windows-nt/Source/XPSP1/NT/base/hals/halx86/i386/ixclock.asm
2020-09-26 16:20:57 +08:00

956 lines
26 KiB
NASM

title "Interval Clock Interrupt"
;++
;
; Copyright (c) 1989 Microsoft Corporation
;
; Module Name:
;
; ixclock.asm
;
; Abstract:
;
; This module implements the code necessary to field and process the
; interval clock interrupt.
;
; Author:
;
; Shie-Lin Tzong (shielint) 12-Jan-1990
;
; Environment:
;
; Kernel mode only.
;
; Revision History:
;
; bryanwi 20-Sep-90
;
; Add KiSetProfileInterval, KiStartProfileInterrupt,
; KiStopProfileInterrupt procedures.
; KiProfileInterrupt ISR.
; KiProfileList, KiProfileLock are delcared here.
;
; shielint 10-Dec-90
; Add performance counter support.
; Move system clock to irq8, ie we now use RTC to generate system
; clock. Performance count and Profile use timer 1 counter 0.
; The interval of the irq0 interrupt can be changed by
; KiSetProfileInterval. Performance counter does not care about the
; interval of the interrupt as long as it knows the rollover count.
; Note: Currently I implemented 1 performance counter for the whole
; i386 NT.
;
; John Vert (jvert) 11-Jul-1991
; Moved from ke\i386 to hal\i386. Removed non-HAL stuff
;
; shie-lin tzong (shielint) 13-March-92
; Move System clock back to irq0 and use RTC (irq8) to generate
; profile interrupt. Performance counter and system clock use time1
; counter 0 of 8254.
;
; Landy Wang (corollary!landy) 04-Dec-92
; Move much code into separate modules for easy inclusion by various
; HAL builds.
;
;--
.386p
.xlist
include hal386.inc
include callconv.inc ; calling convention macros
include i386\ix8259.inc
include i386\kimacro.inc
include mac386.inc
include i386\ixcmos.inc
.list
EXTRNP _KeUpdateSystemTime,0
EXTRNP Kei386EoiHelper,0,IMPORT
EXTRNP _KeSetTimeIncrement,2,IMPORT
EXTRNP _HalEndSystemInterrupt,2
EXTRNP _HalBeginSystemInterrupt,3
EXTRNP _HalpReleaseCmosSpinLock ,0
EXTRNP _HalpMcaQueueDpc, 0
extrn _KdEnteredDebugger:DWORD
extrn _HalpTimerWatchdogEnabled:DWORD
extrn _HalpTimerWatchdogStorage:DWORD
extrn _HalpTimerWatchdogCurFrame:DWORD
extrn _HalpTimerWatchdogLastFrame:DWORD
extrn _HalpTimerWatchdogStorageOverflow:DWORD
;
; Constants used to initialize timer 0
;
TIMER1_DATA_PORT0 EQU 40H ; Timer1, channel 0 data port
TIMER1_CONTROL_PORT0 EQU 43H ; Timer1, channel 0 control port
TIMER2_DATA_PORT0 EQU 48H ; Timer1, channel 0 data port
TIMER2_CONTROL_PORT0 EQU 4BH ; Timer1, channel 0 control port
TIMER1_IRQ EQU 0 ; Irq 0 for timer1 interrupt
COMMAND_8254_COUNTER0 EQU 00H ; Select count 0
COMMAND_8254_RW_16BIT EQU 30H ; Read/Write LSB firt then MSB
COMMAND_8254_MODE2 EQU 4 ; Use mode 2
COMMAND_8254_BCD EQU 0 ; Binary count down
COMMAND_8254_LATCH_READ EQU 0 ; Latch read command
PERFORMANCE_FREQUENCY EQU 1193182
COUNTER_TICKS_AVG_SHIFT EQU 4
COUNTER_TICKS_FOR_AVG EQU 16
PAGE_SIZE EQU 1000H
FRAME_COPY_SIZE EQU 64
;
; ==== Values used for System Clock ====
;
_DATA SEGMENT DWORD PUBLIC 'DATA'
;
; The following array stores the per microsecond loop count for each
; central processor.
;
;
; 8254 performance counter.
;
public HalpPerfCounterLow, HalpPerfCounterHigh
public HalpLastPerfCounterLow, HalpLastPerfCounterHigh
HalpPerfCounterLow dd 0
HalpPerfCounterHigh dd 0
HalpLastPerfCounterLow dd 0
HalpLastPerfCounterHigh dd 0
public HalpCurrentRollOver, HalpCurrentTimeIncrement
HalpCurrentRollOver dd 0
HalpCurrentTimeIncrement dd 0
public _HalpClockWork, _HalpClockSetMSRate, _HalpClockMcaQueueDpc
_HalpClockWork label dword
_HalpClockSetMSRate db 0
_HalpClockMcaQueueDpc db 0
_bReserved1 db 0
_bReserved2 db 0
;
; timer latency watchdog variables
;
public _HalpWatchdogAvgCounter, _HalpWatchdogCountLow, _HalpWatchdogCountHigh
public _HalpWatchdogTscLow, _HalpWatchdogTscHigh
_HalpWatchdogAvgCounter dd 0
_HalpWatchdogCountLow dd 0
_HalpWatchdogCountHigh dd 0
_HalpWatchdogTscLow dd 0
_HalpWatchdogTscHigh dd 0
_DATA ends
_TEXT SEGMENT DWORD PUBLIC 'DATA'
;
; Convert the interval to rollover count for 8254 Timer1 device.
; Timer1 counts down a 16 bit value at a rate of 1.193181667M counts-per-sec.
; (The main crystal freq is 14.31818, and this is a divide by 12)
;
; The best fit value closest to 10ms is 10.0144012689ms:
; ROLLOVER_COUNT 11949
; TIME_INCREMENT 100144
; Calculated error is -.0109472 s/day
;
;
; The following table contains 8254 values timer values to use at
; any given ms setting from 1ms - 15ms. All values work out to the
; same error per day (-.0109472 s/day).
;
public HalpRollOverTable
; RollOver Time
; Count Increment MS
HalpRollOverTable dd 1197, 10032 ; 1 ms
dd 2394, 20064 ; 2 ms
dd 3591, 30096 ; 3 ms
dd 4767, 39952 ; 4 ms
dd 5964, 49984 ; 5 ms
dd 7161, 60016 ; 6 ms
dd 8358, 70048 ; 7 ms
dd 9555, 80080 ; 8 ms
dd 10731, 89936 ; 9 ms
dd 11949, 100144 ; 10 ms
dd 13125, 110000 ; 11 ms
dd 14322, 120032 ; 12 ms
dd 15519, 130064 ; 13 ms
dd 16695, 139920 ; 14 ms
dd 17892, 149952 ; 15 ms
TimeIncr equ 4
RollOver equ 0
_TEXT ends
_DATA SEGMENT DWORD PUBLIC 'DATA'
public HalpLargestClockMS, HalpNextMSRate, HalpPendingMSRate
HalpLargestClockMS dd 15 ; Table goes to 15MS
HalpNextMSRate dd 0
HalpPendingMSRate dd 0
_DATA ends
PAGELK SEGMENT DWORD PUBLIC 'CODE'
ASSUME DS:FLAT, ES:FLAT, SS:NOTHING, FS:NOTHING, GS:NOTHING
page ,132
subttl "Initialize Clock"
;++
;
; VOID
; HalpInitializeClock (
; )
;
; Routine Description:
;
; This routine initialize system time clock using 8254 timer1 counter 0
; to generate an interrupt at every 15ms interval at 8259 irq0.
;
; See the definitions of TIME_INCREMENT and ROLLOVER_COUNT if clock rate
; needs to be changed.
;
; Arguments:
;
; None
;
; Return Value:
;
; None.
;
;--
cPublicProc _HalpInitializeClock ,0
mov eax, PCR[PcPrcb]
cmp byte ptr [eax].PbCpuType, 4 ; 486 or better?
jc short @f ; no, skip
mov HalpLargestClockMS, 10 ; Limit 486's to 10MS
@@:
mov eax, HalpLargestClockMS
mov ecx, HalpRollOverTable.TimeIncr
mov edx, HalpRollOverTable[eax*8-8].TimeIncr
mov eax, HalpRollOverTable[eax*8-8].RollOver
mov HalpCurrentTimeIncrement, edx
;
; (ecx) = Min time_incr
; (edx) = Max time_incr
; (eax) = max roll over count
;
push eax
stdCall _KeSetTimeIncrement, <edx, ecx>
pop ecx
;
; timer latency watchdog initialization
;
cmp _HalpTimerWatchdogEnabled, 0
jz short @f
.586p
rdtsc
.386p
mov _HalpWatchdogAvgCounter, COUNTER_TICKS_FOR_AVG
mov _HalpWatchdogTscLow, eax
mov _HalpWatchdogTscHigh, edx
xor eax, eax
mov _HalpWatchdogCountLow, eax
mov _HalpWatchdogCountHigh, eax
@@:
pushfd ; save caller's eflag
cli ; make sure interrupts are disabled
;
; Set clock rate
; (ecx) = RollOverCount
;
mov al,COMMAND_8254_COUNTER0+COMMAND_8254_RW_16BIT+COMMAND_8254_MODE2
out TIMER1_CONTROL_PORT0, al ;program count mode of timer 0
IoDelay
mov al, cl
out TIMER1_DATA_PORT0, al ; program timer 0 LSB count
IoDelay
mov al,ch
out TIMER1_DATA_PORT0, al ; program timer 0 MSB count
popfd ; restore caller's eflag
mov HalpCurrentRollOver, ecx ; Set RollOverCount & initialized
stdRET _HalpInitializeClock
stdENDP _HalpInitializeClock
PAGELK ends
_TEXT$03 SEGMENT DWORD PUBLIC 'CODE'
page ,132
subttl "Query Performance Counter"
;++
;
; LARGE_INTEGER
; KeQueryPerformanceCounter (
; OUT PLARGE_INTEGER PerformanceFrequency OPTIONAL
; )
;
; Routine Description:
;
; This routine returns current 64-bit performance counter and,
; optionally, the Performance Frequency.
;
; Note this routine can NOT be called at Profiling interrupt
; service routine. Because this routine depends on IRR0 to determine
; the actual count.
;
; Also note that the performace counter returned by this routine
; is not necessary the value when this routine is just entered.
; The value returned is actually the counter value at any point
; between the routine is entered and is exited.
;
; Arguments:
;
; PerformanceFrequency [TOS+4] - optionally, supplies the address
; of a variable to receive the performance counter frequency.
;
; Return Value:
;
; Current value of the performance counter will be returned.
;
;--
;
; Parameter definitions
;
KqpcFrequency EQU [esp+12] ; User supplied Performance Frequence
cPublicProc _KeQueryPerformanceCounter ,1
;
; First check to see if the performance counter has been initialized yet.
; Since the kernel debugger calls KeQueryPerformanceCounter to support the
; !timer command, we need to return something reasonable before 8254
; initialization has occured. Reading garbage off the 8254 is not reasonable.
;
cmp HalpCurrentRollOver, 0
je Kqpc50
push ebx
push esi
Kqpc01: pushfd
cli
Kqpc20:
;
; Fetch the base value. Note that interrupts are off.
;
mov ebx, HalpPerfCounterLow
mov esi, HalpPerfCounterHigh ; [esi:ebx] = Performance counter
;
; Fetch the current counter value from the hardware
;
mov al, COMMAND_8254_LATCH_READ+COMMAND_8254_COUNTER0
;Latch PIT Ctr 0 command.
out TIMER1_CONTROL_PORT0, al
IODelay
in al, TIMER1_DATA_PORT0 ;Read PIT Ctr 0, LSByte.
IODelay
movzx ecx,al ;Zero upper bytes of (ECX).
in al, TIMER1_DATA_PORT0 ;Read PIT Ctr 0, MSByte.
mov ch, al ;(CX) = PIT Ctr 0 count.
;
; Now enable interrupts such that if timer interrupt is pending, it can
; be serviced and update the PerformanceCounter. Note that there could
; be a long time between the sti and cli because ANY interrupt could come
; in in between.
;
popfd ; don't re-enable interrupts if
nop ; the caller had them off!
; (kernel debugger calls this function
; with interrupts disabled)
jmp $+2 ; allow interrupt in case counter
; has wrapped
pushfd
cli
;
; Fetch the base value again.
;
; Note: it's possible that the counter wrapped before we read the value
; and that the timer tick interrupt did not occur during while interrupts
; where enabled. (ie, there's a delay between when the device raises the
; interrupt and when the processor see it).
;
;
; note *2 -
mov eax, HalpPerfCounterLow
mov edx, HalpPerfCounterHigh ; [edx:eax] = new counter value
;
; Compare the two reads of Performance counter. If they are different,
; start over
;
cmp eax, ebx
jne short Kqpc20
cmp edx, esi
jne short Kqpc20
neg ecx ; PIT counts down from 0h
add ecx, HalpCurrentRollOver
jnc short Kqpc60
Kqpc30:
add eax, ecx
adc edx, 0 ; [edx:eax] = Final result
cmp edx, HalpLastPerfCounterHigh
jc short Kqpc70 ; jmp if edx < lastperfcounterhigh
jne short Kqpc35 ; jmp if edx > lastperfcounterhigh
cmp eax, HalpLastPerfCounterLow
jc short Kqpc70 ; jmp if eax < lastperfcounterlow
Kqpc35:
mov HalpLastPerfCounterLow, eax
mov HalpLastPerfCounterHigh, edx
popfd ; restore interrupt flag
;
; Return the freq. if caller wants it.
;
cmp dword ptr KqpcFrequency, 0 ; is it a NULL variable?
jz short Kqpc40 ; if z, yes, go exit
mov ecx, KqpcFrequency ; (ecx)-> Frequency variable
mov DWORD PTR [ecx], PERFORMANCE_FREQUENCY ; Set frequency
mov DWORD PTR [ecx+4], 0
Kqpc40:
pop esi ; restore esi and ebx
pop ebx
stdRET _KeQueryPerformanceCounter
Kqpc50:
; Initialization hasn't occured yet, so just return zeroes.
mov eax, 0
mov edx, 0
stdRET _KeQueryPerformanceCounter
Kqpc60:
;
; The current count is larger then the HalpCurrentRollOver. The only way
; that could happen is if there is an interrupt in route to the processor
; but it was not processed while interrupts were enabled.
;
mov esi, [esp] ; (esi) = flags
mov ecx, HalpCurrentRollOver ; (ecx) = max possible value
popfd ; restore flags
test esi, EFLAGS_INTERRUPT_MASK
jnz Kqpc01 ; ints are enabled, problem should go away
pushfd ; fix stack
jmp short Kqpc30 ; ints are disabled, use max count (ecx)
Kqpc70:
;
; The current count is smaller then the last returned count. The only way
; this should occur is if there is an interrupt in route to the processor
; which was not been processed.
;
mov ebx, HalpLastPerfCounterLow
mov esi, HalpLastPerfCounterHigh
mov ecx, ebx
or ecx, esi ; is last returned value 0?
jz short Kqpc35 ; Yes, then just return what we have
; sanity check - make sure count is not off by bogus amount
sub ebx, eax
sbb esi, edx
jnz short Kqpc75 ; off by bogus amount
cmp ebx, HalpCurrentRollOver
jg short Kqpc75 ; off by bogus amount
sub eax, ebx
sbb edx, esi ; (edx:eax) = last returned count
mov ecx, [esp] ; (ecx) = flags
popfd
test ecx, EFLAGS_INTERRUPT_MASK
jnz Kqpc01 ; ints enabled, problem should go away
pushfd ; fix stack
jmp Kqpc35 ; ints disabled, just return last count
Kqpc75:
popfd
xor eax, eax ; reset bogus values
mov HalpLastPerfCounterLow, eax
mov HalpLastPerfCounterHigh, eax
jmp Kqpc01 ; go try again
stdENDP _KeQueryPerformanceCounter
;++
;
; VOID
; HalCalibratePerformanceCounter (
; IN LONG volatile *Number,
; IN ULONGLONG NewCount
; )
;
; /*++
;
; Routine Description:
;
; This routine resets the performance counter value for the current
; processor to zero. The reset is done such that the resulting value
; is closely synchronized with other processors in the configuration.
;
; Arguments:
;
; Number - Supplies a pointer to count of the number of processors in
; the configuration.
;
; NewCount - Supplies the value to synchronize the counter too
;
; Note: this hal does not currently set the counter
;
; Return Value:
;
; None.
;--
cPublicProc _HalCalibratePerformanceCounter,3
mov eax, [esp+4] ; ponter to Number
pushfd ; save previous interrupt state
cli ; disable interrupts (go to high_level)
lock dec dword ptr [eax] ; count down
@@: YIELD
cmp dword ptr [eax], 0 ; wait for all processors to signal
jnz short @b
;
; Nothing to calibrate on a UP machine...
;
popfd ; restore interrupt flag
stdRET _HalCalibratePerformanceCounter
stdENDP _HalCalibratePerformanceCounter
page ,132
subttl "System Clock Interrupt"
;++
;
; Routine Description:
;
; This routine is entered as the result of an interrupt generated by CLOCK.
; Its function is to dismiss the interrupt, raise system Irql to
; CLOCK2_LEVEL, update performance counter and transfer control to the
; standard system routine to update the system time and the execution
; time of the current thread
; and process.
;
; Arguments:
;
; None
; Interrupt is disabled
;
; Return Value:
;
; Does not return, jumps directly to KeUpdateSystemTime, which returns
;
; Sets Irql = CLOCK2_LEVEL and dismisses the interrupt
;
;--
ENTER_DR_ASSIST Hci_a, Hci_t
cPublicProc _HalpClockInterrupt ,0
;
; Save machine state in trap frame
;
ENTER_INTERRUPT Hci_a, Hci_t
;
; (esp) - base of trap frame
;
;
; Dismiss interrupt and raise irq level to clock2 level
;
Hci10:
push CLOCK_VECTOR
sub esp, 4 ; allocate space to save OldIrql
stdCall _HalBeginSystemInterrupt, <CLOCK2_LEVEL, CLOCK_VECTOR, esp>
or al,al ; check for spurious interrupt
jz Hci100
;
; Update performance counter
;
xor ebx, ebx
mov eax, HalpCurrentRollOver
add HalpPerfCounterLow, eax ; update performace counter
adc HalpPerfCounterHigh, ebx
;
; Timer latency watchdog
;
cmp _HalpTimerWatchdogEnabled, 0
jz Hci14
.586p
rdtsc
.386p
;
; Compare difference to watchdog count, while storing a copy of the
; current counter.
;
push eax
push edx
sub eax, _HalpWatchdogTscLow
sbb edx, _HalpWatchdogTscHigh
pop _HalpWatchdogTscHigh
pop _HalpWatchdogTscLow
js Hci115 ; Was this a bogus counter?
; (e.g, negative delta)
push eax
mov ecx, dword ptr _KdEnteredDebugger
xor eax, eax
xchg eax, [ecx]
or al, al
pop eax
jnz Hci14
cmp HalpPendingMSRate, ebx ; Was a new rate set during last
jnz Hci14 ; tick? Yes, skip this compare
;
; If we need to compute the average of the time-stamp counter for
; the current period, add the delta to the counter.
;
cmp _HalpWatchdogAvgCounter, ebx
jnz Hci12
cmp edx, _HalpWatchdogCountHigh
ja short Hci11
jb Hci14
cmp eax, _HalpWatchdogCountLow
jbe Hci14
Hci11:
cmp dword ptr [_HalpTimerWatchdogStorageOverflow], 0
jne short Hci115
;
; copy FRAME_COPY_SIZE dwords from the stack, or to next page boundary,
; whichever is less
;
push esi
push edi
lea esi, [esp+8]
lea ecx, [esi + PAGE_SIZE - 1]
and ecx, NOT(PAGE_SIZE - 1)
sub ecx, esi
shr ecx, 2
cmp ecx, FRAME_COPY_SIZE
jbe short Hci111
mov ecx, FRAME_COPY_SIZE
Hci111:
mov edi, dword ptr _HalpTimerWatchdogCurFrame
rep movsd
add _HalpTimerWatchdogCurFrame, (FRAME_COPY_SIZE*4)
;
; If we didn't copy an entire FRAME_COPY_SIZE dwords, zero fill.
;
mov ecx, dword ptr _HalpTimerWatchdogCurFrame
sub ecx, edi
shr ecx, 2
xor eax, eax
rep stosd
cmp edi, dword ptr _HalpTimerWatchdogLastFrame
jbe short Hci112
mov dword ptr [_HalpTimerWatchdogStorageOverflow], 1
Hci112:
pop edi
pop esi
Hci115:
;
; reset last time so that we're accurate after the trap
;
.586p
rdtsc
.386p
mov _HalpWatchdogTscHigh, edx
mov _HalpWatchdogTscLow, eax
jmp short Hci14
Hci12:
;
; Increment the total counter, perform average when the count is reached
;
add _HalpWatchdogCountLow, eax
adc _HalpWatchdogCountHigh, edx
dec _HalpWatchdogAvgCounter
jnz short Hci14
mov edx, _HalpWatchdogCountHigh
mov eax, _HalpWatchdogCountLow
;
; compute the average * 2, this measures when we have missed
; an interrupt at this rate.
;
mov ecx, COUNTER_TICKS_AVG_SHIFT - 1
Hci13:
shr edx, 1
rcr eax, 1
loop short Hci13
mov _HalpWatchdogCountLow, eax
mov _HalpWatchdogCountHigh, edx
Hci14:
;
; Check for any more work
;
mov eax, HalpCurrentTimeIncrement
cmp _HalpClockWork, ebx ; Any clock interrupt work desired?
jz _KeUpdateSystemTime@0 ; No, process tick
cmp _HalpClockMcaQueueDpc, bl
je short Hci20
mov _HalpClockMcaQueueDpc, bl
;
; Queue MCA Dpc
;
push eax
stdCall _HalpMcaQueueDpc ; Queue MCA Dpc
pop eax
Hci20:
;
; (esp) = OldIrql
; (esp+4) = Vector
; (esp+8) = base of trap frame
; ebp = trap frame
; eax = time increment
; ebx = 0
;
cmp _HalpClockSetMSRate, bl ; New clock rate desired?
jz _KeUpdateSystemTime@0 ; No, process tick
;
; Time of clock frequency is being changed. See if the 8254 was
; was reprogrammed for a new rate during last tick
;
cmp HalpPendingMSRate, ebx ; Was a new rate set durning last
jnz short Hci50 ; tick? Yes, go update globals
Hci40:
; (eax) = time increment for current tick
;
; A new clock rate needs to be set. Setting the rate here will
; cause the tick after the next tick to be at the new rate.
; (the next tick is already in progress by the 8254 and will occur
; at the same rate as this tick)
;
mov ebx, HalpNextMSRate
mov HalpPendingMSRate, ebx ; pending rate
mov ecx, HalpRollOverTable[ebx*8-8].RollOver
;
; Set clock rate
; (ecx) = RollOverCount
;
push eax ; save current tick's rate
mov al,COMMAND_8254_COUNTER0+COMMAND_8254_RW_16BIT+COMMAND_8254_MODE2
out TIMER1_CONTROL_PORT0, al ;program count mode of timer 0
IoDelay
mov al, cl
out TIMER1_DATA_PORT0, al ; program timer 0 LSB count
IoDelay
mov al,ch
out TIMER1_DATA_PORT0, al ; program timer 0 MSB count
pop eax
;
; (esp) = OldIrql
; (esp+4) = Vector
; (esp+8) = base of trap frame
; ebp = trap frame
; eax = time increment
;
jmp _KeUpdateSystemTime@0 ; dispatch this tick
Hci50:
;
; The next tick will occur at the rate which was programmed during the last
; tick. Update globals for new rate which starts with the next tick.
;
; (eax) = time increment for current tick
;
mov ebx, HalpPendingMSRate
mov ecx, HalpRollOverTable[ebx*8-8].RollOver
mov edx, HalpRollOverTable[ebx*8-8].TimeIncr
mov HalpCurrentRollOver, ecx
mov HalpCurrentTimeIncrement, edx ; next tick rate
mov HalpPendingMSRate, 0 ; no longer pending, clear it
cmp _HalpTimerWatchdogEnabled, 0
jz short @f
;
; Schedule to recalibrate watchdog counter
;
push eax
.586p
rdtsc
.386p
mov _HalpWatchdogAvgCounter, COUNTER_TICKS_FOR_AVG
mov _HalpWatchdogTscLow, eax
mov _HalpWatchdogTscHigh, edx
xor eax,eax
mov _HalpWatchdogCountHigh, eax
mov _HalpWatchdogCountLow, eax
pop eax
@@:
cmp ebx, HalpNextMSRate ; new rate == NextRate?
jne Hci40 ; no, go set new pending rate
mov _HalpClockSetMSRate, 0 ; all done setting new rate
jmp _KeUpdateSystemTime@0 ; dispatch this tick
Hci100:
add esp, 8 ; spurious, no EndOfInterrupt
SPURIOUS_INTERRUPT_EXIT ; exit interrupt without eoi
stdENDP _HalpClockInterrupt
;++
;
; ULONG
; HalSetTimeIncrement (
; IN ULONG DesiredIncrement
; )
;
; /*++
;
; Routine Description:
;
; This routine initialize system time clock to generate an
; interrupt at every DesiredIncrement interval.
;
; Arguments:
;
; DesiredIncrement - desired interval between every timer tick (in
; 100ns unit.)
;
; Return Value:
;
; The *REAL* time increment set.
;--
cPublicProc _HalSetTimeIncrement,1
mov eax, [esp+4] ; desired setting
xor edx, edx
mov ecx, 10000
div ecx ; round to MS
cmp eax, HalpLargestClockMS ; MS > max?
jc short @f
mov eax, HalpLargestClockMS ; yes, use max
@@:
or eax, eax ; MS < min?
jnz short @f
inc eax ; yes, use min
@@:
mov HalpNextMSRate, eax
mov _HalpClockSetMSRate, 1 ; New clock rate desired.
mov eax, HalpRollOverTable[eax*8-8].TimeIncr
stdRET _HalSetTimeIncrement
stdENDP _HalSetTimeIncrement
_TEXT$03 ends
end