vec4 &a)
|
|
{
|
|
F32vec4 ftemp = _mm_add_ss(a,_mm_add_ss(_mm_shuffle_ps(a, a, 1),_mm_add_ss(_mm_shuffle_ps(a, a, 2),_mm_shuffle_ps(a, a, 3))));
|
|
return ftemp[0];
|
|
}
|
|
|
|
/* Square Root */
|
|
friend F32vec4 sqrt(const F32vec4 &a) { return _mm_sqrt_ps(a); }
|
|
/* Reciprocal */
|
|
friend F32vec4 rcp(const F32vec4 &a) { return _mm_rcp_ps(a); }
|
|
/* Reciprocal Square Root */
|
|
friend F32vec4 rsqrt(const F32vec4 &a) { return _mm_rsqrt_ps(a); }
|
|
|
|
/* NewtonRaphson Reciprocal
|
|
[2 * rcpps(x) - (x * rcpps(x) * rcpps(x))] */
|
|
friend F32vec4 rcp_nr(const F32vec4 &a)
|
|
{
|
|
F32vec4 Ra0 = _mm_rcp_ps(a);
|
|
return _mm_sub_ps(_mm_add_ps(Ra0, Ra0), _mm_mul_ps(_mm_mul_ps(Ra0, a), Ra0));
|
|
}
|
|
|
|
/* NewtonRaphson Reciprocal Square Root
|
|
0.5 * rsqrtps * (3 - x * rsqrtps(x) * rsqrtps(x)) */
|
|
friend F32vec4 rsqrt_nr(const F32vec4 &a)
|
|
{
|
|
static const F32vec4 fvecf0pt5(0.5f);
|
|
static const F32vec4 fvecf3pt0(3.0f);
|
|
F32vec4 Ra0 = _mm_rsqrt_ps(a);
|
|
return (fvecf0pt5 * Ra0) * (fvecf3pt0 - (a * Ra0) * Ra0);
|
|
|
|
}
|
|
|
|
/* Compares: Mask is returned */
|
|
/* Macros expand to all compare intrinsics. Example:
|
|
friend F32vec4 cmpeq(const F32vec4 &a, const F32vec4 &b)
|
|
{ return _mm_cmpeq_ps(a,b);} */
|
|
#define Fvec32s4_COMP(op) \
|
|
friend F32vec4 cmp##op (const F32vec4 &a, const F32vec4 &b) { return _mm_cmp##op##_ps(a,b); }
|
|
Fvec32s4_COMP(eq) // expanded to cmpeq(a,b)
|
|
Fvec32s4_COMP(lt) // expanded to cmplt(a,b)
|
|
Fvec32s4_COMP(le) // expanded to cmple(a,b)
|
|
Fvec32s4_COMP(gt) // expanded to cmpgt(a,b)
|
|
Fvec32s4_COMP(ge) // expanded to cmpge(a,b)
|
|
Fvec32s4_COMP(neq) // expanded to cmpneq(a,b)
|
|
Fvec32s4_COMP(nlt) // expanded to cmpnlt(a,b)
|
|
Fvec32s4_COMP(nle) // expanded to cmpnle(a,b)
|
|
Fvec32s4_COMP(ngt) // expanded to cmpngt(a,b)
|
|
Fvec32s4_COMP(nge) // expanded to cmpnge(a,b)
|
|
#undef Fvec32s4_COMP
|
|
|
|
/* Min and Max */
|
|
friend F32vec4 simd_min(const F32vec4 &a, const F32vec4 &b) { return _mm_min_ps(a,b); }
|
|
friend F32vec4 simd_max(const F32vec4 &a, const F32vec4 &b) { return _mm_max_ps(a,b); }
|
|
|
|
/* Debug Features */
|
|
#if defined(_ENABLE_VEC_DEBUG)
|
|
/* Output */
|
|
friend std::ostream & operator<<(std::ostream & os, const F32vec4 &a)
|
|
{
|
|
/* To use: cout << "Elements of F32vec4 fvec are: " << fvec; */
|
|
float *fp = (float*)&a;
|
|
os << "[3]:" << *(fp+3)
|
|
<< " [2]:" << *(fp+2)
|
|
<< " [1]:" << *(fp+1)
|
|
<< " [0]:" << *fp;
|
|
return os;
|
|
}
|
|
#endif
|
|
/* Element Access Only, no modifications to elements*/
|
|
const float& operator[](int i) const
|
|
{
|
|
/* Assert enabled only during debug /DDEBUG */
|
|
assert((0 <= i) && (i <= 3)); /* User should only access elements 0-3 */
|
|
float *fp = (float*)&vec;
|
|
return *(fp+i);
|
|
}
|
|
/* Element Access and Modification*/
|
|
float& operator[](int i)
|
|
{
|
|
/* Assert enabled only during debug /DDEBUG */
|
|
assert((0 <= i) && (i <= 3)); /* User should only access elements 0-3 */
|
|
float *fp = (float*)&vec;
|
|
return *(fp+i);
|
|
}
|
|
};
|
|
|
|
/* Miscellaneous */
|
|
|
|
/* Interleave low order data elements of a and b into destination */
|
|
inline F32vec4 unpack_low(const F32vec4 &a, const F32vec4 &b)
|
|
{ return _mm_unpacklo_ps(a, b); }
|
|
|
|
/* Interleave high order data elements of a and b into target */
|
|
inline F32vec4 unpack_high(const F32vec4 &a, const F32vec4 &b)
|
|
{ return _mm_unpackhi_ps(a, b); }
|
|
|
|
/* Move Mask to Integer returns 4 bit mask formed of most significant bits of a */
|
|
inline int move_mask(const F32vec4 &a)
|
|
{ return _mm_movemask_ps(a);}
|
|
|
|
/* Data Motion Functions */
|
|
|
|
/* Load Unaligned loadu_ps: Unaligned */
|
|
inline void loadu(F32vec4 &a, float *p)
|
|
{ a = _mm_loadu_ps(p); }
|
|
|
|
/* Store Temporal storeu_ps: Unaligned */
|
|
inline void storeu(float *p, const F32vec4 &a)
|
|
{ _mm_storeu_ps(p, a); }
|
|
|
|
/* Cacheability Support */
|
|
|
|
/* Non-Temporal Store */
|
|
inline void store_nta(float *p, F32vec4 &a)
|
|
{ _mm_stream_ps(p,a);}
|
|
|
|
/* Conditional Selects:*/
|
|
/*(a OP b)? c : d; where OP is any compare operator
|
|
Macros expand to conditional selects which use all compare intrinsics.
|
|
Example:
|
|
friend F32vec4 select_eq(const F32vec4 &a, const F32vec4 &b, const F32vec4 &c, const F32vec4 &d)
|
|
{
|
|
F32vec4 mask = _mm_cmpeq_ps(a,b);
|
|
return( (mask & c) | F32vec4((_mm_andnot_ps(mask,d))));
|
|
}
|
|
*/
|
|
|
|
#define Fvec32s4_SELECT(op) \
|
|
inline F32vec4 select_##op (const F32vec4 &a, const F32vec4 &b, const F32vec4 &c, const F32vec4 &d) \
|
|
{ \
|
|
F32vec4 mask = _mm_cmp##op##_ps(a,b); \
|
|
return( (mask & c) | F32vec4((_mm_andnot_ps(mask,d)))); \
|
|
}
|
|
Fvec32s4_SELECT(eq) // generates select_eq(a,b)
|
|
Fvec32s4_SELECT(lt) // generates select_lt(a,b)
|
|
Fvec32s4_SELECT(le) // generates select_le(a,b)
|
|
Fvec32s4_SELECT(gt) // generates select_gt(a,b)
|
|
Fvec32s4_SELECT(ge) // generates select_ge(a,b)
|
|
Fvec32s4_SELECT(neq) // generates select_neq(a,b)
|
|
Fvec32s4_SELECT(nlt) // generates select_nlt(a,b)
|
|
Fvec32s4_SELECT(nle) // generates select_nle(a,b)
|
|
Fvec32s4_SELECT(ngt) // generates select_ngt(a,b)
|
|
Fvec32s4_SELECT(nge) // generates select_nge(a,b)
|
|
#undef Fvec32s4_SELECT
|
|
|
|
|
|
/* Streaming SIMD Extensions Integer Intrinsics */
|
|
|
|
/* Max and Min */
|
|
inline Is16vec4 simd_max(const Is16vec4 &a, const Is16vec4 &b) { return _m_pmaxsw(a,b);}
|
|
inline Is16vec4 simd_min(const Is16vec4 &a, const Is16vec4 &b) { return _m_pminsw(a,b);}
|
|
inline Iu8vec8 simd_max(const Iu8vec8 &a, const Iu8vec8 &b) { return _m_pmaxub(a,b);}
|
|
inline Iu8vec8 simd_min(const Iu8vec8 &a, const Iu8vec8 &b) { return _m_pminub(a,b);}
|
|
|
|
/* Average */
|
|
inline Iu16vec4 simd_avg(const Iu16vec4 &a, const Iu16vec4 &b) { return _m_pavgw(a,b); }
|
|
inline Iu8vec8 simd_avg(const Iu8vec8 &a, const Iu8vec8 &b) { return _m_pavgb(a,b); }
|
|
|
|
/* Move ByteMask To Int: returns mask formed from most sig bits of each vec of a */
|
|
inline int move_mask(const I8vec8 &a) { return _m_pmovmskb(a);}
|
|
|
|
/* Packed Multiply High Unsigned */
|
|
inline Iu16vec4 mul_high(const Iu16vec4 &a, const Iu16vec4 &b) { return _m_pmulhuw(a,b); }
|
|
|
|
/* Byte Mask Write: Write bytes if most significant bit in each corresponding byte is set */
|
|
inline void mask_move(const I8vec8 &a, const I8vec8 &b, char *addr) { _m_maskmovq(a, b, addr); }
|
|
|
|
/* Data Motion: Store Non Temporal */
|
|
inline void store_nta(__m64 *p, M64 &a) { _mm_stream_pi(p,a); }
|
|
|
|
/* Conversions between ivec <-> fvec */
|
|
|
|
/* Convert first element of F32vec4 to int with truncation */
|
|
inline int F32vec4ToInt(const F32vec4 &a)
|
|
{
|
|
|
|
return _mm_cvtt_ss2si(a);
|
|
|
|
}
|
|
|
|
/* Convert two lower SP FP values of a to Is32vec2 with truncation */
|
|
inline Is32vec2 F32vec4ToIs32vec2 (const F32vec4 &a)
|
|
{
|
|
|
|
__m64 result;
|
|
result = _mm_cvtt_ps2pi(a);
|
|
return Is32vec2(result);
|
|
|
|
}
|
|
|
|
/* Convert the 32-bit int i to an SP FP value; the upper three SP FP values are passed through from a. */
|
|
inline F32vec4 IntToF32vec4(const F32vec4 &a, int i)
|
|
{
|
|
|
|
__m128 result;
|
|
result = _mm_cvt_si2ss(a,i);
|
|
return F32vec4(result);
|
|
|
|
}
|
|
|
|
/* Convert the two 32-bit integer values in b to two SP FP values; the upper two SP FP values are passed from a. */
|
|
inline F32vec4 Is32vec2ToF32vec4(const F32vec4 &a, const Is32vec2 &b)
|
|
{
|
|
|
|
__m128 result;
|
|
result = _mm_cvt_pi2ps(a,b);
|
|
return F32vec4(result);
|
|
}
|
|
|
|
class F32vec1
|
|
{
|
|
protected:
|
|
__m128 vec;
|
|
public:
|
|
|
|
/* Constructors: 1 float */
|
|
F32vec1() {}
|
|
|
|
F32vec1(int i) { vec = _mm_cvt_si2ss(vec,i);};
|
|
|
|
/* Initialize each of 4 SP FPs with same float */
|
|
EXPLICIT F32vec1(float f) { vec = _mm_set_ss(f); }
|
|
|
|
/* Initialize each of 4 SP FPs with same float */
|
|
EXPLICIT F32vec1(double d) { vec = _mm_set_ss((float) d); }
|
|
|
|
/* initialize with __m128 data type */
|
|
F32vec1(__m128 m) { vec = m; }
|
|
|
|
/* Conversion functions */
|
|
operator __m128() const { return vec; } /* Convert to float */
|
|
|
|
/* Logical Operators */
|
|
friend F32vec1 operator &(const F32vec1 &a, const F32vec1 &b) { return _mm_and_ps(a,b); }
|
|
friend F32vec1 operator |(const F32vec1 &a, const F32vec1 &b) { return _mm_or_ps(a,b); }
|
|
friend F32vec1 operator ^(const F32vec1 &a, const F32vec1 &b) { return _mm_xor_ps(a,b); }
|
|
|
|
/* Arithmetic Operators */
|
|
friend F32vec1 operator +(const F32vec1 &a, const F32vec1 &b) { return _mm_add_ss(a,b); }
|
|
friend F32vec1 operator -(const F32vec1 &a, const F32vec1 &b) { return _mm_sub_ss(a,b); }
|
|
friend F32vec1 operator *(const F32vec1 &a, const F32vec1 &b) { return _mm_mul_ss(a,b); }
|
|
friend F32vec1 operator /(const F32vec1 &a, const F32vec1 &b) { return _mm_div_ss(a,b); }
|
|
|
|
F32vec1& operator +=(F32vec1 &a) { return *this = _mm_add_ss(vec,a); }
|
|
F32vec1& operator -=(F32vec1 &a) { return *this = _mm_sub_ss(vec,a); }
|
|
F32vec1& operator *=(F32vec1 &a) { return *this = _mm_mul_ss(vec,a); }
|
|
F32vec1& operator /=(F32vec1 &a) { return *this = _mm_div_ss(vec,a); }
|
|
F32vec1& operator &=(F32vec1 &a) { return *this = _mm_and_ps(vec,a); }
|
|
F32vec1& operator |=(F32vec1 &a) { return *this = _mm_or_ps(vec,a); }
|
|
F32vec1& operator ^=(F32vec1 &a) { return *this = _mm_xor_ps(vec,a); }
|
|
|
|
|
|
/* Square Root */
|
|
friend F32vec1 sqrt(const F32vec1 &a) { return _mm_sqrt_ss(a); }
|
|
/* Reciprocal */
|
|
friend F32vec1 rcp(const F32vec1 &a) { return _mm_rcp_ss(a); }
|
|
/* Reciprocal Square Root */
|
|
friend F32vec1 rsqrt(const F32vec1 &a) { return _mm_rsqrt_ss(a); }
|
|
|
|
/* NewtonRaphson Reciprocal
|
|
[2 * rcpss(x) - (x * rcpss(x) * rcpss(x))] */
|
|
friend F32vec1 rcp_nr(const F32vec1 &a)
|
|
{
|
|
F32vec1 Ra0 = _mm_rcp_ss(a);
|
|
return _mm_sub_ss(_mm_add_ss(Ra0, Ra0), _mm_mul_ss(_mm_mul_ss(Ra0, a), Ra0));
|
|
}
|
|
|
|
/* NewtonRaphson Reciprocal Square Root
|
|
0.5 * rsqrtss * (3 - x * rsqrtss(x) * rsqrtss(x)) */
|
|
friend F32vec1 rsqrt_nr(const F32vec1 &a)
|
|
{
|
|
static const F32vec1 fvecf0pt5(0.5f);
|
|
static const F32vec1 fvecf3pt0(3.0f);
|
|
F32vec1 Ra0 = _mm_rsqrt_ss(a);
|
|
return (fvecf0pt5 * Ra0) * (fvecf3pt0 - (a * Ra0) * Ra0);
|
|
|
|
}
|
|
|
|
/* Compares: Mask is returned */
|
|
/* Macros expand to all compare intrinsics. Example:
|
|
friend F32vec1 cmpeq(const F32vec1 &a, const F32vec1 &b)
|
|
{ return _mm_cmpeq_ss(a,b);} */
|
|
#define Fvec32s1_COMP(op) \
|
|
friend F32vec1 cmp##op (const F32vec1 &a, const F32vec1 &b) { return _mm_cmp##op##_ss(a,b); }
|
|
Fvec32s1_COMP(eq) // expanded to cmpeq(a,b)
|
|
Fvec32s1_COMP(lt) // expanded to cmplt(a,b)
|
|
Fvec32s1_COMP(le) // expanded to cmple(a,b)
|
|
Fvec32s1_COMP(gt) // expanded to cmpgt(a,b)
|
|
Fvec32s1_COMP(ge) // expanded to cmpge(a,b)
|
|
Fvec32s1_COMP(neq) // expanded to cmpneq(a,b)
|
|
Fvec32s1_COMP(nlt) // expanded to cmpnlt(a,b)
|
|
Fvec32s1_COMP(nle) // expanded to cmpnle(a,b)
|
|
Fvec32s1_COMP(ngt) // expanded to cmpngt(a,b)
|
|
Fvec32s1_COMP(nge) // expanded to cmpnge(a,b)
|
|
#undef Fvec32s1_COMP
|
|
|
|
/* Min and Max */
|
|
friend F32vec1 simd_min(const F32vec1 &a, const F32vec1 &b) { return _mm_min_ss(a,b); }
|
|
friend F32vec1 simd_max(const F32vec1 &a, const F32vec1 &b) { return _mm_max_ss(a,b); }
|
|
|
|
/* Debug Features */
|
|
#if defined(_ENABLE_VEC_DEBUG)
|
|
/* Output */
|
|
friend std::ostream & operator<<(std::ostream & os, const F32vec1 &a)
|
|
{
|
|
/* To use: cout << "Elements of F32vec1 fvec are: " << fvec; */
|
|
float *fp = (float*)&a;
|
|
os << "float:" << *fp;
|
|
return os;
|
|
}
|
|
#endif
|
|
|
|
};
|
|
|
|
/* Conditional Selects:*/
|
|
/*(a OP b)? c : d; where OP is any compare operator
|
|
Macros expand to conditional selects which use all compare intrinsics.
|
|
Example:
|
|
friend F32vec1 select_eq(const F32vec1 &a, const F32vec1 &b, const F32vec1 &c, const F32vec1 &d)
|
|
{
|
|
F32vec1 mask = _mm_cmpeq_ss(a,b);
|
|
return( (mask & c) | F32vec1((_mm_andnot_ps(mask,d))));
|
|
}
|
|
*/
|
|
|
|
#define Fvec32s1_SELECT(op) \
|
|
inline F32vec1 select_##op (const F32vec1 &a, const F32vec1 &b, const F32vec1 &c, const F32vec1 &d) \
|
|
{ \
|
|
F32vec1 mask = _mm_cmp##op##_ss(a,b); \
|
|
return( (mask & c) | F32vec1((_mm_andnot_ps(mask,d)))); \
|
|
}
|
|
Fvec32s1_SELECT(eq) // generates select_eq(a,b)
|
|
Fvec32s1_SELECT(lt) // generates select_lt(a,b)
|
|
Fvec32s1_SELECT(le) // generates select_le(a,b)
|
|
Fvec32s1_SELECT(gt) // generates select_gt(a,b)
|
|
Fvec32s1_SELECT(ge) // generates select_ge(a,b)
|
|
Fvec32s1_SELECT(neq) // generates select_neq(a,b)
|
|
Fvec32s1_SELECT(nlt) // generates select_nlt(a,b)
|
|
Fvec32s1_SELECT(nle) // generates select_nle(a,b)
|
|
Fvec32s1_SELECT(ngt) // generates select_ngt(a,b)
|
|
Fvec32s1_SELECT(nge) // generates select_nge(a,b)
|
|
#undef Fvec32s1_SELECT
|
|
|
|
/* Conversions between ivec <-> fvec */
|
|
|
|
/* Convert F32vec1 to int */
|
|
inline int F32vec1ToInt(const F32vec1 &a)
|
|
{
|
|
return _mm_cvtt_ss2si(a);
|
|
}
|
|
|
|
|
|
|
|
#pragma pack(pop) /* 16-B aligned */
|
|
#endif /* FVEC_H_INCLUDED */
|
|
|
|
|