windows-nt/Source/XPSP1/NT/base/hals/halx86/i386/ixpnpdrv.c
2020-09-26 16:20:57 +08:00

3411 lines
88 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1997 Microsoft Corporation
Module Name:
ixpnpdrv.c
Abstract:
Implements functionality necessary for the
HAL to become a PnP-style device driver
after system initialization. This is done
so that the HAL can enumerate the PCI busses
in the way that the PnP stuff expects.
Author:
Jake Oshins (jakeo) 27-Jan-1997
Environment:
Kernel mode only.
Revision History:
--*/
#include "halp.h"
#include "exboosts.h"
#include "wchar.h"
#include "pci.h"
#include "pcip.h"
#if defined(NT_UP) && defined(APIC_HAL)
#include "apic.inc"
#include "pcmp_nt.inc"
#endif
#ifdef ALLOC_DATA_PRAGMA
#pragma const_seg("PAGECONST")
#endif // ALLOC_DATA_PRAGMA
//Instantiate the guids here only.
#include "initguid.h"
#include "wdmguid.h"
#ifdef ALLOC_DATA_PRAGMA
#pragma const_seg()
#endif // ALLOC_DATA_PRAGMA
#ifdef WANT_IRQ_ROUTING
// Pci Irq Routing.
#include "ixpciir.h"
#endif
WCHAR rgzTranslated[] = L".Translated";
WCHAR rgzBusTranslated[] = L".Bus.Translated";
WCHAR rgzResourceMap[] = L"\\REGISTRY\\MACHINE\\HARDWARE\\RESOURCEMAP";
#if DBG
ULONG HalDebug = 0;
#endif
extern WCHAR rgzTranslated[];
extern WCHAR rgzBusTranslated[];
extern WCHAR rgzResourceMap[];
extern WCHAR HalHardwareIdString[];
#if defined(NT_UP) && defined(APIC_HAL)
extern WCHAR MpHalHardwareIdString[];
#endif
extern struct HalpMpInfo HalpMpInfoTable;
typedef enum {
Hal = 0x80,
PciDriver,
IsaPnpDriver,
McaDriver
} PDO_TYPE;
typedef enum {
PdoExtensionType = 0xc0,
FdoExtensionType
} EXTENSION_TYPE;
typedef struct _PDO_EXTENSION *PPDO_EXTENSION;
typedef struct _FDO_EXTENSION *PFDO_EXTENSION;
typedef struct _PDO_EXTENSION{
EXTENSION_TYPE ExtensionType;
PDEVICE_OBJECT Next;
PDEVICE_OBJECT PhysicalDeviceObject;
PFDO_EXTENSION ParentFdoExtension;
PDO_TYPE PdoType;
ULONG BusNumber;
ULONG MaxSubordinateBusNumber;
PBUS_HANDLER Bus;
LONG InterfaceReferenceCount;
} PDO_EXTENSION, *PPDO_EXTENSION;
#define ASSERT_PDO_EXTENSION(x) ASSERT((x)->ExtensionType == PdoExtensionType );
typedef struct _FDO_EXTENSION{
EXTENSION_TYPE ExtensionType;
PDEVICE_OBJECT ChildPdoList;
PDEVICE_OBJECT PhysicalDeviceObject; // PDO passed into AddDevice()
PDEVICE_OBJECT FunctionalDeviceObject;
PDEVICE_OBJECT AttachedDeviceObject;
ULONG BusCount;
} FDO_EXTENSION, *PFDO_EXTENSION;
#define ASSERT_FDO_EXTENSION(x) ASSERT((x)->ExtensionType == FdoExtensionType );
INT_ROUTE_INTERFACE_STANDARD PciIrqRoutingInterface = {0};
NTSTATUS
HalpDriverEntry (
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
);
NTSTATUS
HalpAddDevice(
IN PDRIVER_OBJECT DriverObject,
IN PDEVICE_OBJECT PhysicalDeviceObject
);
NTSTATUS
HalpDispatchPnp(
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
);
NTSTATUS
HalpDispatchPower(
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
);
NTSTATUS
HalpDispatchWmi(
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
);
VOID
HalpCompleteRequest(
IN OUT PIRP Irp,
IN NTSTATUS Status,
IN ULONG Information
);
NTSTATUS
HalpQueryDeviceRelations(
IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_RELATION_TYPE RelationType,
OUT PDEVICE_RELATIONS *DeviceRelations
);
NTSTATUS
HalpQueryIdPdo(
IN PDEVICE_OBJECT PdoExtension,
IN BUS_QUERY_ID_TYPE IdType,
IN OUT PWSTR *BusQueryId
);
NTSTATUS
HalpQueryIdFdo(
IN PDEVICE_OBJECT PdoExtension,
IN BUS_QUERY_ID_TYPE IdType,
IN OUT PWSTR *BusQueryId
);
NTSTATUS
HalpQueryCapabilities(
IN PDEVICE_OBJECT Pdo,
IN PDEVICE_CAPABILITIES Capabilities
);
NTSTATUS
HalpQueryDeviceText(
IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_TEXT_TYPE IdType,
IN OUT PWSTR *BusQueryId
);
NTSTATUS
HalpQueryInterface(
IN PDEVICE_OBJECT DeviceObject,
IN LPCGUID InterfaceType,
IN USHORT Version,
IN PVOID InterfaceSpecificData,
IN ULONG InterfaceBufferSize,
IN OUT PINTERFACE Interface,
IN OUT PULONG Length
);
#ifdef WANT_IRQ_ROUTING
NTSTATUS
HalpQueryInterfaceFdo(
IN PDEVICE_OBJECT DeviceObject,
IN LPCGUID InterfaceType,
IN USHORT Version,
IN PVOID InterfaceSpecificData,
IN ULONG InterfaceBufferSize,
IN OUT PINTERFACE Interface,
IN OUT PULONG Length
);
#endif
NTSTATUS
HalpQueryResources(
PDEVICE_OBJECT DeviceObject,
PCM_RESOURCE_LIST *Resources
);
NTSTATUS
HalpQueryResourceRequirements(
PDEVICE_OBJECT DeviceObject,
PIO_RESOURCE_REQUIREMENTS_LIST *Requirements
);
NTSTATUS
HalpRemoveAssignedResources(
PBUS_HANDLER Bus
);
VOID
HalpMarkNonAcpiHal(
VOID
);
//
// Define the PNP interface functions.
//
VOID
HalPnpInterfaceReference(
PVOID Context
);
VOID
HalPnpInterfaceDereference(
PVOID Context
);
BOOLEAN
HalPnpTranslateBusAddress(
IN PVOID Context,
IN PHYSICAL_ADDRESS BusAddress,
IN ULONG Length,
IN OUT PULONG AddressSpace,
OUT PPHYSICAL_ADDRESS TranslatedAddress
);
struct _DMA_ADAPTER *
HalPnpGetDmaAdapter(
IN PVOID Context,
IN struct _DEVICE_DESCRIPTION *DeviceDescriptor,
OUT PULONG NumberOfMapRegisters
);
ULONG
HalPnpReadConfig(
IN PVOID Context,
IN ULONG Slot,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
);
ULONG
HalPnpWriteConfig(
IN PVOID Context,
IN ULONG Slot,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
);
NTSTATUS
HalpGetPciInterfaces(
IN PDEVICE_OBJECT PciPdo
);
#ifdef APIC_HAL
NTSTATUS
HalpPci2MpsBusNumber(
IN UCHAR PciBusNumber,
OUT UCHAR *MpsBusNumber
);
BOOLEAN
HalpMpsBusIsRootBus(
IN UCHAR MpsBus
);
#endif
#define PCI_HAL_DRIVER_NAME L"\\Driver\\PCI_HAL"
#define ISA_HAL_DRIVER_NAME L"\\Driver\\ISA_HAL"
#define MCA_HAL_DRIVER_NAME L"\\Driver\\MCA_HAL"
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, HaliInitPnpDriver)
#pragma alloc_text(PAGE, HalpDriverEntry)
#pragma alloc_text(PAGE, HalpAddDevice)
#pragma alloc_text(PAGE, HalpDispatchPnp)
#pragma alloc_text(PAGELK, HalpDispatchPower)
#pragma alloc_text(PAGE, HalpDispatchWmi)
#pragma alloc_text(PAGE, HalpQueryDeviceRelations)
#pragma alloc_text(PAGE, HalpQueryIdPdo)
#pragma alloc_text(PAGE, HalpQueryIdFdo)
#pragma alloc_text(PAGE, HalpQueryCapabilities)
#pragma alloc_text(PAGE, HalpQueryInterface)
#ifdef WANT_IRQ_ROUTING
#pragma alloc_text(PAGE, HalpQueryInterfaceFdo)
#endif
#pragma alloc_text(PAGE, HalpQueryDeviceText)
#pragma alloc_text(PAGE, HalpQueryResources)
#pragma alloc_text(PAGE, HalpQueryResourceRequirements)
#pragma alloc_text(PAGE, HalpRemoveAssignedResources)
#pragma alloc_text(PAGE, HalpMarkNonAcpiHal)
#pragma alloc_text(INIT, HalpMarkChipsetDecode)
#pragma alloc_text(PAGE, HalpOpenRegistryKey)
#pragma alloc_text(PAGE, HalpGetPciInterfaces)
#pragma alloc_text(PAGE, HalPnpInterfaceDereference)
#endif
PDRIVER_OBJECT HalpDriverObject;
NTSTATUS
HaliInitPnpDriver(
VOID
)
/*++
Routine Description:
This routine starts the process of making the HAL into
a "driver," which is necessary because we need to
enumerate a Plug and Play PDO for the PCI driver and ISAPNP
driver.
Arguments:
None.
Return Value:
NTSTATUS.
--*/
{
UNICODE_STRING DriverName;
NTSTATUS Status;
PAGED_CODE();
//
// For different bus pdo, we will use different hal name such that
// it is less confusion.
//
if (HalpHandlerForBus (PCIBus, 0)) {
RtlInitUnicodeString( &DriverName, PCI_HAL_DRIVER_NAME );
} else if (HalpHandlerForBus(MicroChannel, 0)) {
RtlInitUnicodeString( &DriverName, MCA_HAL_DRIVER_NAME );
} else {
RtlInitUnicodeString( &DriverName, ISA_HAL_DRIVER_NAME );
}
Status = IoCreateDriver( &DriverName, HalpDriverEntry );
//
// John Vert (jvert) 7/23/1998
// There is a value in the registry that the ACPI HAL sets to disable
// the firmware mapper. Unfortunately this value is persistent. So if
// you have an ACPI machine and "upgrade" it to a non-ACPI machine, the
// value is still present. Workaround here is to set the value to zero.
//
HalpMarkNonAcpiHal();
if (!NT_SUCCESS( Status )) {
ASSERT( NT_SUCCESS( Status ));
return Status;
}
return STATUS_SUCCESS;
}
NTSTATUS
HalpDriverEntry (
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
)
/*++
Routine Description:
This is the callback function when we call IoCreateDriver to create a
PnP Driver Object. In this function, we need to remember the DriverObject.
Arguments:
DriverObject - Pointer to the driver object created by the system.
RegistryPath - is NULL.
Return Value:
STATUS_SUCCESS
--*/
{
NTSTATUS Status;
PDEVICE_OBJECT detectedDeviceObject = NULL;
PAGED_CODE();
//
// File the pointer to our driver object away
//
HalpDriverObject = DriverObject;
//
// Fill in the driver object
//
DriverObject->DriverExtension->AddDevice = (PDRIVER_ADD_DEVICE) HalpAddDevice;
DriverObject->MajorFunction[ IRP_MJ_PNP ] = HalpDispatchPnp;
DriverObject->MajorFunction[ IRP_MJ_POWER ] = HalpDispatchPower;
DriverObject->MajorFunction[ IRP_MJ_SYSTEM_CONTROL ] = HalpDispatchWmi;
Status = IoReportDetectedDevice(DriverObject,
InterfaceTypeUndefined,
-1,
-1,
NULL,
NULL,
FALSE,
&detectedDeviceObject);
ASSERT( detectedDeviceObject != NULL );
if (!(NT_SUCCESS(Status))) {
HalPrint(("IoReportDetectedDevice failed"));
return Status;
}
Status = HalpAddDevice(DriverObject, detectedDeviceObject);
return Status;
}
NTSTATUS
HalpAddDevice(
IN PDRIVER_OBJECT DriverObject,
IN PDEVICE_OBJECT PhysicalDeviceObject
)
/*++
Routine Description:
This routine handles AddDevice for an madeup PDO device.
Arguments:
DriverObject - Pointer to our pseudo driver object.
DeviceObject - Pointer to the device object for which this requestapplies.
Return Value:
NT Status.
--*/
{
PDEVICE_OBJECT FunctionalDeviceObject;
PDEVICE_OBJECT ChildDeviceObject;
PDEVICE_OBJECT AttachedDevice;
NTSTATUS Status;
PFDO_EXTENSION FdoExtension;
PPDO_EXTENSION PdoExtension;
PDEVICE_OBJECT Pdo2;
ULONG BusNumber;
ULONG BusCount = 0;
PBUS_HANDLER Bus;
WCHAR Buffer[40];
UNICODE_STRING Unicode;
PDO_TYPE PdoType;
UCHAR MpsBusNumber;
PAGED_CODE();
//
// We've been given the PhysicalDeviceObject. Create the
// FunctionalDeviceObject. Our FDO will be nameless.
//
Status = IoCreateDevice(
DriverObject, // our driver object
sizeof(FDO_EXTENSION), // size of our extension
NULL, // our name
FILE_DEVICE_BUS_EXTENDER, // device type
0, // device characteristics
FALSE, // not exclusive
&FunctionalDeviceObject // store new device object here
);
if( !NT_SUCCESS( Status )){
DbgBreakPoint();
return Status;
}
//
// Fill in the FDO extension
//
FdoExtension = (PFDO_EXTENSION) FunctionalDeviceObject->DeviceExtension;
FdoExtension->ExtensionType = FdoExtensionType;
FdoExtension->PhysicalDeviceObject = PhysicalDeviceObject;
FdoExtension->FunctionalDeviceObject = FunctionalDeviceObject;
FdoExtension->ChildPdoList = NULL;
//
// Now attach to the PDO we were given.
//
AttachedDevice = IoAttachDeviceToDeviceStack(FunctionalDeviceObject,
PhysicalDeviceObject );
if (AttachedDevice == NULL) {
HalPrint(("Couldn't attach"));
//
// Couldn't attach. Delete the FDO.
//
IoDeleteDevice( FunctionalDeviceObject );
return STATUS_NO_SUCH_DEVICE;
}
FdoExtension->AttachedDeviceObject = AttachedDevice;
//
// Clear the device initializing flag.
//
FunctionalDeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;
//
// Find any child PCI busses.
//
for ( BusNumber = 0;
Bus = HaliReferenceHandlerForBus(PCIBus, BusNumber);
BusNumber++ ) {
#ifdef APIC_HAL
Status = HalpPci2MpsBusNumber((UCHAR)BusNumber, &MpsBusNumber);
if (NT_SUCCESS(Status)) {
if (!HalpMpsBusIsRootBus(MpsBusNumber)) {
//
// This is not a root PCI bus, so skip it.
//
continue;
}
}
#endif
if (Bus->ParentHandler != NULL &&
Bus->ParentHandler->InterfaceType == PCIBus) {
//
// Skip bridges.
//
HaliDereferenceBusHandler( Bus );
continue;
}
//
// Remove the system resoruces from the range lists.
//
Status = HalpRemoveAssignedResources( Bus );
if (!NT_SUCCESS(Status)) {
HaliDereferenceBusHandler( Bus );
return Status;
}
_snwprintf( Buffer, sizeof( Buffer ), L"\\Device\\Hal Pci %d", BusCount );
RtlInitUnicodeString( &Unicode, Buffer );
//
// Next, create a PDO for the PCI driver.
//
Status = IoCreateDevice(
DriverObject, // our driver object
sizeof(PDO_EXTENSION), // size of our extension
&Unicode, // our name
FILE_DEVICE_BUS_EXTENDER, // device type
0, // device characteristics
FALSE, // not exclusive
&ChildDeviceObject // store new device object here
);
if (!NT_SUCCESS(Status)) {
HaliDereferenceBusHandler( Bus );
return Status;
}
//
// Fill in the PDO extension
//
PdoExtension = (PPDO_EXTENSION) ChildDeviceObject->DeviceExtension;
PdoExtension->ExtensionType = PdoExtensionType;
PdoExtension->PhysicalDeviceObject = ChildDeviceObject;
PdoExtension->ParentFdoExtension = FdoExtension;
PdoExtension->PdoType = PciDriver;
PdoExtension->BusNumber = BusNumber;
PdoExtension->MaxSubordinateBusNumber = 0xff; // correct value later
PdoExtension->Bus = Bus;
BusCount++;
//
// Record this as a child of the HAL. Add new childern at the
// end of the list.
//
PdoExtension->Next = NULL;
if (FdoExtension->ChildPdoList == NULL) {
FdoExtension->ChildPdoList = ChildDeviceObject;
} else {
for (Pdo2 = FdoExtension->ChildPdoList;
((PPDO_EXTENSION) Pdo2->DeviceExtension)->Next != NULL;
Pdo2 = ((PPDO_EXTENSION) Pdo2->DeviceExtension)->Next);
((PPDO_EXTENSION) Pdo2->DeviceExtension)->Next = ChildDeviceObject;
}
//
// Clear the device initializing flag.
//
ChildDeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;
}
//
// Now loop through all the children PDOs making sure that
// the MaxSubordinateBusNumbers are reasonable. This loop
// assumes that the list is sorted by BusNumber.
//
Pdo2 = FdoExtension->ChildPdoList;
while (Pdo2) {
if (!((PPDO_EXTENSION) Pdo2->DeviceExtension)->Next) {
//
// There is no next Pdo extension, which means that
// this bus represents the last root bus, which means
// that we can leave its subordinate bus number at 0xff.
//
break;
}
if (((PPDO_EXTENSION) Pdo2->DeviceExtension)->MaxSubordinateBusNumber >=
((PPDO_EXTENSION) ((PPDO_EXTENSION) Pdo2->DeviceExtension)->Next->DeviceExtension)->BusNumber) {
//
// Set the subordinate bus number at one less than the bus number of the
// next root bus.
//
((PPDO_EXTENSION)Pdo2->DeviceExtension)->MaxSubordinateBusNumber =
((PPDO_EXTENSION) ((PPDO_EXTENSION) Pdo2->DeviceExtension)->Next->DeviceExtension)->BusNumber - 1;
}
Pdo2 = ((PPDO_EXTENSION) Pdo2->DeviceExtension)->Next;
}
FdoExtension->BusCount = BusCount;
if (BusCount == 0) {
Bus = HaliReferenceHandlerForBus(Isa, 0);
if (!Bus) {
Bus = HaliReferenceHandlerForBus(Eisa, 0);
}
if (Bus) {
_snwprintf( Buffer, sizeof( Buffer ), L"\\Device\\Hal Isa %d", 0 );
RtlInitUnicodeString( &Unicode, Buffer );
PdoType = IsaPnpDriver;
} else {
Bus = HaliReferenceHandlerForBus(MicroChannel, 0);
ASSERT(Bus);
_snwprintf( Buffer, sizeof( Buffer ), L"\\Device\\Hal Mca %d", 0 );
RtlInitUnicodeString( &Unicode, Buffer );
PdoType = McaDriver;
}
}
if (Bus) {
//
// Next, create a PDO for the PCI driver.
//
Status = IoCreateDevice(
DriverObject, // our driver object
sizeof(PDO_EXTENSION), // size of our extension
&Unicode, // our name
FILE_DEVICE_BUS_EXTENDER, // device type
0, // device characteristics
FALSE, // not exclusive
&ChildDeviceObject // store new device object here
);
if (!NT_SUCCESS(Status)) {
return Status;
}
//
// Fill in the PDO extension
//
PdoExtension = (PPDO_EXTENSION) ChildDeviceObject->DeviceExtension;
PdoExtension->ExtensionType = PdoExtensionType;
PdoExtension->PhysicalDeviceObject = ChildDeviceObject;
PdoExtension->ParentFdoExtension = FdoExtension;
PdoExtension->BusNumber = 0;
PdoExtension->MaxSubordinateBusNumber = 0;
PdoExtension->Bus = Bus;
PdoExtension->PdoType = PdoType;
//
// Record this as a child of the HAL
//
PdoExtension->Next = FdoExtension->ChildPdoList;
FdoExtension->ChildPdoList = ChildDeviceObject;
FdoExtension->BusCount = 1;
//
// Clear the device initializing flag.
//
ChildDeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;
}
return STATUS_SUCCESS;
}
NTSTATUS
HalpPassIrpFromFdoToPdo(
PDEVICE_OBJECT DeviceObject,
PIRP Irp
)
/*++
Description:
Given an FDO, pass the IRP to the next device object in the
device stack. This is the PDO if there are no lower level
filters.
Arguments:
DeviceObject - the Fdo
Irp - the request
Return Value:
Returns the result from calling the next level.
--*/
{
PIO_STACK_LOCATION irpSp; // our stack location
PIO_STACK_LOCATION nextIrpSp; // next guy's
PFDO_EXTENSION fdoExtension;
HalPrint(("PassIrp ..."));
//
// Get the pointer to the device extension.
//
fdoExtension = (PFDO_EXTENSION)DeviceObject->DeviceExtension;
IoSkipCurrentIrpStackLocation(Irp);
//
// Call the PDO driver with the request.
//
return IoCallDriver(fdoExtension->AttachedDeviceObject ,Irp);
}
NTSTATUS
HalpDispatchPnp(
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
)
/*++
Routine Description:
This routine handles all IRP_MJ_PNP_POWER IRPs for madeup PDO device.
Arguments:
DeviceObject - Pointer to the device object for which this IRP applies.
Irp - Pointer to the IRP_MJ_PNP_POWER IRP to dispatch.
Return Value:
NT status.
--*/
{
PIO_STACK_LOCATION irpSp;
NTSTATUS Status;
ULONG length;
DEVICE_RELATION_TYPE relationType;
EXTENSION_TYPE extensionType;
BOOLEAN passDown;
#if DBG
PUCHAR objectTypeString;
#endif //DBG
PPDO_EXTENSION pdoExtension;
PAGED_CODE();
pdoExtension = (PPDO_EXTENSION)DeviceObject->DeviceExtension;
extensionType = ((PFDO_EXTENSION)pdoExtension)->ExtensionType;
//
// Get a pointer to our stack location and take appropriate action based
// on the minor function.
//
irpSp = IoGetCurrentIrpStackLocation(Irp);
switch (extensionType) {
case PdoExtensionType:
#if DBG
objectTypeString = "PDO";
#endif //DBG
switch (irpSp->MinorFunction) {
case IRP_MN_START_DEVICE:
HalPrint(("(%s) Start_Device Irp received",
objectTypeString));
Status = STATUS_SUCCESS;
//
// If we are starting a PCI PDO, then we want to
// collect a little bit of information from the PCI driver.
//
if (pdoExtension->PdoType == PciDriver) {
Status = HalpGetPciInterfaces(DeviceObject);
ASSERT(NT_SUCCESS(Status));
if (NT_SUCCESS(Status)) {
PciIrqRoutingInterface.InterfaceReference(PciIrqRoutingInterface.Context);
#ifdef WANT_IRQ_ROUTING
//
// Initialize Pci Irq Routing.
//
HalpPciIrqRoutingInfo.PciInterface = &PciIrqRoutingInterface;
if (NT_SUCCESS(HalpInitPciIrqRouting(&HalpPciIrqRoutingInfo)))
{
HalPrint(("Pci Irq Routing initialized successfully!"));
}
else
{
HalPrint(("No Pci Irq routing on this system!"));
}
#endif
} else {
RtlZeroMemory(&PciIrqRoutingInterface, sizeof(INT_ROUTE_INTERFACE_STANDARD));
}
}
break;
case IRP_MN_QUERY_STOP_DEVICE:
HalPrint(("(%s) Query_Stop_Device Irp received",
objectTypeString));
Status = STATUS_SUCCESS;
break;
case IRP_MN_CANCEL_STOP_DEVICE:
HalPrint(("(%s) Cancel_Stop_Device Irp received",
objectTypeString));
Status = STATUS_SUCCESS;
break;
case IRP_MN_STOP_DEVICE:
HalPrint(("(%s) Stop_Device Irp received",
objectTypeString));
//
// If we get a stop device request for a PDO, we simply
// return success.
//
Status = STATUS_SUCCESS;
break;
case IRP_MN_QUERY_RESOURCES:
HalPrint(("(%s) Query_Resources Irp received",
objectTypeString));
Status = HalpQueryResources(DeviceObject,
(PCM_RESOURCE_LIST *)&Irp->IoStatus.Information);
Status = STATUS_SUCCESS;
break;
case IRP_MN_QUERY_RESOURCE_REQUIREMENTS:
HalPrint(("(%s) Query_Resource_Requirements Irp received",
objectTypeString));
Status = HalpQueryResourceRequirements(DeviceObject,
(PIO_RESOURCE_REQUIREMENTS_LIST*)&Irp->IoStatus.Information);
break;
case IRP_MN_QUERY_REMOVE_DEVICE:
HalPrint(("(%s) Query_Remove_device Irp for %x",
objectTypeString,
DeviceObject));
Status = STATUS_UNSUCCESSFUL;
break;
case IRP_MN_CANCEL_REMOVE_DEVICE:
HalPrint(("(%s) Cancel_Remove_device Irp for %x",
objectTypeString,
DeviceObject));
Status = STATUS_SUCCESS;
break;
case IRP_MN_REMOVE_DEVICE:
HalPrint(("(%s) Remove_device Irp for %x",
objectTypeString,
DeviceObject));
if ((((PPDO_EXTENSION)(DeviceObject->DeviceExtension))->PdoType == PciDriver) &&
(PciIrqRoutingInterface.InterfaceReference != NULL)) {
PciIrqRoutingInterface.InterfaceDereference(PciIrqRoutingInterface.Context);
}
Status = STATUS_SUCCESS;
break;
case IRP_MN_QUERY_DEVICE_RELATIONS:
HalPrint(("(%s) Query_Device_Relations Irp received",
objectTypeString));
relationType = irpSp->Parameters.QueryDeviceRelations.Type;
Status = HalpQueryDeviceRelations(DeviceObject,
relationType,
(PDEVICE_RELATIONS*)&Irp->IoStatus.Information);
break;
case IRP_MN_QUERY_DEVICE_TEXT:
HalPrint(("(%s) Query Device Text Irp received",
objectTypeString));
Status = HalpQueryDeviceText(DeviceObject,
irpSp->Parameters.QueryDeviceText.DeviceTextType,
(PWSTR*)&Irp->IoStatus.Information);
break;
case IRP_MN_QUERY_ID:
HalPrint(("(%s) Query_Id Irp received",
objectTypeString));
Status = HalpQueryIdPdo(DeviceObject,
irpSp->Parameters.QueryId.IdType,
(PWSTR*)&Irp->IoStatus.Information);
break;
case IRP_MN_QUERY_INTERFACE:
HalPrint(("(%s) Query_Interface Irp received",
objectTypeString));
Status = HalpQueryInterface(
DeviceObject,
irpSp->Parameters.QueryInterface.InterfaceType,
irpSp->Parameters.QueryInterface.Version,
irpSp->Parameters.QueryInterface.InterfaceSpecificData,
irpSp->Parameters.QueryInterface.Size,
irpSp->Parameters.QueryInterface.Interface,
&Irp->IoStatus.Information
);
break;
case IRP_MN_QUERY_CAPABILITIES:
HalPrint(("(%s) Query_Capabilities Irp received",
objectTypeString));
Status = HalpQueryCapabilities(DeviceObject,
irpSp->Parameters.DeviceCapabilities.Capabilities);
break;
case IRP_MN_DEVICE_USAGE_NOTIFICATION:
HalPrint(("(%s) Device_Usage_Notification Irp received",
objectTypeString));
Status = STATUS_SUCCESS;
break;
default:
HalPrint(("(%s) Unsupported Irp (%d) received",
objectTypeString,
irpSp->MinorFunction));
Status = STATUS_NOT_SUPPORTED ;
break;
}
break; // end PDO cases
case FdoExtensionType:
#if DBG
objectTypeString = "FDO";
#endif //DBG
passDown = TRUE;
switch (irpSp->MinorFunction){
case IRP_MN_QUERY_DEVICE_RELATIONS:
HalPrint(("(%s) Query_Device_Relations Irp received",
objectTypeString));
relationType = irpSp->Parameters.QueryDeviceRelations.Type;
Status = HalpQueryDeviceRelations(DeviceObject,
relationType,
(PDEVICE_RELATIONS*)&Irp->IoStatus.Information);
break;
case IRP_MN_QUERY_ID:
HalPrint(("(%s) Query_Id Irp received",
objectTypeString));
Status = HalpQueryIdFdo(DeviceObject,
irpSp->Parameters.QueryId.IdType,
(PWSTR*)&Irp->IoStatus.Information);
break;
#ifdef WANT_IRQ_ROUTING
case IRP_MN_QUERY_INTERFACE:
HalPrint(("(%s) Query_Interface Irp received",
objectTypeString));
Status = HalpQueryInterfaceFdo(
DeviceObject,
irpSp->Parameters.QueryInterface.InterfaceType,
irpSp->Parameters.QueryInterface.Version,
irpSp->Parameters.QueryInterface.InterfaceSpecificData,
irpSp->Parameters.QueryInterface.Size,
irpSp->Parameters.QueryInterface.Interface,
&Irp->IoStatus.Information
);
break;
#endif
default:
//
// Ignore any PNP Irps unknown by the FDO but allow them
// down to the PDO.
//
Status = STATUS_NOT_SUPPORTED ;
break;
}
if (passDown && (NT_SUCCESS(Status) || (Status == STATUS_NOT_SUPPORTED))) {
//
// Pass FDO IRPs down to the PDO.
//
// Set Irp status first.
//
if (Status != STATUS_NOT_SUPPORTED) {
Irp->IoStatus.Status = Status;
}
HalPrint(("(%s) Passing down Irp (%x)",
objectTypeString, irpSp->MinorFunction));
return HalpPassIrpFromFdoToPdo(DeviceObject, Irp);
}
break; // end FDO cases
default:
HalPrint(("Received IRP for unknown Device Object"));
Status = STATUS_NOT_SUPPORTED;
break;
}
//
// Complete the Irp and return.
//
if (Status != STATUS_NOT_SUPPORTED) {
Irp->IoStatus.Status = Status;
} else {
Status = Irp->IoStatus.Status ;
}
IoCompleteRequest(Irp, IO_NO_INCREMENT);
return Status;
}
NTSTATUS
HalpDispatchPower(
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
)
/*++
Routine Description:
This routine handles all IRP_MJ_POWER IRPs for madeup device.
Arguments:
DeviceObject - Pointer to the device object for which this IRP applies.
Irp - Pointer to the IRP_MJ_POWER IRP to dispatch.
Return Value:
NT status.
--*/
{
NTSTATUS Status;
EXTENSION_TYPE extensionType;
PIO_STACK_LOCATION irpSp;
HalPrint(("Power IRP for DevObj: %x", DeviceObject));
//
// Simply store the appropriate status and complete the request.
//
extensionType = ((PFDO_EXTENSION)(DeviceObject->DeviceExtension))->ExtensionType;
irpSp = IoGetCurrentIrpStackLocation(Irp);
//
// Simply store the appropriate status and complete the request.
//
Status = Irp->IoStatus.Status;
if ((irpSp->MinorFunction == IRP_MN_QUERY_POWER) ||
(irpSp->MinorFunction == IRP_MN_SET_POWER)) {
Irp->IoStatus.Status = Status = STATUS_SUCCESS;
} else if (irpSp->MinorFunction == IRP_MN_WAIT_WAKE) {
//
// Fail this explicitly as we don't know how to wake the system...
//
Irp->IoStatus.Status = Status = STATUS_NOT_SUPPORTED;
}
PoStartNextPowerIrp(Irp);
if (extensionType == PdoExtensionType) {
IoCompleteRequest( Irp, IO_NO_INCREMENT );
} else {
#ifdef APIC_HAL
if (irpSp->MinorFunction == IRP_MN_SET_POWER) {
if (irpSp->Parameters.Power.Type == SystemPowerState) {
switch (irpSp->Parameters.Power.State.SystemState) {
case PowerSystemHibernate:
HalpBuildResumeStructures();
break;
case PowerSystemWorking:
HalpFreeResumeStructures();
break;
default:
break;
}
}
}
#endif
Status = HalpPassIrpFromFdoToPdo(DeviceObject, Irp);
}
return Status;
}
NTSTATUS
HalpDispatchWmi(
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
)
{
NTSTATUS Status;
EXTENSION_TYPE extensionType;
extensionType = ((PFDO_EXTENSION)(DeviceObject->DeviceExtension))->ExtensionType;
if (extensionType == FdoExtensionType) {
Status = HalpPassIrpFromFdoToPdo(DeviceObject, Irp);
} else {
Status = Irp->IoStatus.Status;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
}
return Status;
}
NTSTATUS
HalpQueryDeviceRelations(
IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_RELATION_TYPE RelationType,
OUT PDEVICE_RELATIONS *DeviceRelations
)
/*++
Routine Description:
This routine builds a DEVICE_RELATIONS structure that
tells the PnP manager how many children we have.
Arguments:
DeviceObject - FDO of PCI_HAL
RelationType - we only respond to BusRelations
DeviceRelations - pointer to the structure
Return Value:
status
--*/
{
PFDO_EXTENSION FdoExtension;
PDEVICE_RELATIONS relations = NULL;
ULONG count;
PDEVICE_OBJECT *Pdo;
PDEVICE_OBJECT Pdo2;
EXTENSION_TYPE extensionType;
PAGED_CODE();
FdoExtension = (PFDO_EXTENSION)DeviceObject->DeviceExtension;
extensionType = FdoExtension->ExtensionType;
count = FdoExtension->BusCount;
switch (RelationType) {
case BusRelations:
if ((extensionType == PdoExtensionType)||(count == 0)) {
//
// Don't touch the IRP
//
return STATUS_NOT_SUPPORTED ;
}
if (*DeviceRelations != NULL) {
count += (*DeviceRelations)->Count;
}
relations = ExAllocatePoolWithTag(
PagedPool,
sizeof(DEVICE_RELATIONS) +
(count - 1) * sizeof( PDEVICE_OBJECT),
HAL_POOL_TAG
);
if (relations == NULL) {
HalPrint(("HalpQueryDeviceRelations: couldn't allocate pool"));
return STATUS_INSUFFICIENT_RESOURCES;
}
relations->Count = count;
Pdo = relations->Objects;
count = 0;
if (*DeviceRelations != NULL) {
for ( count = 0; count < (*DeviceRelations)->Count; count++) {
*Pdo = (*DeviceRelations)->Objects[count];
Pdo++;
}
ExFreePool(*DeviceRelations);
}
//
// Add our PDO's to the list.
//
Pdo2 = FdoExtension->ChildPdoList;
while (Pdo2 != NULL) {
*Pdo = Pdo2;
ObReferenceObject(Pdo2);
Pdo2 = ((PPDO_EXTENSION) Pdo2->DeviceExtension)->Next;
Pdo++;
ASSERT( count++ < relations->Count );
}
*DeviceRelations = relations;
return STATUS_SUCCESS;
case TargetDeviceRelation:
if (extensionType == FdoExtensionType) {
//
// Don't touch the IRP
//
return STATUS_NOT_SUPPORTED ;
}
relations = ExAllocatePoolWithTag(
PagedPool,
sizeof(DEVICE_RELATIONS),
HAL_POOL_TAG
);
if (!relations) {
return STATUS_INSUFFICIENT_RESOURCES;
}
relations->Count = 1;
relations->Objects[0] = DeviceObject ;
ObReferenceObject(relations->Objects[0]);
*DeviceRelations = relations;
return STATUS_SUCCESS ;
default:
break;
}
HalPrint(("We don't support this kind of device relation"));
return STATUS_NOT_SUPPORTED ;
}
NTSTATUS
HalpQueryIdPdo(
IN PDEVICE_OBJECT DeviceObject,
IN BUS_QUERY_ID_TYPE IdType,
IN OUT PWSTR *BusQueryId
)
/*++
Routine Description:
This routine identifies each of the children that were
enumerated in HalpQueryDeviceRelations.
Arguments:
DeviceObject - PDO of the child
IdType - the type of ID to be returned.
BusQueryId - pointer to the wide string being returned
Return Value:
status
--*/
{
PPDO_EXTENSION PdoExtension = DeviceObject->DeviceExtension;
PWSTR idString;
PWCHAR sourceString = NULL;
ULONG stringLen;
UNICODE_STRING String;
WCHAR Buffer[16];
NTSTATUS Status;
static WCHAR PciHardwareIdString[] = L"PCI_HAL\\PNP0A03";
static WCHAR PciCompatibleString[] = L"*PNP0A03";
static WCHAR IsaHardwareIdString[] = L"ISA_HAL\\PNP0A00";
static WCHAR IsaCompatibleString[] = L"*PNP0A00";
static WCHAR McaHardwareIdString[] = L"ISA_HAL\\PNP0A02";
static WCHAR McaCompatibleString[] = L"*PNP0A02";
PAGED_CODE();
switch (IdType) {
case BusQueryDeviceID:
case BusQueryHardwareIDs:
if (PdoExtension->PdoType == PciDriver) {
sourceString = PciHardwareIdString;
stringLen = sizeof(PciHardwareIdString);
} else if (PdoExtension->PdoType == IsaPnpDriver) {
sourceString = IsaHardwareIdString;
stringLen = sizeof(IsaHardwareIdString);
} else if (PdoExtension->PdoType == McaDriver) {
sourceString = McaHardwareIdString;
stringLen = sizeof(McaHardwareIdString);
}
break;
case BusQueryCompatibleIDs:
if (PdoExtension->PdoType == PciDriver) {
sourceString = PciCompatibleString;
stringLen = sizeof(PciCompatibleString);
} else if (PdoExtension->PdoType == IsaPnpDriver) {
sourceString = IsaCompatibleString;
stringLen = sizeof(IsaCompatibleString);
} else if (PdoExtension->PdoType == McaDriver) {
sourceString = McaCompatibleString;
stringLen = sizeof(McaCompatibleString);
}
break;
case BusQueryInstanceID:
String.Buffer = Buffer;
String.MaximumLength = 16 * sizeof(WCHAR);
Status = RtlIntegerToUnicodeString( PdoExtension->BusNumber, 10, &String );
//
// Note the string length in this case does not include a NULL.
// the code below will terminate the string with NULL.
//
sourceString = Buffer;
stringLen = String.Length;
break;
}
if (sourceString) {
//
// Note that hardware IDs and compatible IDs must be terminated by
// 2 NULLs.
//
idString = ExAllocatePoolWithTag(PagedPool,
stringLen + sizeof(UNICODE_NULL),
HAL_POOL_TAG);
if (!idString) {
HalPrint(("HalpQueryIdPdo: couldn't allocate pool\n"));
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(idString,
sourceString, stringLen);
*(idString + stringLen / sizeof(WCHAR)) = UNICODE_NULL;
*BusQueryId = idString;
return STATUS_SUCCESS;
} else {
return STATUS_NOT_SUPPORTED;
}
}
NTSTATUS
HalpQueryIdFdo(
IN PDEVICE_OBJECT DeviceObject,
IN BUS_QUERY_ID_TYPE IdType,
IN OUT PWSTR *BusQueryId
)
/*++
Routine Description:
This routine identifies each of the children that were
enumerated in HalpQueryDeviceRelations.
Arguments:
DeviceObject - PDO of the child
IdType - the type of ID to be returned.
BusQueryId - pointer to the wide string being returned
Return Value:
status
--*/
{
PPDO_EXTENSION PdoExtension = DeviceObject->DeviceExtension;
PWSTR idString;
PWCHAR sourceString = NULL;
ULONG stringLen;
UNICODE_STRING String;
WCHAR Buffer[16];
NTSTATUS Status;
PWCHAR widechar;
static WCHAR HalInstanceIdString[] = L"0";
PAGED_CODE();
switch (IdType) {
case BusQueryDeviceID:
case BusQueryHardwareIDs:
//
// For the UP version of the APIC HAL, we want to detect if there is more
// than one processor installed. If so, we want to return the ID of
// the MP HAL rather than the UP HAL. This will induce PNP to reconfigure
// our devnode and setup the MP HAL for the next boot.
//
sourceString = HalHardwareIdString;
#if defined(NT_UP) && defined(APIC_HAL)
if (HalpMpInfoTable.ProcessorCount > 1) {
sourceString = MpHalHardwareIdString;
}
#endif
widechar = sourceString;
while (*widechar != UNICODE_NULL) {
widechar++;
}
stringLen = (PUCHAR)widechar - ((PUCHAR)sourceString) + 2;
break;
case BusQueryInstanceID:
sourceString = HalInstanceIdString;
stringLen = sizeof(HalInstanceIdString);
break;
default:
break;
}
if (sourceString) {
//
// Note that hardware IDs and compatible IDs must be terminated by
// 2 NULLs.
//
idString = ExAllocatePoolWithTag(PagedPool,
stringLen + sizeof(UNICODE_NULL),
HAL_POOL_TAG);
if (!idString) {
HalPrint(("HalpQueryIdFdo: couldn't allocate pool\n"));
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(idString,
sourceString, stringLen);
*(idString + stringLen / sizeof(WCHAR)) = UNICODE_NULL;
*BusQueryId = idString;
return STATUS_SUCCESS;
} else {
return STATUS_NOT_SUPPORTED;
}
}
NTSTATUS
HalpQueryCapabilities(
IN PDEVICE_OBJECT Pdo,
IN PDEVICE_CAPABILITIES Capabilities
)
/*++
Routine Description:
This routine fills in the DEVICE_CAPABILITIES structure for
a device.
Arguments:
DeviceObject - PDO of the child
Capabilities - pointer to the structure to be filled in.
Return Value:
status
--*/
{
PPDO_EXTENSION PdoExtension = (PPDO_EXTENSION) Pdo->DeviceExtension;
PAGED_CODE();
ASSERT_PDO_EXTENSION( PdoExtension );
ASSERT(Capabilities->Version == 1);
if (Capabilities->Version != 1) {
return STATUS_NOT_SUPPORTED;
}
Capabilities->LockSupported = FALSE;
Capabilities->EjectSupported = FALSE;
Capabilities->Removable = FALSE;
Capabilities->DockDevice = FALSE;
Capabilities->UniqueID = TRUE;
Capabilities->SilentInstall = TRUE;
Capabilities->RawDeviceOK = FALSE;
Capabilities->Address = PdoExtension->BusNumber;
Capabilities->UINumber = PdoExtension->BusNumber;
Capabilities->D1Latency = 0;
Capabilities->D2Latency = 0;
Capabilities->D3Latency = 0;
//
// Default S->D mapping
//
Capabilities->DeviceState[PowerSystemWorking] = PowerDeviceD0;
Capabilities->DeviceState[PowerSystemHibernate] = PowerDeviceD3;
Capabilities->DeviceState[PowerSystemShutdown] = PowerDeviceD3;
//
// Make it work on NTAPM --- note that we might have to check to see
// if the machine supports APM before we do this
//
Capabilities->DeviceState[PowerSystemSleeping3] = PowerDeviceD3;
return STATUS_SUCCESS;
}
NTSTATUS
HalpQueryInterface(
IN PDEVICE_OBJECT DeviceObject,
IN LPCGUID InterfaceType,
IN USHORT Version,
IN PVOID InterfaceSpecificData,
IN ULONG InterfaceBufferSize,
IN OUT PINTERFACE Interface,
IN OUT PULONG Length
)
/*++
Routine Description:
This routine fills in the interface structure for
a device.
Arguments:
DeviceObject - PDO of the child
InterfaceType - Pointer to the interface type GUID.
Version - Supplies the requested interface version.
InterfaceSpecificData - This is context that means something based on the
interface.
InterfaceBufferSize - Supplies the length of the buffer for the interface
structure.
Interface - Supplies a pointer where the interface informaiton should
be returned.
Length - This value is updated on return to actual number of bytes modified.
Return Value:
status
--*/
{
PPDO_EXTENSION PdoExtension = (PPDO_EXTENSION)DeviceObject->DeviceExtension;
CM_RESOURCE_TYPE resource = (CM_RESOURCE_TYPE)InterfaceSpecificData;
PAGED_CODE();
ASSERT_PDO_EXTENSION(PdoExtension);
if (IsEqualGUID(&GUID_BUS_INTERFACE_STANDARD, InterfaceType)) {
PBUS_INTERFACE_STANDARD standard = (PBUS_INTERFACE_STANDARD)Interface;
//
// ASSERT we know about all of the fields in the structure.
//
ASSERT(sizeof(BUS_INTERFACE_STANDARD) == FIELD_OFFSET(BUS_INTERFACE_STANDARD, GetBusData) + sizeof(PGET_SET_DEVICE_DATA));
*Length = sizeof(BUS_INTERFACE_STANDARD);
if (InterfaceBufferSize < sizeof(BUS_INTERFACE_STANDARD)) {
return STATUS_BUFFER_TOO_SMALL;
}
//
// The only version this code knows about is 1.
//
standard->Size = sizeof(BUS_INTERFACE_STANDARD);
standard->Version = HAL_BUS_INTERFACE_STD_VERSION;
standard->Context = DeviceObject;
standard->InterfaceReference = HalPnpInterfaceReference;
standard->InterfaceDereference = HalPnpInterfaceDereference;
standard->TranslateBusAddress = HalPnpTranslateBusAddress;
standard->GetDmaAdapter = HalPnpGetDmaAdapter;
standard->SetBusData = NULL;
standard->GetBusData = NULL;
} else if ((IsEqualGUID(&GUID_PCI_BUS_INTERFACE_STANDARD, InterfaceType)) &&
(PdoExtension->PdoType == PciDriver)) {
PPCI_BUS_INTERFACE_STANDARD pciStandard = (PPCI_BUS_INTERFACE_STANDARD)Interface;
*Length = sizeof(PCI_BUS_INTERFACE_STANDARD);
if (InterfaceBufferSize < sizeof(PCI_BUS_INTERFACE_STANDARD)) {
return STATUS_BUFFER_TOO_SMALL;
}
//
// Fill in the interface, which is used for reading and
// writing PCI configuration space.
//
pciStandard->Size = sizeof(PCI_BUS_INTERFACE_STANDARD);
pciStandard->Version = PCI_BUS_INTERFACE_STANDARD_VERSION;
pciStandard->Context = DeviceObject;
pciStandard->InterfaceReference = HalPnpInterfaceReference;
pciStandard->InterfaceDereference = HalPnpInterfaceDereference;
pciStandard->ReadConfig = HaliPciInterfaceReadConfig;
pciStandard->WriteConfig = HaliPciInterfaceWriteConfig;
pciStandard->PinToLine = NULL;
pciStandard->LineToPin = NULL;
#if 0
} else if (IsEqualGUID(&GUID_TRANSLATOR_INTERFACE_STANDARD, InterfaceType)) {
PTRANSLATOR_INTERFACE translator = (PTRANSLATOR_INTERFACE)Interface;
if (InterfaceBufferSize < sizeof(TRANSLATOR_INTERFACE)) {
*Length = sizeof(TRANSLATOR_INTERFACE);
return STATUS_BUFFER_TOO_SMALL;
}
switch ((CM_RESOURCE_TYPE)InterfaceSpecificData) {
case CmResourceTypeInterrupt:
switch(PdoExtension->PdoType) {
case PciDriver:
translator->Context = (PVOID)PCIBus;
break;
case IsaPnpDriver:
translator->Context = (PVOID)Isa;
break;
case McaDriver:
translator->Context = (PVOID)MicroChannel;
break;
default:
//
// Don't know how to handle this.
//
HalPrint(("HAL: PDO %08x unknown Type 0x%x, failing QueryInterface\n",
DeviceObject,
PdoExtension->PdoType
));
return STATUS_NOT_SUPPORTED;
}
translator->Version = HAL_IRQ_TRANSLATOR_VERSION;
translator->TranslateResources = HalIrqTranslateResourcesRoot;
translator->TranslateResourceRequirements =
HalIrqTranslateResourceRequirementsRoot;
break;
// Truth is, halx86 doesn't provide translators for memory or
// io resources either. But if it did, it would look like this.
case CmResourceTypeMemory:
case CmResourceTypePort:
translator->Context = DeviceObject;
translator->Version = HAL_MEMIO_TRANSLATOR_VERSION;
translator->TranslateResources = HalpTransMemIoResource;
translator->TranslateResourceRequirements =
HalpTransMemIoResourceRequirement;
break;
default:
return STATUS_NOT_SUPPORTED;
}
//
// Common initialization
//
translator->Size = sizeof(TRANSLATOR_INTERFACE);
translator->InterfaceReference = HalPnpInterfaceReference;
translator->InterfaceDereference = HalPnpInterfaceDereference;
*Length = sizeof(TRANSLATOR_INTERFACE);
#endif
#ifdef WANT_IRQ_ROUTING
} else if ( IsPciIrqRoutingEnabled() &&
IsEqualGUID(&GUID_TRANSLATOR_INTERFACE_STANDARD, InterfaceType) &&
resource == CmResourceTypeInterrupt &&
PdoExtension->PdoType == PciDriver) {
//
// We want to arbitrate on untranslated resources, so we get rid of Irq
// translator provided by Pci iff Irq Routing is enabled.
//
HalPrint(("Getting rid of Pci Irq translator interface since Pci Irq Routing is enabled!"));
RtlZeroMemory((LPGUID)InterfaceType, sizeof(GUID));
return STATUS_NOT_SUPPORTED;
#endif
} else {
//
// Unsupport bus interface type.
//
return STATUS_NOT_SUPPORTED ;
}
//
// Bump the reference count.
//
InterlockedIncrement(&PdoExtension->InterfaceReferenceCount);
return STATUS_SUCCESS;
}
#ifdef WANT_IRQ_ROUTING
NTSTATUS
HalpQueryInterfaceFdo(
IN PDEVICE_OBJECT DeviceObject,
IN LPCGUID InterfaceType,
IN USHORT Version,
IN PVOID InterfaceSpecificData,
IN ULONG InterfaceBufferSize,
IN OUT PINTERFACE Interface,
IN OUT PULONG Length
)
/*++
Routine Description:
This routine fills in the interface structure for
a device.
Arguments:
DeviceObject - FDO of the child
InterfaceType - Pointer to the interface type GUID.
Version - Supplies the requested interface version.
InterfaceSpecificData - This is context that means something based on the
interface.
InterfaceBufferSize - Supplies the length of the buffer for the interface
structure.
Interface - Supplies a pointer where the interface informaiton should
be returned.
Length - Supplies the length of the buffer for the interface structure.
This value is updated on return to actual number of bytes modified.
Return Value:
status
--*/
{
NTSTATUS status = STATUS_NOT_SUPPORTED;
CM_RESOURCE_TYPE resource = (CM_RESOURCE_TYPE)InterfaceSpecificData;
PAGED_CODE();
if ( resource == CmResourceTypeInterrupt &&
IsPciIrqRoutingEnabled()) {
if (IsEqualGUID(&GUID_ARBITER_INTERFACE_STANDARD, InterfaceType)) {
status = HalpInitIrqArbiter(DeviceObject);
if (NT_SUCCESS(status))
{
status = HalpFillInIrqArbiter(
DeviceObject,
InterfaceType,
Version,
InterfaceSpecificData,
InterfaceBufferSize,
Interface,
Length
);
}
}
else if (IsEqualGUID(&GUID_TRANSLATOR_INTERFACE_STANDARD, InterfaceType)) {
PTRANSLATOR_INTERFACE translator;
*Length = sizeof(TRANSLATOR_INTERFACE);
if (InterfaceBufferSize < sizeof(TRANSLATOR_INTERFACE)) {
return STATUS_BUFFER_TOO_SMALL;
}
translator = (PTRANSLATOR_INTERFACE)Interface;
//
// Fill in the common bits.
//
RtlZeroMemory(translator, sizeof (TRANSLATOR_INTERFACE));
translator->Size = sizeof(TRANSLATOR_INTERFACE);
translator->Version = HAL_IRQ_TRANSLATOR_VERSION;
translator->Context = DeviceObject;
translator->InterfaceReference = HalTranslatorReference;
translator->InterfaceDereference = HalTranslatorDereference;
//
// Set IRQ translator for PCI interrupts.
//
translator->TranslateResources = HalIrqTranslateResourcesRoot;
translator->TranslateResourceRequirements =
HalIrqTranslateResourceRequirementsRoot;
status = STATUS_SUCCESS;
HalPrint(("Providing Irq translator for FDO %08x since Pci Irq Routing is enabled!", DeviceObject));
}
}
return (status);
}
#endif
NTSTATUS
HalpQueryDeviceText(
IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_TEXT_TYPE IdType,
IN OUT PWSTR *BusQueryId
)
/*++
Routine Description:
This routine identifies each of the children that were
enumerated in HalpQueryDeviceRelations.
Arguments:
DeviceObject - PDO of the child
IdType - the type of ID to be returned.
BusQueryId - pointer to the wide string being returned
Return Value:
status
--*/
{
PPDO_EXTENSION PdoExtension = DeviceObject->DeviceExtension;
PWSTR idString;
PWCHAR sourceString = NULL;
ULONG stringLen;
NTSTATUS Status;
static WCHAR PciDeviceNameText[] = L"Pci Root Bus";
static WCHAR IsaDeviceNameText[] = L"Isa Root Bus";
static WCHAR McaDeviceNameText[] = L"Mca Root Bus";
PAGED_CODE();
if (PdoExtension->PdoType == PciDriver) {
sourceString = PciDeviceNameText;
stringLen = sizeof(PciDeviceNameText);
} else if (PdoExtension->PdoType == IsaPnpDriver) {
sourceString = IsaDeviceNameText;
stringLen = sizeof(IsaDeviceNameText);
} else if (PdoExtension->PdoType == McaDriver) {
sourceString = McaDeviceNameText;
stringLen = sizeof(McaDeviceNameText);
}
if (sourceString) {
switch (IdType) {
case DeviceTextDescription:
case DeviceTextLocationInformation:
idString = ExAllocatePoolWithTag(PagedPool,
stringLen,
HAL_POOL_TAG);
if (!idString) {
HalPrint(("HalpQueryDeviceText: couldn't allocate pool\n"));
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(idString,
sourceString, stringLen);
*BusQueryId = idString;
return STATUS_SUCCESS;
}
}
return STATUS_NOT_SUPPORTED;
}
NTSTATUS
HalpQueryResources(
IN PDEVICE_OBJECT DeviceObject,
IN PCM_RESOURCE_LIST *Resources
)
/*++
Routine Description:
This routine handles IRP_MN_QUERY_RESOURCE_REQUIREMENTS.
Arguments:
DeviceObject - PDO of the child
Resources - pointer to be filled in with the devices
resource list.
Return Value:
status
--*/
{
PPDO_EXTENSION PdoExtension = DeviceObject->DeviceExtension;
PCM_RESOURCE_LIST ResourceList;
PCM_PARTIAL_RESOURCE_DESCRIPTOR Descriptor;
PSUPPORTED_RANGE Range;
ULONG ResourceListSize;
ULONG Count = 1;
if (PdoExtension->PdoType != PciDriver) {
*Resources = NULL;
return STATUS_SUCCESS;
}
//
// Determine the number of resourse list needed. Already counted
// one for the Bus Number.
//
for (Range = &PdoExtension->Bus->BusAddresses->IO; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Count++;
}
for (Range = &PdoExtension->Bus->BusAddresses->Memory; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Count++;
}
for (Range = &PdoExtension->Bus->BusAddresses->PrefetchMemory; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Count++;
}
//
// Convert this resourceListSize into the number of bytes that we
// must allocate
//
ResourceListSize = sizeof(CM_RESOURCE_LIST) +
( (Count - 1) * sizeof(CM_PARTIAL_RESOURCE_DESCRIPTOR) );
ResourceList = ExAllocatePoolWithTag(
PagedPool,
ResourceListSize,
HAL_POOL_TAG);
if (ResourceList == NULL ) {
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory( ResourceList, ResourceListSize );
//
// Initialize the list header.
//
ResourceList->Count = 1;
ResourceList->List[0].InterfaceType = PNPBus;
ResourceList->List[0].BusNumber = -1;
ResourceList->List[0].PartialResourceList.Version = 1;
ResourceList->List[0].PartialResourceList.Revision = 1;
ResourceList->List[0].PartialResourceList.Count = Count;
Descriptor = ResourceList->List[0].PartialResourceList.PartialDescriptors;
//
// Create descriptor for the Bus Number.
//
Descriptor->Type = CmResourceTypeBusNumber;
Descriptor->ShareDisposition = CmResourceShareShared;
Descriptor->u.BusNumber.Start = PdoExtension->BusNumber;
Descriptor->u.BusNumber.Length = PdoExtension->MaxSubordinateBusNumber -
PdoExtension->BusNumber + 1;
Descriptor++;
for (Range = &PdoExtension->Bus->BusAddresses->IO; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Descriptor->Type = CmResourceTypePort;
Descriptor->ShareDisposition = CmResourceShareShared;
Descriptor->Flags = CM_RESOURCE_PORT_IO;
Descriptor->u.Port.Length = (ULONG)(Range->Limit - Range->Base) + 1;
Descriptor->u.Port.Start.QuadPart = Range->Base;
Descriptor++;
}
for (Range = &PdoExtension->Bus->BusAddresses->Memory; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Descriptor->Type = CmResourceTypeMemory;
Descriptor->ShareDisposition = CmResourceShareShared;
Descriptor->Flags = CM_RESOURCE_MEMORY_READ_WRITE;
Descriptor->u.Memory.Length = (ULONG)(Range->Limit - Range->Base) + 1;
Descriptor->u.Memory.Start.QuadPart = Range->Base;
Descriptor++;
}
for (Range = &PdoExtension->Bus->BusAddresses->PrefetchMemory; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Descriptor->Type = CmResourceTypeMemory;
Descriptor->ShareDisposition = CmResourceShareShared;
Descriptor->Flags = CM_RESOURCE_MEMORY_READ_WRITE | CM_RESOURCE_MEMORY_PREFETCHABLE;
Descriptor->u.Memory.Length = (ULONG)(Range->Limit - Range->Base) + 1;
Descriptor->u.Memory.Start.QuadPart = Range->Base;
Descriptor++;
}
*Resources = ResourceList;
return STATUS_SUCCESS;
}
NTSTATUS
HalpQueryResourceRequirements(
IN PDEVICE_OBJECT DeviceObject,
IN PIO_RESOURCE_REQUIREMENTS_LIST *Requirements
)
/*++
Routine Description:
This routine handles IRP_MN_QUERY_RESOURCE_REQUIREMENTS.
Arguments:
DeviceObject - PDO of the child
Requirements - pointer to be filled in with the devices
resource requirements.
Return Value:
status
--*/
{
PPDO_EXTENSION PdoExtension = DeviceObject->DeviceExtension;
PIO_RESOURCE_REQUIREMENTS_LIST ResourceList;
PIO_RESOURCE_DESCRIPTOR Descriptor;
PSUPPORTED_RANGE Range;
ULONG ResourceListSize;
ULONG Count = 0;
if (PdoExtension->PdoType != PciDriver) {
*Requirements = NULL;
return STATUS_SUCCESS;
}
//
// Determine the number of resourse list needed.
//
for (Range = &PdoExtension->Bus->BusAddresses->IO; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Count++;
}
for (Range = &PdoExtension->Bus->BusAddresses->Memory; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Count++;
}
for (Range = &PdoExtension->Bus->BusAddresses->PrefetchMemory; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Count++;
}
//
// Convert this resourceListSize into the number of bytes that we
// must allocate
//
ResourceListSize = sizeof(IO_RESOURCE_REQUIREMENTS_LIST) +
( (Count - 1) * sizeof(IO_RESOURCE_DESCRIPTOR) );
ResourceList = ExAllocatePoolWithTag(
PagedPool,
ResourceListSize,
HAL_POOL_TAG);
if (ResourceList == NULL ) {
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory( ResourceList, ResourceListSize );
ResourceList->ListSize = ResourceListSize;
//
// Initialize the list header.
//
ResourceList->AlternativeLists = 1;
ResourceList->InterfaceType = PNPBus;
ResourceList->BusNumber = -1;
ResourceList->List[0].Version = 1;
ResourceList->List[0].Revision = 1;
ResourceList->List[0].Count = Count;
Descriptor = ResourceList->List[0].Descriptors;
for (Range = &PdoExtension->Bus->BusAddresses->IO; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Descriptor->Type = CmResourceTypePort;
Descriptor->ShareDisposition = CmResourceShareShared;
Descriptor->Flags = CM_RESOURCE_PORT_IO;
Descriptor->u.Port.Length = (ULONG) (Range->Limit - Range->Base + 1);
Descriptor->u.Port.Alignment = 0x01;
Descriptor->u.Port.MinimumAddress.QuadPart = Range->Base;
Descriptor->u.Port.MaximumAddress.QuadPart = Range->Limit;
Descriptor++;
}
for (Range = &PdoExtension->Bus->BusAddresses->Memory; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Descriptor->Type = CmResourceTypeMemory;
Descriptor->ShareDisposition = CmResourceShareShared;
Descriptor->Flags = CM_RESOURCE_MEMORY_READ_WRITE;
Descriptor->u.Memory.Length = (ULONG) (Range->Limit - Range->Base + 1);
Descriptor->u.Memory.Alignment = 0x01;
Descriptor->u.Memory.MinimumAddress.QuadPart = Range->Base;
Descriptor->u.Memory.MaximumAddress.QuadPart = Range->Limit;
Descriptor++;
}
for (Range = &PdoExtension->Bus->BusAddresses->PrefetchMemory; Range != NULL; Range = Range->Next) {
//
// If the limit is zero then skip this entry.
//
if (Range->Limit == 0) {
continue;
}
Descriptor->Type = CmResourceTypeMemory;
Descriptor->ShareDisposition = CmResourceShareShared;
Descriptor->Flags = CM_RESOURCE_MEMORY_READ_WRITE | CM_RESOURCE_MEMORY_PREFETCHABLE;
Descriptor->u.Memory.Length = (ULONG) (Range->Limit - Range->Base + 1);
Descriptor->u.Memory.Alignment = 0x01;
Descriptor->u.Memory.MinimumAddress.QuadPart = Range->Base;
Descriptor->u.Memory.MaximumAddress.QuadPart = Range->Limit;
Descriptor++;
}
*Requirements = ResourceList;
return STATUS_SUCCESS;
}
NTSTATUS
HalpRemoveAssignedResources (
PBUS_HANDLER Bus
)
/*
Routine Description:
Reads the rgzResourceMap in the registry and builds a canonical list of
all in use resources ranges by resource type.
Arguments:
*/
{
HANDLE ClassKeyHandle, DriverKeyHandle;
HANDLE ResourceMap;
ULONG ClassKeyIndex, DriverKeyIndex, DriverValueIndex;
PCM_RESOURCE_LIST CmResList;
PCM_FULL_RESOURCE_DESCRIPTOR CmFResDesc;
PCM_PARTIAL_RESOURCE_DESCRIPTOR CmDesc;
UNICODE_STRING KeyName;
ULONG BufferSize;
union {
PVOID Buffer;
PKEY_BASIC_INFORMATION KeyBInf;
PKEY_FULL_INFORMATION KeyFInf;
PKEY_VALUE_FULL_INFORMATION VKeyFInf;
} U;
PUCHAR LastAddr;
ULONG Temp, Length, i, j;
ULONG TranslatedStrLen;
ULONG BusTranslatedStrLen;
NTSTATUS Status;
LONGLONG li;
PAGED_CODE();
//
// Removed page zero.
//
HalpRemoveRange( &Bus->BusAddresses->Memory,
0i64,
(LONGLONG) (PAGE_SIZE - 1)
);
//
// Start out with one page of buffer.
//
BufferSize = PAGE_SIZE;
U.Buffer = ExAllocatePoolWithTag(
PagedPool,
BufferSize,
HAL_POOL_TAG);
if (U.Buffer == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
for (TranslatedStrLen=0; rgzTranslated[TranslatedStrLen]; TranslatedStrLen++) ;
for (BusTranslatedStrLen=0; rgzBusTranslated[BusTranslatedStrLen]; BusTranslatedStrLen++) ;
TranslatedStrLen *= sizeof (WCHAR);
BusTranslatedStrLen *= sizeof (WCHAR);
RtlInitUnicodeString( &KeyName, rgzResourceMap );
Status = HalpOpenRegistryKey( &ResourceMap, NULL, &KeyName, KEY_READ, FALSE );
if (!NT_SUCCESS( Status )) {
HalPrint(("HalRemoveSystemResourcesFromPci: Failed to open resource map key Status = %lx\n", Status ));
ExFreePool( U.Buffer );
return Status;
}
//
// Walk resource map and collect any inuse resources
//
ClassKeyIndex = 0;
ClassKeyHandle = INVALID_HANDLE;
DriverKeyHandle = INVALID_HANDLE;
Status = STATUS_SUCCESS;
while (NT_SUCCESS(Status)) {
//
// Get the class information
//
Status = ZwEnumerateKey( ResourceMap,
ClassKeyIndex++,
KeyBasicInformation,
U.KeyBInf,
BufferSize,
&Temp );
if (!NT_SUCCESS( Status )) {
break;
}
//
// Create a UNICODE_STRING using the counted string passed back to
// us in the information structure, and open the class key.
//
KeyName.Buffer = (PWSTR) U.KeyBInf->Name;
KeyName.Length = (USHORT) U.KeyBInf->NameLength;
KeyName.MaximumLength = (USHORT) U.KeyBInf->NameLength;
Status = HalpOpenRegistryKey( &ClassKeyHandle,
ResourceMap,
&KeyName,
KEY_READ,
FALSE );
if (!NT_SUCCESS( Status )) {
break;
}
DriverKeyIndex = 0;
while (NT_SUCCESS (Status)) {
//
// Get the class information
//
Status = ZwEnumerateKey( ClassKeyHandle,
DriverKeyIndex++,
KeyBasicInformation,
U.KeyBInf,
BufferSize,
&Temp );
if (!NT_SUCCESS( Status )) {
break;
}
//
// Create a UNICODE_STRING using the counted string passed back to
// us in the information structure, and open the class key.
//
// This is read from the key we created, and the name
// was NULL terminated.
//
KeyName.Buffer = (PWSTR) U.KeyBInf->Name;
KeyName.Length = (USHORT) U.KeyBInf->NameLength;
KeyName.MaximumLength = (USHORT) U.KeyBInf->NameLength;
Status = HalpOpenRegistryKey( &DriverKeyHandle,
ClassKeyHandle,
&KeyName,
KEY_READ,
FALSE);
if (!NT_SUCCESS( Status )) {
break;
}
//
// Get full information for that key so we can get the
// information about the data stored in the key.
//
Status = ZwQueryKey( DriverKeyHandle,
KeyFullInformation,
U.KeyFInf,
BufferSize,
&Temp );
if (!NT_SUCCESS( Status )) {
break;
}
Length = sizeof( KEY_VALUE_FULL_INFORMATION ) +
U.KeyFInf->MaxValueNameLen + U.KeyFInf->MaxValueDataLen + sizeof(UNICODE_NULL);
if (Length > BufferSize) {
PVOID TempBuffer;
//
// Get a larger buffer
//
TempBuffer = ExAllocatePoolWithTag(
PagedPool,
Length,
HAL_POOL_TAG);
if (TempBuffer == NULL) {
Status = STATUS_INSUFFICIENT_RESOURCES;
break;
}
ExFreePool (U.Buffer);
U.Buffer = TempBuffer;
BufferSize = Length;
}
DriverValueIndex = 0;
for (; ;) {
Status = ZwEnumerateValueKey( DriverKeyHandle,
DriverValueIndex++,
KeyValueFullInformation,
U.VKeyFInf,
BufferSize,
&Temp );
if (!NT_SUCCESS( Status )) {
break;
}
//
// If this is not a translated resource list, skip it.
//
i = U.VKeyFInf->NameLength;
if (i < TranslatedStrLen ||
RtlCompareMemory (
((PUCHAR) U.VKeyFInf->Name) + i - TranslatedStrLen,
rgzTranslated,
TranslatedStrLen
) != TranslatedStrLen
) {
// does not end in rgzTranslated
continue;
}
//
// If this is a bus translated resource list, ????
//
if (i >= BusTranslatedStrLen &&
RtlCompareMemory (
((PUCHAR) U.VKeyFInf->Name) + i - BusTranslatedStrLen,
rgzBusTranslated,
BusTranslatedStrLen
) == BusTranslatedStrLen
) {
// ends in rgzBusTranslated
continue;
}
//
// Run the CmResourceList and save each InUse resource
//
CmResList = (PCM_RESOURCE_LIST) ( (PUCHAR) U.VKeyFInf + U.VKeyFInf->DataOffset);
LastAddr = (PUCHAR) CmResList + U.VKeyFInf->DataLength;
CmFResDesc = &CmResList->List[0];
for (i=0; i < CmResList->Count && NT_SUCCESS(Status) ; i++) {
for (j=0; j < CmFResDesc->PartialResourceList.Count && NT_SUCCESS(Status); j++) {
CmDesc = &CmFResDesc->PartialResourceList.PartialDescriptors[j];
if ((PUCHAR) (CmDesc+1) > LastAddr) {
if (i) {
HalPrint(("IopAssignResourcesPhase2: a. CmResourceList in regitry too short\n"));
}
break;
}
if ((PUCHAR) (CmDesc+1) > LastAddr) {
i = CmResList->Count;
HalPrint(("IopAssignResourcesPhase2: b. CmResourceList in regitry too short\n"));
break;
}
switch (CmDesc->Type) {
case CmResourceTypePort:
HalpRemoveRange( &Bus->BusAddresses->IO,
CmDesc->u.Generic.Start.QuadPart,
CmDesc->u.Generic.Start.QuadPart +
CmDesc->u.Generic.Length - 1
);
break;
case CmResourceTypeMemory:
//
// The HAL's notion of prefetchable may not be
// consistent. So just remove any memory resource
// from both the prefetchable and non-prefetchable
// lists.
//
HalpRemoveRange( &Bus->BusAddresses->PrefetchMemory,
CmDesc->u.Generic.Start.QuadPart,
CmDesc->u.Generic.Start.QuadPart +
CmDesc->u.Generic.Length - 1
);
HalpRemoveRange( &Bus->BusAddresses->Memory,
CmDesc->u.Generic.Start.QuadPart,
CmDesc->u.Generic.Start.QuadPart +
CmDesc->u.Generic.Length - 1
);
break;
default:
break;
}
}
//
// Start at the end of the last CmDesc
// since the PCM_PARTIAL_RESOURCE_DESCRIPTOR array
// is variable size we can't just use the index.
//
(PCM_PARTIAL_RESOURCE_DESCRIPTOR) CmFResDesc = CmDesc+1;
}
} // next DriverValueIndex
if (DriverKeyHandle != INVALID_HANDLE) {
ZwClose (DriverKeyHandle);
DriverKeyHandle = INVALID_HANDLE;
}
if (Status == STATUS_NO_MORE_ENTRIES) {
Status = STATUS_SUCCESS;
}
if (!NT_SUCCESS(Status)) {
break;
}
} // next DriverKeyIndex
if (ClassKeyHandle != INVALID_HANDLE) {
ZwClose (ClassKeyHandle);
ClassKeyHandle = INVALID_HANDLE;
}
if (Status == STATUS_NO_MORE_ENTRIES) {
Status = STATUS_SUCCESS;
}
} // next ClassKeyIndex
if (Status == STATUS_NO_MORE_ENTRIES) {
Status = STATUS_SUCCESS;
}
ZwClose( ResourceMap );
ExFreePool (U.Buffer);
HalpConsolidateRanges (Bus->BusAddresses);
return Status;
}
VOID
HalpMarkNonAcpiHal(
VOID
)
/*++
Routine Description:
Arguments:
None.
Return Value:
None.
--*/
{
ULONG tmpValue;
UNICODE_STRING unicodeString;
HANDLE hCurrentControlSet, handle;
NTSTATUS status;
PAGED_CODE();
//
// Open/create System\CurrentControlSet key.
//
RtlInitUnicodeString(&unicodeString, L"\\REGISTRY\\MACHINE\\SYSTEM\\CURRENTCONTROLSET");
status = HalpOpenRegistryKey (
&hCurrentControlSet,
NULL,
&unicodeString,
KEY_ALL_ACCESS,
FALSE
);
if (!NT_SUCCESS(status)) {
return;
}
//
// Open HKLM\System\CurrentControlSet\Control\Pnp
//
RtlInitUnicodeString(&unicodeString, L"Control\\Pnp");
status = HalpOpenRegistryKey (
&handle,
hCurrentControlSet,
&unicodeString,
KEY_ALL_ACCESS,
TRUE
);
ZwClose(hCurrentControlSet);
if (!NT_SUCCESS(status)) {
return;
}
RtlInitUnicodeString(&unicodeString, L"DisableFirmwareMapper");
tmpValue = 0;
ZwSetValueKey(handle,
&unicodeString,
0,
REG_DWORD,
&tmpValue,
sizeof(tmpValue)
);
ZwClose(handle);
}
VOID
HalpMarkChipsetDecode(
BOOLEAN FullDecodeChipset
)
/*++
Routine Description:
Arguments:
FullDecodeChipset - TRUE if NTOSKRNL should consider all fixed I/O
descriptors for PNPBIOS devices as 16bit. FALSE if
they should be taken at their word.
Return Value:
None.
--*/
{
ULONG tmpValue;
UNICODE_STRING unicodeString;
HANDLE hCurrentControlSet, handle;
NTSTATUS status;
PAGED_CODE();
//
// Open/create System\CurrentControlSet key.
//
RtlInitUnicodeString(&unicodeString, L"\\REGISTRY\\MACHINE\\SYSTEM\\CURRENTCONTROLSET");
status = HalpOpenRegistryKey (
&hCurrentControlSet,
NULL,
&unicodeString,
KEY_ALL_ACCESS,
FALSE
);
if (!NT_SUCCESS(status)) {
return;
}
//
// Open HKLM\System\CurrentControlSet\Control\Biosinfo\PNPBios
//
RtlInitUnicodeString(&unicodeString, L"Control\\Biosinfo\\PNPBios");
status = HalpOpenRegistryKey (
&handle,
hCurrentControlSet,
&unicodeString,
KEY_ALL_ACCESS,
TRUE
);
ZwClose(hCurrentControlSet);
if (!NT_SUCCESS(status)) {
return;
}
RtlInitUnicodeString(&unicodeString, L"FullDecodeChipsetOverride");
tmpValue = (ULONG) FullDecodeChipset;
ZwSetValueKey(handle,
&unicodeString,
0,
REG_DWORD,
&tmpValue,
sizeof(tmpValue)
);
ZwClose(handle);
}
NTSTATUS
HalpOpenRegistryKey(
OUT PHANDLE Handle,
IN HANDLE BaseHandle OPTIONAL,
IN PUNICODE_STRING KeyName,
IN ACCESS_MASK DesiredAccess,
IN BOOLEAN Create
)
/*++
Routine Description:
Opens or creates a VOLATILE registry key using the name passed in based
at the BaseHandle node.
Arguments:
Handle - Pointer to the handle which will contain the registry key that
was opened.
BaseHandle - Handle to the base path from which the key must be opened.
KeyName - Name of the Key that must be opened/created.
DesiredAccess - Specifies the desired access that the caller needs to
the key.
Create - Determines if the key is to be created if it does not exist.
Return Value:
The function value is the final status of the operation.
--*/
{
OBJECT_ATTRIBUTES objectAttributes;
ULONG disposition;
PAGED_CODE();
//
// Initialize the object for the key.
//
InitializeObjectAttributes( &objectAttributes,
KeyName,
OBJ_CASE_INSENSITIVE,
BaseHandle,
(PSECURITY_DESCRIPTOR) NULL );
//
// Create the key or open it, as appropriate based on the caller's
// wishes.
//
if (Create) {
return ZwCreateKey( Handle,
DesiredAccess,
&objectAttributes,
0,
(PUNICODE_STRING) NULL,
REG_OPTION_VOLATILE,
&disposition );
} else {
return ZwOpenKey( Handle,
DesiredAccess,
&objectAttributes );
}
}
VOID
HalPnpInterfaceReference(
PVOID Context
)
/*++
Routine Description:
This function increments the reference count on the interface context.
Arguments:
Context - Supplies a pointer to the interface context. This is actually
the PDO for the root bus.
Return Value:
None
--*/
{
PPDO_EXTENSION PdoExtension = ((PDEVICE_OBJECT) Context)->DeviceExtension;
PAGED_CODE();
ASSERT_PDO_EXTENSION( PdoExtension );
InterlockedIncrement( &PdoExtension->InterfaceReferenceCount );
}
VOID
HalPnpInterfaceDereference(
PVOID Context
)
/*++
Routine Description:
This function decrements the reference count on the interface context.
Arguments:
Context - Supplies a pointer to the interface context. This is actually
the PDO for the root bus.
Return Value:
None
--*/
{
PPDO_EXTENSION PdoExtension = ((PDEVICE_OBJECT) Context)->DeviceExtension;
LONG Result;
PAGED_CODE();
ASSERT_PDO_EXTENSION( PdoExtension );
Result = InterlockedDecrement( &PdoExtension->InterfaceReferenceCount );
ASSERT( Result >= 0 );
}
BOOLEAN
HalPnpTranslateBusAddress(
IN PVOID Context,
IN PHYSICAL_ADDRESS BusAddress,
IN ULONG Length,
IN OUT PULONG AddressSpace,
OUT PPHYSICAL_ADDRESS TranslatedAddress
)
/*++
Routine Description:
This function is used to translate bus addresses from legacy drivers.
Arguments:
Context - Supplies a pointer to the interface context. This is actually
the PDO for the root bus.
BusAddress - Supplies the orginal address to be translated.
Length - Supplies the length of the range to be translated.
AddressSpace - Points to the location of of the address space type such as
memory or I/O port. This value is updated by the translation.
TranslatedAddress - Returns the translated address.
Return Value:
Returns a boolean indicating if the operations was a success.
--*/
{
PPDO_EXTENSION PdoExtension = ((PDEVICE_OBJECT) Context)->DeviceExtension;
PBUS_HANDLER Bus;
PAGED_CODE();
ASSERT_PDO_EXTENSION( PdoExtension );
Bus = PdoExtension->Bus;
return Bus->TranslateBusAddress( Bus,
Bus,
BusAddress,
AddressSpace,
TranslatedAddress );
}
ULONG
HalPnpReadConfig(
IN PVOID Context,
IN ULONG Slot,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
)
/*++
Routine Description:
This function reads the PCI configuration space.
Arguments:
Context - Supplies a pointer to the interface context. This is actually
the PDO for the root bus.
Slot - Indicates the slot to be read or writen.
Buffer - Supplies a pointer to where the data should be placed.
Offset - Indicates the offset into the data where the reading should begin.
Length - Indicates the count of bytes which should be read.
Return Value:
Returns the number of bytes read.
--*/
{
PPDO_EXTENSION PdoExtension = ((PDEVICE_OBJECT) Context)->DeviceExtension;
PBUS_HANDLER Bus;
PAGED_CODE();
ASSERT_PDO_EXTENSION( PdoExtension );
Bus = PdoExtension->Bus;
return Bus->GetBusData( Bus, Bus, Slot, Buffer, Offset, Length );
}
ULONG
HalPnpWriteConfig(
IN PVOID Context,
IN ULONG Slot,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
)
/*++
Routine Description:
This function writes the PCI configuration space.
Arguments:
Context - Supplies a pointer to the interface context. This is actually
the PDO for the root bus.
Slot - Indicates the slot to be read or writen.
Buffer - Supplies a pointer to where the data to be written is.
Offset - Indicates the offset into the data where the writing should begin.
Length - Indicates the count of bytes which should be written.
Return Value:
Returns the number of bytes read.
--*/
{
PPDO_EXTENSION PdoExtension = ((PDEVICE_OBJECT) Context)->DeviceExtension;
PBUS_HANDLER Bus;
PAGED_CODE();
ASSERT_PDO_EXTENSION( PdoExtension );
Bus = PdoExtension->Bus;
return Bus->SetBusData( Bus, Bus, Slot, Buffer, Offset, Length );
}
PDMA_ADAPTER
HalPnpGetDmaAdapter(
IN PVOID Context,
IN struct _DEVICE_DESCRIPTION *DeviceDescriptor,
OUT PULONG NumberOfMapRegisters
)
/*++
Routine Description:
This function writes the PCI configuration space.
Arguments:
Context - Supplies a pointer to the interface context. This is actually
the PDO for the root bus.
DeviceDescriptor - Supplies the device descriptor used to allocate the dma
adapter object.
NubmerOfMapRegisters - Returns the maximum number of map registers a device
can allocate at one time.
Return Value:
Returns a DMA adapter or NULL.
--*/
{
PPDO_EXTENSION PdoExtension = ((PDEVICE_OBJECT) Context)->DeviceExtension;
PBUS_HANDLER Bus;
PAGED_CODE();
ASSERT_PDO_EXTENSION( PdoExtension );
Bus = PdoExtension->Bus;
//
// Fill in the bus number.
//
DeviceDescriptor->BusNumber = Bus->BusNumber;
return (PDMA_ADAPTER) HalGetAdapter( DeviceDescriptor, NumberOfMapRegisters );
}
NTSTATUS
HalpGetPciInterfaces(
IN PDEVICE_OBJECT PciPdo
)
/*++
Routine Description:
This function queries the PCI driver for interfaces used in interrupt
translation and arbitration.
Arguments:
PciPdo - PDO of a PCI bus
Return Value:
--*/
{
NTSTATUS status;
PDEVICE_OBJECT topDeviceInStack;
KEVENT irpCompleted;
PIRP irp;
IO_STATUS_BLOCK statusBlock;
PIO_STACK_LOCATION irpStack;
PAGED_CODE();
KeInitializeEvent(&irpCompleted, SynchronizationEvent, FALSE);
//
// Send an IRP to the PCI driver to get the Interrupt Routing Interface.
//
topDeviceInStack = IoGetAttachedDeviceReference(PciPdo);
irp = IoBuildSynchronousFsdRequest(IRP_MJ_PNP,
topDeviceInStack,
NULL, // Buffer
0, // Length
0, // StartingOffset
&irpCompleted,
&statusBlock);
if (!irp) {
return STATUS_UNSUCCESSFUL;
}
irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
irp->IoStatus.Information = 0;
irpStack = IoGetNextIrpStackLocation(irp);
//
// Set the function codes and parameters.
//
irpStack->MinorFunction = IRP_MN_QUERY_INTERFACE;
irpStack->Parameters.QueryInterface.InterfaceType = &GUID_INT_ROUTE_INTERFACE_STANDARD;
irpStack->Parameters.QueryInterface.Size = sizeof(INT_ROUTE_INTERFACE_STANDARD);
irpStack->Parameters.QueryInterface.Version = 1;
irpStack->Parameters.QueryInterface.Interface = (PINTERFACE) &PciIrqRoutingInterface;
irpStack->Parameters.QueryInterface.InterfaceSpecificData = NULL;
//
// Call the driver and wait for completion
//
status = IoCallDriver(topDeviceInStack, irp);
if (status == STATUS_PENDING) {
KeWaitForSingleObject(&irpCompleted, Executive, KernelMode, FALSE, NULL);
status = statusBlock.Status;
}
return status;
}