windows-nt/Source/XPSP1/NT/base/win32/fusion/utils/fusionsha1.cpp
2020-09-26 16:20:57 +08:00

412 lines
11 KiB
C++

#include "stdinc.h"
#include "debmacro.h"
#include "fusionsha1.h"
/*
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain
Test Vectors (from FIPS PUB 180-1)
"abc"
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
A million repetitions of "a"
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
#define LITTLE_ENDIAN
#define SHA1HANDSOFF
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#ifdef LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
/* Hash a single 512-bit block. This is the core of the algorithm. */
BOOL
CSha1Context::Transform(const unsigned char *buffer)
{
FN_PROLOG_WIN32
DWORD a, b, c, d, e;
typedef union {
unsigned char c[64];
DWORD l[16];
} CHAR64LONG16;
CHAR64LONG16* block = reinterpret_cast<CHAR64LONG16*>(m_workspace);
memcpy(block, buffer, 64);
/* Copy context->state[] to working vars */
a = this->state[0];
b = this->state[1];
c = this->state[2];
d = this->state[3];
e = this->state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
this->state[0] += a;
this->state[1] += b;
this->state[2] += c;
this->state[3] += d;
this->state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
FN_EPILOG
}
/* A_SHAInit - Initialize new context */
BOOL
CSha1Context::Initialize()
{
FN_PROLOG_WIN32
/* A_SHA initialization constants */
this->state[0] = 0x67452301;
this->state[1] = 0xEFCDAB89;
this->state[2] = 0x98BADCFE;
this->state[3] = 0x10325476;
this->state[4] = 0xC3D2E1F0;
this->count[0] = this->count[1] = 0;
FN_EPILOG
}
/* Run your data through this. */
BOOL
CSha1Context::Update(const unsigned char* data, SIZE_T len)
{
FN_PROLOG_WIN32
SIZE_T i, j;
j = (this->count[0] >> 3) & 63;
if ((this->count[0] += len << 3) < (len << 3)) this->count[1]++;
this->count[1] += (len >> 29);
if ((j + len) > 63) {
memcpy(&this->buffer[j], data, (i = 64-j));
this->Transform(this->buffer);
for ( ; i + 63 < len; i += 64) {
this->Transform(&data[i]);
}
j = 0;
}
else i = 0;
memcpy(&this->buffer[j], &data[i], len - i);
FN_EPILOG
}
/* Add padding and return the message digest. */
BOOL
CSha1Context::GetDigest(
unsigned char *digest,
SIZE_T *len
)
{
FN_PROLOG_WIN32
SIZE_T i, j;
unsigned char finalcount[8];
if ( !digest || (len && (*len < A_SHA_DIGEST_LEN)) || !len)
{
if (len != NULL)
*len = A_SHA_DIGEST_LEN;
// don't originate like normal to reduce noise level
::FusionpSetLastWin32Error(ERROR_INSUFFICIENT_BUFFER);
goto Exit;
}
*len = A_SHA_DIGEST_LEN;
for (i = 0; i < 8; i++) {
finalcount[i] = (unsigned char)((this->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
this->Update((unsigned char *)"\200", 1);
while ((this->count[0] & 504) != 448) {
this->Update((unsigned char *)"\0", 1);
}
this->Update(finalcount, 8); /* Should cause a A_SHATransform() */
for (i = 0; i < 20; i++) {
digest[i] = (unsigned char)
((this->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
/* Wipe variables */
i = j = 0;
memset(this->buffer, 0, sizeof(this->buffer));
memset(this->state, 0, sizeof(this->state));
memset(this->count, 0, sizeof(this->count));
memset(&finalcount, 0, sizeof(finalcount));
#ifdef SHA1HANDSOFF /* make SHA1Transform overwrite it's own static vars */
this->Transform(this->buffer);
#endif
FN_EPILOG
}
BOOL
CFusionHash::GetIsValid()
{
//
// Not initialized at all
//
if (!m_fInitialized)
return FALSE;
//
// Validity is known if the alg is SHA1 and the crypt handle is NULL, or if the
// alg is not SHA1 and the crypt handle is non-null.
//
if (((m_aid == CALG_SHA1) && (this->m_hCryptHash == INVALID_CRYPT_HASH)) ||
((m_aid != CALG_SHA1) && (this->m_hCryptHash != INVALID_CRYPT_HASH)))
return TRUE;
else
return FALSE;
}
BOOL
CFusionHash::Win32Initialize(
ALG_ID aid
)
{
FN_PROLOG_WIN32
if ( aid == CALG_SHA1 )
{
IFW32FALSE_EXIT(this->m_Sha1Context.Initialize());
}
else
{
HCRYPTPROV hProvider;
IFW32FALSE_EXIT(::SxspAcquireGlobalCryptContext(&hProvider));
IFW32FALSE_ORIGINATE_AND_EXIT(::CryptCreateHash(hProvider, aid, NULL, 0, &this->m_hCryptHash));
}
this->m_aid = aid;
this->m_fInitialized = TRUE;
FN_EPILOG
}
BOOL
CFusionHash::Win32HashData(
const BYTE *pbBuffer,
SIZE_T cbBuffer
)
{
FN_PROLOG_WIN32
INTERNAL_ERROR_CHECK(this->GetIsValid());
if (m_hCryptHash != INVALID_CRYPT_HANDLE)
{
while (cbBuffer > MAXDWORD)
{
IFW32FALSE_ORIGINATE_AND_EXIT(::CryptHashData(this->m_hCryptHash, pbBuffer, MAXDWORD, 0));
cbBuffer -= MAXDWORD;
}
IFW32FALSE_ORIGINATE_AND_EXIT(::CryptHashData(this->m_hCryptHash, pbBuffer, static_cast<DWORD>(cbBuffer), 0));
}
else
{
IFW32FALSE_EXIT(this->m_Sha1Context.Update(pbBuffer, cbBuffer));
}
FN_EPILOG
}
BOOL
CFusionHash::Win32GetValue(
OUT CFusionArray<BYTE> &out
)
{
FN_PROLOG_WIN32
INTERNAL_ERROR_CHECK(this->GetIsValid());
for (;;)
{
SIZE_T len = out.GetSize();
BOOL fMoreData;
PBYTE pbData = out.GetArrayPtr();
if ( m_hCryptHash == INVALID_CRYPT_HANDLE )
{
IFW32FALSE_EXIT_UNLESS(
this->m_Sha1Context.GetDigest(pbData, &len),
FusionpGetLastWin32Error() == ERROR_INSUFFICIENT_BUFFER,
fMoreData);
}
else
{
DWORD dwNeedSize;
DWORD dwValueSize;
IFW32FALSE_ORIGINATE_AND_EXIT(
::CryptGetHashParam(
this->m_hCryptHash,
HP_HASHSIZE,
(PBYTE)&dwNeedSize,
&(dwValueSize = sizeof(dwNeedSize)),
0));
if ( dwNeedSize > len )
{
fMoreData = TRUE;
len = dwNeedSize;
}
else
{
fMoreData = FALSE;
IFW32FALSE_ORIGINATE_AND_EXIT(
::CryptGetHashParam(
this->m_hCryptHash,
HP_HASHVAL,
pbData,
&(dwValueSize = out.GetSizeAsDWORD()),
0));
}
}
if ( fMoreData )
IFW32FALSE_EXIT(out.Win32SetSize(len, CFusionArray<BYTE>::eSetSizeModeExact));
else
break;
}
FN_EPILOG
}
HCRYPTPROV g_hGlobalCryptoProvider = INVALID_CRYPT_HANDLE;
BOOL
SxspAcquireGlobalCryptContext(
HCRYPTPROV *pContext
)
{
BOOL fSuccess = FALSE;
FN_TRACE_WIN32(fSuccess);
HCRYPTPROV hNewProvider = INVALID_CRYPT_HANDLE;
if (pContext != NULL)
*pContext = INVALID_CRYPT_HANDLE;
PARAMETER_CHECK(pContext != NULL);
//
// Pointer reads are atomic.
//
hNewProvider = g_hGlobalCryptoProvider;
if (hNewProvider != INVALID_CRYPT_HANDLE)
{
*pContext = hNewProvider;
FN_SUCCESSFUL_EXIT();
}
//
// Acquire the crypto context that's only for verification purposes.
//
IFW32FALSE_ORIGINATE_AND_EXIT(
::CryptAcquireContextW(
&hNewProvider,
NULL,
NULL,
PROV_RSA_FULL,
CRYPT_SILENT | CRYPT_VERIFYCONTEXT));
if (::InterlockedCompareExchangePointer(
(PVOID*)&g_hGlobalCryptoProvider,
(PVOID)hNewProvider,
(PVOID)INVALID_CRYPT_HANDLE
) != (PVOID)INVALID_CRYPT_HANDLE)
{
//
// We lost the race.
//
::CryptReleaseContext(hNewProvider, 0);
hNewProvider = g_hGlobalCryptoProvider;
}
*pContext = hNewProvider;
FN_EPILOG
}
BOOL
SxspReleaseGlobalCryptContext()
{
BOOL fSuccess = FALSE;
HCRYPTPROV hProvider;
HCRYPTPROV* pghProvider = &g_hGlobalCryptoProvider;
FN_TRACE_WIN32(fSuccess);
//
// Swap out the global context with the invalid value, readying our context to be
// nuked.
//
hProvider = (HCRYPTPROV)(InterlockedExchangePointer((PVOID*)pghProvider, (PVOID)INVALID_CRYPT_HANDLE));
if (hProvider != INVALID_CRYPT_HANDLE)
{
IFW32FALSE_ORIGINATE_AND_EXIT(::CryptReleaseContext(hProvider, 0));
}
fSuccess = TRUE;
Exit:
return fSuccess;
}