windows-nt/Source/XPSP1/NT/drivers/ddk/wdmaudio/ddksynth/plclock.cpp
2020-09-26 16:20:57 +08:00

168 lines
5.8 KiB
C++

// Copyright (c) 1996-2000 Microsoft Corporation. All rights reserved.
/* CPhaseLockClock
*/
#include "common.h"
#define STR_MODULENAME "DDKSynth.sys:PLClock: "
#include "plclock.h"
#define MILS_TO_REF 10000
#pragma code_seg()
/*****************************************************************************
* CPhaseLockClock::CPhaseLockClock()
*****************************************************************************
* Constructor for the CPhaseLockClock object.
*/
CPhaseLockClock::CPhaseLockClock()
{
m_rfOffset = 0;
}
/*****************************************************************************
* CPhaseLockClock::Start()
*****************************************************************************
* Start this clock. When the clock starts, it needs to mark down the
* difference between the time it is given and its concept of time.
*/
void CPhaseLockClock::Start(REFERENCE_TIME rfMasterTime, REFERENCE_TIME rfSlaveTime)
{
m_rfOffset = rfMasterTime - rfSlaveTime;
}
/*****************************************************************************
* CPhaseLockClock::GetSlaveTime()
*****************************************************************************
* Convert the passed time to use the same base as the master clock.
*/
void CPhaseLockClock::GetSlaveTime(REFERENCE_TIME rfSlaveTime, REFERENCE_TIME *prfTime)
{
rfSlaveTime += m_rfOffset;
*prfTime = rfSlaveTime;
}
/*****************************************************************************
* CPhaseLockClock::SetSlaveTime()
*****************************************************************************
* Reset the relationship between the two clocks.
*/
void CPhaseLockClock::SetSlaveTime(REFERENCE_TIME rfSlaveTime, REFERENCE_TIME *prfTime)
{
rfSlaveTime -= m_rfOffset;
*prfTime = rfSlaveTime;
}
/*****************************************************************************
* CPhaseLockClock::SyncToMaster()
*****************************************************************************
* SyncToTime provides the needed magic to keep the clock
* in sync. Since the clock uses its own clock (rfSlaveTime)
* to increment, it can drift. This call provides a reference
* time which the clock compares with its internal
* concept of time. The difference between the two is
* considered the drift. Since the sync time may increment in
* a lurching way, the correction has to be subtle.
* So, the difference between the two is divided by
* 100 and added to the offset.
*/
void CPhaseLockClock::SyncToMaster(REFERENCE_TIME rfSlaveTime, REFERENCE_TIME rfMasterTime)
{
rfSlaveTime += m_rfOffset;
rfSlaveTime -= rfMasterTime; // Find difference between calculated and expected time.
rfSlaveTime /= 100; // Reduce in magnitude.
m_rfOffset -= rfSlaveTime; // Subtract that from the original offset.
}
/*****************************************************************************
* CSampleClock::CSampleClock()
*****************************************************************************
* Constructor for CSampleClock object.
*/
CSampleClock::CSampleClock()
{
m_llStart = 0;
m_dwSampleRate = 22050;
}
/*****************************************************************************
* CSampleClock::Start()
*****************************************************************************
* Start the sample clock. Start any corresponding phase lock clock.
*/
void CSampleClock::Start(IReferenceClock *pIClock, DWORD dwSampleRate, LONGLONG llSampleTime)
{
REFERENCE_TIME rfStart;
m_llStart = llSampleTime;
m_dwSampleRate = dwSampleRate;
if (pIClock)
{
pIClock->GetTime(&rfStart);
m_PLClock.Start(rfStart,0);
}
llSampleTime *= (MILS_TO_REF * 1000);
llSampleTime /= m_dwSampleRate;
m_rfStart = llSampleTime;
}
/*****************************************************************************
* CSampleClock::SampleToRefTime()
*****************************************************************************
* Convert between sample time and reference time (100ns units).
*/
void CSampleClock::SampleToRefTime(LONGLONG llSampleTime,REFERENCE_TIME *prfTime)
{
llSampleTime -= m_llStart;
llSampleTime *= (MILS_TO_REF * 1000);
llSampleTime /= m_dwSampleRate;
m_PLClock.GetSlaveTime(llSampleTime, prfTime);
}
/*****************************************************************************
* CSampleClock::RefTimeToSample()
*****************************************************************************
* Convert between sample time and reference time (100ns units).
*/
LONGLONG CSampleClock::RefTimeToSample(REFERENCE_TIME rfTime)
{
m_PLClock.SetSlaveTime(rfTime, &rfTime);
rfTime *= m_dwSampleRate;
rfTime /= (MILS_TO_REF * 1000);
return rfTime + m_llStart;
}
/*****************************************************************************
* CSampleClock::SyncToMaster()
*****************************************************************************
* Sync this clock to the given sample time and the given reference clock.
*/
void CSampleClock::SyncToMaster(LONGLONG llSampleTime, IReferenceClock *pIClock)
{
llSampleTime -= m_llStart;
llSampleTime *= (MILS_TO_REF * 1000);
llSampleTime /= m_dwSampleRate;
if (pIClock)
{
REFERENCE_TIME rfMasterTime;
pIClock->GetTime(&rfMasterTime);
m_PLClock.SyncToMaster(llSampleTime, rfMasterTime);
}
}
/*****************************************************************************
* CSampleClock::SyncToMaster()
*****************************************************************************
* Sync the two given reference times, using our phase lock clock.
*/
void CSampleClock::SyncToMaster(REFERENCE_TIME rfSlaveTime, REFERENCE_TIME rfMasterTime)
{
rfSlaveTime -= m_rfStart;
m_PLClock.SyncToMaster(rfSlaveTime, rfMasterTime);
}