windows-nt/Source/XPSP1/NT/drivers/storage/mpath/dsm/gendsm.c
2020-09-26 16:20:57 +08:00

2808 lines
67 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (C) 2000 Microsoft Corporation
Module Name:
dsm.c
Abstract:
This driver is the generic DSM for FC disks and exports behaviours that
mpctl.sys will use to determine how to multipath these devices.
Author:
Environment:
kernel mode only
Notes:
Revision History:
--*/
#include <ntddk.h>
#include <stdio.h>
#include <stdarg.h>
#include "dsm.h"
#include "gendsm.h"
#include "wmi.h"
#define USE_BINARY_MOF_QUERY
//
// MOF data can be reported by a device driver via a resource attached to
// the device drivers image file or in response to a query on the binary
// mof data guid. As the mpio pdo handles these requests partially for the DSM
// it is easier to handle via a Query-response.
//
#ifdef ALLOC_DATA_PRAGMA
#pragma data_seg("PAGED")
#endif
UCHAR DsmBinaryMofData[] =
{
#include "dsm.x"
};
#ifdef ALLOC_DATA_PRAGMA
#pragma data_seg()
#endif
//
// Define symbolic names for the guid indexes
//
#define GENDSM_CONFIGINFOGuidIndex 0
#define BinaryMofGuidIndex 1
//
// List of guids supported
//
GUID GENDSM_CONFIGINFOGUID = GENDSM_CONFIGINFOGuid;
GUID DsmBinaryMofGUID = BINARY_MOF_GUID;
WMIGUIDREGINFO DsmGuidList[] =
{
{
&GENDSM_CONFIGINFOGUID,
1,
0
},
{
&DsmBinaryMofGUID,
1,
0
}
};
#define DsmGuidCount (sizeof(DsmGuidList) / sizeof(WMIGUIDREGINFO))
NTSTATUS
DsmGetDeviceList(
IN PDSM_CONTEXT Context
);
NTSTATUS
DriverEntry(
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
)
/*++
Routine Description:
This routine is called when the driver loads loads.
Arguments:
DriverObject - Supplies the driver object.
RegistryPath - Supplies the registry path.
Return Value:
NTSTATUS
--*/
{
DSM_INIT_DATA initData;
WCHAR dosDeviceName[40];
UNICODE_STRING mpUnicodeName;
PDEVICE_OBJECT deviceObject;
PFILE_OBJECT fileObject;
NTSTATUS status;
PDSM_CONTEXT dsmContext;
PDSM_MPIO_CONTEXT mpctlContext;
PVOID buffer;
//
// Build the init data structure.
//
dsmContext = ExAllocatePool(NonPagedPool, sizeof(DSM_CONTEXT));
if (dsmContext == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(dsmContext, sizeof(DSM_CONTEXT));
buffer = &initData;
//
// Set-up the init data
//
initData.DsmContext = (PVOID)dsmContext;
initData.InitDataSize = sizeof(DSM_INIT_DATA);
initData.DsmInquireDriver = DsmInquire;
initData.DsmCompareDevices = DsmCompareDevices;
initData.DsmSetDeviceInfo = DsmSetDeviceInfo;
initData.DsmGetControllerInfo = DsmGetControllerInfo;
initData.DsmIsPathActive = DsmIsPathActive;
initData.DsmPathVerify = DsmPathVerify;
initData.DsmInvalidatePath = DsmInvalidatePath;
initData.DsmMoveDevice = DsmMoveDevice;
initData.DsmRemovePending = DsmRemovePending;
initData.DsmRemoveDevice = DsmRemoveDevice;
initData.DsmRemovePath = DsmRemovePath;
initData.DsmReenablePath = DsmBringPathOnLine;
initData.DsmCategorizeRequest = DsmCategorizeRequest;
initData.DsmBroadcastSrb = DsmBroadcastRequest;
initData.DsmSrbDeviceControl = DsmSrbDeviceControl;
initData.DsmSetCompletion = DsmSetCompletion;
initData.DsmLBGetPath = DsmLBGetPath;
initData.DsmInterpretError = DsmInterpretError;
initData.DsmUnload = DsmUnload;
//
// Set-up the WMI Info.
//
DsmWmiInitialize(&initData.DsmWmiInfo);
//
// Set the DriverObject. Used by MPIO for Unloading.
//
initData.DriverObject = DriverObject;
RtlInitUnicodeString(&initData.DisplayName, L"Generic Device-Specific Module");
//
// Initialize the context objects.
//
KeInitializeSpinLock(&dsmContext->SpinLock);
InitializeListHead(&dsmContext->GroupList);
InitializeListHead(&dsmContext->DeviceList);
InitializeListHead(&dsmContext->FailGroupList);
ExInitializeNPagedLookasideList(&dsmContext->ContextList,
NULL,
NULL,
0,
sizeof(COMPLETION_CONTEXT),
'MSDG',
0);
//
// Build the mpctl name.
//
swprintf(dosDeviceName, L"\\DosDevices\\MPathControl");
RtlInitUnicodeString(&mpUnicodeName, dosDeviceName);
//
// Get mpctl's deviceObject.
//
status = IoGetDeviceObjectPointer(&mpUnicodeName,
FILE_READ_ATTRIBUTES,
&fileObject,
&deviceObject);
if (NT_SUCCESS(status)) {
KEVENT event;
PIRP irp;
IO_STATUS_BLOCK ioStatus;
//
// Send the IOCTL to mpctl.sys to register ourselves.
//
DsmSendDeviceIoControlSynchronous(IOCTL_MPDSM_REGISTER,
deviceObject,
&initData,
&initData,
sizeof(DSM_INIT_DATA),
sizeof(DSM_MPIO_CONTEXT),
TRUE,
&ioStatus);
status = ioStatus.Status;
ObDereferenceObject(fileObject);
}
if (status == STATUS_SUCCESS) {
//
// Grab the context value passed back by mpctl.
//
mpctlContext = buffer;
dsmContext->MPIOContext = mpctlContext->MPIOContext;
//
// Query the registry to find out what devices are being supported
// on this machine.
//
DsmGetDeviceList(dsmContext);
} else {
//
// Need to LOG this.
//
}
return status;
}
PUCHAR
DsmGetSerialNumber(
IN PDEVICE_OBJECT DeviceObject
)
{
IO_STATUS_BLOCK ioStatus;
PSCSI_PASS_THROUGH passThrough;
PVPD_SERIAL_NUMBER_PAGE serialPage;
ULONG length;
PCDB cdb;
PUCHAR serialNumber;
ULONG serialNumberOffset;
//
// Build an inquiry command with EVPD and pagecode of 0x80 (serial number).
//
length = sizeof(SCSI_PASS_THROUGH) + SENSE_BUFFER_SIZE + 0xFF;
passThrough = ExAllocatePool(NonPagedPool, length);
if (passThrough == NULL) {
return NULL;
}
RtlZeroMemory(passThrough, length);
//
// build the cdb.
//
cdb = (PCDB)passThrough->Cdb;
cdb->CDB6INQUIRY3.OperationCode = SCSIOP_INQUIRY;
cdb->CDB6INQUIRY3.EnableVitalProductData = 1;
cdb->CDB6INQUIRY3.PageCode = VPD_SERIAL_NUMBER;
cdb->CDB6INQUIRY3.AllocationLength = 255;
passThrough->Length = sizeof(SCSI_PASS_THROUGH);
passThrough->CdbLength = 6;
passThrough->SenseInfoLength = SENSE_BUFFER_SIZE;
passThrough->DataIn = 1;
passThrough->DataTransferLength = 0xFF;
passThrough->TimeOutValue = 20;
passThrough->SenseInfoOffset = sizeof(SCSI_PASS_THROUGH);
passThrough->DataBufferOffset = sizeof(SCSI_PASS_THROUGH) + 18;
DsmSendDeviceIoControlSynchronous(IOCTL_SCSI_PASS_THROUGH,
DeviceObject,
passThrough,
passThrough,
length,
length,
FALSE,
&ioStatus);
if ((passThrough->ScsiStatus) || (ioStatus.Status != STATUS_SUCCESS)) {
DebugPrint((0,
"DsmGetSerialNumber: Status (%x) ScsiStatus (%x)\n",
ioStatus.Status,
passThrough->ScsiStatus));
ExFreePool(passThrough);
return NULL;
} else {
ULONG i;
DebugPrint((0,
"GetDeviceDescriptor: Got the serial number page\n"));
//
// Get the returned data.
//
(ULONG_PTR)serialPage = (ULONG_PTR)passThrough;
(ULONG_PTR)serialPage += passThrough->DataBufferOffset;
//
// Allocate a buffer to hold just the serial number.
//
serialNumber = ExAllocatePool(NonPagedPool, serialPage->PageLength + 1);
RtlZeroMemory(serialNumber, serialPage->PageLength + 1);
//
// Copy it over.
//
RtlCopyMemory(serialNumber,
serialPage->SerialNumber,
serialPage->PageLength);
//
// Convert 0x00 to spaces.
//
for (i = 0; i < serialPage->PageLength; i++) {
if (serialNumber[i] == '\0') {
serialNumber[i] = ' ';
}
}
//
// Free the passthrough + data buffer.
//
ExFreePool(passThrough);
//
// Return the sn.
//
return serialNumber;
}
}
NTSTATUS
DsmQueryCallBack(
IN PWSTR ValueName,
IN ULONG Type,
IN PVOID Data,
IN ULONG Length,
IN PVOID Context,
IN PVOID EntryContext
)
{
PVOID *value = EntryContext;
if (Type == REG_MULTI_SZ) {
*value = ExAllocatePool(PagedPool, Length);
if (*value) {
RtlMoveMemory(*value, Data, Length);
return STATUS_SUCCESS;
}
}
return STATUS_UNSUCCESSFUL;
}
NTSTATUS
DsmGetDeviceList(
IN PDSM_CONTEXT Context
)
{
RTL_QUERY_REGISTRY_TABLE queryTable[2];
WCHAR registryKeyName[56];
UNICODE_STRING inquiryStrings;
WCHAR defaultIDs[] = { L"\0" };
NTSTATUS status;
RtlZeroMemory(registryKeyName, 56);
RtlZeroMemory(&queryTable, sizeof(queryTable));
RtlInitUnicodeString(&inquiryStrings, NULL);
swprintf(registryKeyName, L"gendsm\\parameters");
//
// The query table has two entries. One for the supporteddeviceList and
// the second which is the 'NULL' terminator.
//
queryTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT | RTL_QUERY_REGISTRY_NOEXPAND;
queryTable[0].Name = L"SupportedDeviceList";
queryTable[0].EntryContext = &Context->SupportedDevices;
queryTable[0].DefaultType = REG_MULTI_SZ;
queryTable[0].DefaultData = defaultIDs;
queryTable[0].DefaultLength = sizeof(defaultIDs);
status = RtlQueryRegistryValues(RTL_REGISTRY_SERVICES,
registryKeyName,
queryTable,
NULL,
NULL);
return status;
}
BOOLEAN
DsmFindSupportedDevice(
IN PUNICODE_STRING DeviceName,
IN PUNICODE_STRING SupportedDevices
)
{
PWSTR devices = SupportedDevices->Buffer;
UNICODE_STRING unicodeString;
LONG compare;
while (devices[0]) {
//
// Make the current entry into a unicode string.
//
RtlInitUnicodeString(&unicodeString, devices);
//
// Compare this one with the current device.
//
compare = RtlCompareUnicodeString(&unicodeString, DeviceName, TRUE);
if (compare == 0) {
return TRUE;
}
//
// Advance to next entry in the MULTI_SZ.
//
devices += (unicodeString.MaximumLength / sizeof(WCHAR));
}
return FALSE;
}
BOOLEAN
DsmDeviceSupported(
IN PDSM_CONTEXT Context,
IN PUCHAR VendorId,
IN PUCHAR ProductId
)
{
UNICODE_STRING deviceName;
UNICODE_STRING productName;
ANSI_STRING ansiVendor;
ANSI_STRING ansiProduct;
NTSTATUS status;
BOOLEAN supported = FALSE;
if (Context->SupportedDevices.MaximumLength == 0) {
return FALSE;
}
//
// Convert the inquiry fields into ansi strings.
//
RtlInitAnsiString(&ansiVendor, VendorId);
RtlInitAnsiString(&ansiProduct, ProductId);
//
// Allocate the deviceName buffer. Needs to be 8+16 plus NULL.
// (productId length + vendorId length + NULL).
//
deviceName.MaximumLength = 25 * sizeof(WCHAR);
deviceName.Buffer = ExAllocatePool(PagedPool, deviceName.MaximumLength);
//
// Convert the vendorId to unicode.
//
RtlAnsiStringToUnicodeString(&deviceName, &ansiVendor, FALSE);
//
// Convert the productId to unicode.
//
RtlAnsiStringToUnicodeString(&productName, &ansiProduct, TRUE);
//
// 'cat' them.
//
status = RtlAppendUnicodeStringToString(&deviceName, &productName);
if (status == STATUS_SUCCESS) {
//
// Run the list of supported devices that was captured from the registry
// and see if this one is in the list.
//
supported = DsmFindSupportedDevice(&deviceName,
&Context->SupportedDevices);
}
return supported;
}
NTSTATUS
DsmInquire (
IN PVOID DsmContext,
IN PDEVICE_OBJECT TargetDevice,
IN PDEVICE_OBJECT PortObject,
IN PSTORAGE_DEVICE_DESCRIPTOR Descriptor,
IN PSTORAGE_DEVICE_ID_DESCRIPTOR DeviceIdList,
OUT PVOID *DsmIdentifier
)
{
PDSM_CONTEXT dsmContext = DsmContext;
PDEVICE_INFO deviceInfo;
PGROUP_ENTRY group;
NTSTATUS status;
ULONG deviceState;
ULONG allocationLength;
PDSM_IDS controllerObjects;
PUCHAR vendorId = "SEAGATE ";
PUCHAR productId = "ST39102FC";
PUCHAR vendorIndex;
PUCHAR productIndex;
PUCHAR serialNumber;
BOOLEAN supported;
vendorIndex = (PUCHAR)Descriptor;
productIndex = (PUCHAR)Descriptor;
(ULONG_PTR)vendorIndex += Descriptor->VendorIdOffset;
(ULONG_PTR)productIndex += Descriptor->ProductIdOffset;
supported = DsmDeviceSupported((PDSM_CONTEXT)DsmContext,
vendorIndex,
productIndex);
if (supported == FALSE) {
return STATUS_NOT_SUPPORTED;
}
#if 0
//
// Determine if the device is supported.
//
if ((!RtlEqualMemory(vendorId, vendorIndex, 8)) ||
(!RtlEqualMemory(productId, productIndex, 9))) {
return STATUS_NOT_SUPPORTED;
}
#endif
//
// Ensure that the device's serial number is present. If not, can't claim
// support for this drive.
//
if ((Descriptor->SerialNumberOffset == (ULONG)-1) ||
(Descriptor->SerialNumberOffset == 0)) {
PUCHAR index;
//
// The port driver currently doesn't get the VPD page 0x80, if the
// device doesn't support GET_SUPPORTED_PAGES. Check to see whether
// there actually is a serial number.
//
serialNumber = DsmGetSerialNumber(TargetDevice);
if (serialNumber == NULL) {
return STATUS_NOT_SUPPORTED;
}
DebugPrint((0,"SerialNumber: "));
index = serialNumber;
while (*index) {
DebugPrint((0,"%02x", *index));
index++;
}
DebugPrint((0,"\n"));
} else {
//
// Get a pointer to the embedded serial number info.
//
serialNumber = (PUCHAR)Descriptor;
(ULONG_PTR)serialNumber += Descriptor->SerialNumberOffset;
}
//
// Allocate the descriptor. This is also used as DsmId.
//
allocationLength = sizeof(DEVICE_INFO);
allocationLength += Descriptor->Size - sizeof(STORAGE_DEVICE_DESCRIPTOR);
deviceInfo = ExAllocatePool(NonPagedPool, allocationLength);
if (deviceInfo == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(deviceInfo, allocationLength);
//
// Copy over the StorageDescriptor.
//
RtlCopyMemory(&deviceInfo->Descriptor,
Descriptor,
Descriptor->Size);
//
// As an example - if the storage enclosure contains controller-type devices (or others)
// they can be found via this routine.
//
controllerObjects = DsmGetAssociatedDevice(dsmContext->MPIOContext,
PortObject,
0x0C);
if (controllerObjects) {
//
// Currently not used by this driver, so just free the memory.
//
ExFreePool(controllerObjects);
}
//
// Set the serial number.
//
deviceInfo->SerialNumber = serialNumber;
//
// Save the PortPdo Object.
//
deviceInfo->PortPdo = TargetDevice;
//
// Set the signature.
//
deviceInfo->DeviceSig = DSM_DEVICE_SIG;
//
// See if there is an existing Muli-path group to which this belongs.
// (same serial number).
//
group = DsmFindDevice(DsmContext,
deviceInfo);
if (group == NULL) {
//
// Build a multi-path group entry.
//
group = DsmBuildGroupEntry(DsmContext,
deviceInfo);
if (group == NULL) {
ExFreePool(deviceInfo);
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// This is the first in the group, so make it the active
// device. The actual active/passive devices will be set-up
// later when the first call to LBGetPath is made.
//
deviceState = DEV_ACTIVE;
} else {
//
// Already something active, this will be the fail-over
// device until the load-balance groups are set-up.
//
deviceState = DEV_PASSIVE;
}
//
// Add it to the list.
//
status = DsmAddDeviceEntry(DsmContext,
group,
deviceInfo,
deviceState);
*DsmIdentifier = deviceInfo;
return status;
}
BOOLEAN
DsmCompareDevices(
IN PVOID DsmContext,
IN PVOID DsmId1,
IN PVOID DsmId2
)
{
PDEVICE_INFO deviceInfo = DsmId1;
PDEVICE_INFO comparedDevice = DsmId2;
ULONG length;
PUCHAR serialNumber;
PUCHAR comparedSerialNumber;
//
// Get the two serial numbers.
// They were either embedded in the STORAGE_DEVICE_DESCRIPTOR or built
// by directly issuing the VPD request.
//
serialNumber = deviceInfo->SerialNumber;
comparedSerialNumber = comparedDevice->SerialNumber;
//
// Get the length of the base-device Serial Number.
//
length = strlen(serialNumber);
//
// If the lengths match, compare the contents.
//
if (length == strlen(comparedSerialNumber)) {
if (RtlEqualMemory(serialNumber,
comparedSerialNumber,
length)) {
return TRUE;
}
}
return FALSE;
}
VOID
DsmSetupAlternatePath(
IN PDSM_CONTEXT DsmContext,
IN PGROUP_ENTRY Group
)
{
PFAILOVER_GROUP currentGroup;
PFAILOVER_GROUP failGroup;
PDEVICE_INFO deviceInfo;
PDEVICE_INFO currentDevInfo;
ULONG i;
ULONG j;
BOOLEAN pathSet = FALSE;
//
// Check for single-pathed groups.
//
if (Group->NumberDevices > 2) {
return;
}
for (i = 0; i < Group->NumberDevices; i++) {
//
// Get the device.
//
deviceInfo = Group->DeviceList[i];
//
// Get it's FOG.
//
currentGroup = deviceInfo->FailGroup;
if (currentGroup == NULL) {
//
// This deviceInfo isn't fully intitialised yet.
//
continue;
}
//
// Run through all the devices again.
//
for (j = 0; j < Group->NumberDevices; j++) {
currentDevInfo = Group->DeviceList[j];
if (currentDevInfo == deviceInfo) {
//
// Find one that's a different path.
//
continue;
}
failGroup = currentDevInfo->FailGroup;
if (failGroup) {
if (failGroup->PathId) {
DebugPrint((0,
"SetAlternatePath: FOG (%x) using (%x) as Alt\n",
currentGroup,
failGroup));
currentGroup->AlternatePath = failGroup->PathId;
pathSet = TRUE;
}
}
}
if (pathSet == FALSE) {
DebugPrint((0,
"SetAlternatePath: No alternate set for (%x)\n",
currentGroup));
} else {
pathSet = FALSE;
}
}
}
NTSTATUS
DsmSetDeviceInfo(
IN PVOID DsmContext,
IN PDEVICE_OBJECT TargetObject,
IN PVOID DsmId,
IN OUT PVOID *PathId
)
{
PDEVICE_INFO deviceInfo = DsmId;
PGROUP_ENTRY group = deviceInfo->Group;
PFAILOVER_GROUP failGroup;
NTSTATUS status;
//
// TargetObject is the destination for any requests created by this driver.
// Save this for future reference.
//
deviceInfo->TargetObject = TargetObject;
//
// PathId indicates the path on which this device resides. Meaning
// that when a Fail-Over occurs all device's on the same path fail together.
// Search for a matching F.O. Group
//
failGroup = DsmFindFOGroup(DsmContext,
*PathId);
//
// if not found, create a new f.o. group
//
if (failGroup == NULL) {
failGroup = DsmBuildFOGroup(DsmContext,
DsmId,
*PathId);
if (failGroup == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
}
//
// add this deviceInfo to the f.o. group.
//
status = DsmUpdateFOGroup(DsmContext,
failGroup,
deviceInfo);
DsmSetupAlternatePath(DsmContext,
group);
return status;
}
NTSTATUS
DsmGetControllerInfo(
IN PVOID DsmContext,
IN PVOID DsmId,
IN ULONG Flags,
IN OUT PCONTROLLER_INFO *ControllerInfo
)
{
PDSM_CONTEXT dsmContext = DsmContext;
PCONTROLLER_INFO controllerInfo;
LARGE_INTEGER time;
if (!dsmContext->ControllerId) {
//
// Make one up.
//
KeQuerySystemTime(&time);
//
// Use only the bottom 32-bits.
//
dsmContext->ControllerId = time.LowPart;
}
if (Flags & DSM_CNTRL_FLAGS_ALLOCATE) {
controllerInfo = ExAllocatePool(NonPagedPool, sizeof(CONTROLLER_INFO));
if (controllerInfo == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(controllerInfo, sizeof(CONTROLLER_INFO));
//
// Indicate that there are no specific controllers.
//
controllerInfo->State = DSM_CONTROLLER_NO_CNTRL;
//
// Set the identifier to the value generated earlier.
//
controllerInfo->ControllerIdentifier = (ULONGLONG)dsmContext->ControllerId;
*ControllerInfo = controllerInfo;
} else {
controllerInfo = *ControllerInfo;
//
// If the enclosures supported by this DSM actually had controllers, there would
// be a list of them and a search based on ControllerIdentifier would be made.
//
controllerInfo->State = DSM_CONTROLLER_NO_CNTRL;
}
return STATUS_SUCCESS;
}
BOOLEAN
DsmIsPathActive(
IN PVOID DsmContext,
IN PVOID PathId
)
{
PFAILOVER_GROUP group;
//
// NOTE: Internal callers of this assume certain behaviours. If it's changed,
// those functions need to be updated appropriately.
//
//
// Get the F.O. Group information.
//
group = DsmFindFOGroup(DsmContext,
PathId);
//
// If there are any devices on this path, and
// it's not in a failed state: it's capable of handling requests
// so it's active.
//
if ((group->Count >= 1) && (group->State == FG_NORMAL)) {
return TRUE;
}
return FALSE;
}
NTSTATUS
DsmPathVerify(
IN PVOID DsmContext,
IN PVOID DsmId,
IN PVOID PathId
)
{
PDEVICE_INFO deviceInfo = DsmId;
PFAILOVER_GROUP group;
NTSTATUS status;
ULONG i;
//
// Get the F.O. group
//
group = DsmFindFOGroup(DsmContext,
PathId);
if (group == NULL) {
DbgBreakPoint();
return STATUS_DEVICE_NOT_CONNECTED;
}
//
// Check the Path state to ensure all is normal.
// Should be in FAILBACK state. This indicates that either
// an admin utility told us we are O.K. or the AutoRecovery detected
// the error was transitory.
// BUGBUG: Need to implement both of the above assumptions.
//
if ((group->Count >= 1) && group->State == FG_FAILBACK) {
//
// Ensure that the device is still there
//
for (i = 0; i < group->Count; i++) {
if (group->DeviceList[i] == deviceInfo) {
//
// Send it a TUR.
//
status = DsmSendTUR(deviceInfo->TargetObject);
}
}
} else {
status = STATUS_UNSUCCESSFUL;
//
// Find the device.
//
for (i = 0; i < group->Count; i++) {
if (group->DeviceList[i] == deviceInfo) {
//
// Issue a TUR to see if it's OK.
//
status = DsmSendTUR(deviceInfo->TargetObject);
}
}
#if DBG
if (status == STATUS_SUCCESS) {
DebugPrint((2,
"DsmPathVerify: Successful TUR to (%x)\n",
deviceInfo));
} else {
//
// Either the device is not in the group, or the TUR was not successful.
//
if (i == group->Count) {
DebugPrint((0,
"PathVerify: (%x) not in group (%x)\n",
deviceInfo,
group));
} else {
DebugPrint((0,
"PathVerify: TUR to (%x) failed. (%x)\n",
deviceInfo,
status));
}
}
#endif
}
//
// Update the group State, depending upon the outcome.
// TODO
//
if (status == STATUS_SUCCESS) {
//
// This lets the LBInit run to properly set-up this device.
//
deviceInfo->NeedsVerification = FALSE;
}
return status;
}
NTSTATUS
DsmInvalidatePath(
IN PVOID DsmContext,
IN ULONG ErrorMask,
IN PVOID PathId,
IN OUT PVOID *NewPathId
)
{
PFAILOVER_GROUP failGroup;
PFAILOVER_GROUP hintPath;
PGROUP_ENTRY group;
PDEVICE_INFO deviceInfo;
NTSTATUS status;
ULONG i;
ASSERT(ErrorMask & DSM_FATAL_ERROR);
//
// Get the fail-over group corresponding to the PathId.
//
failGroup = DsmFindFOGroup(DsmContext,
PathId);
//
// Mark the path as failed.
//
failGroup->State = FG_FAILED;
DebugPrint((0,
"DsmInvalidatePath: Path (%x) FOG (%x) failing\n",
PathId,
failGroup));
//
// First interation, the hint will be NULL. This allows the
// GetNewPath routine the opportunity to select the best new path
// Subsequent calls will be fed the updated value.
//
hintPath = NULL;
if (failGroup->Count == 0) {
//
// This indicates that all of the devices have already
// been removed. Just return the alternate path.
//
*NewPathId = failGroup->AlternatePath;
return STATUS_SUCCESS;
}
//
// Process each device in the fail-over group
//
for (i = 0; i < failGroup->Count; i++) {
//
// Get the deviceInfo.
//
deviceInfo = failGroup->DeviceList[i];
//
// Set the state of the Failing Devicea
//
deviceInfo->State = DEV_FAILED;
//
// Get it's Multi-Path Group entry.
//
group = deviceInfo->Group;
//
// Get a new path for this failed device.
//
hintPath = DsmSetNewPath(DsmContext,
group,
deviceInfo,
hintPath);
}
if (hintPath == NULL) {
//
// This indicates that no acceptable paths
// were found. Return the error to mpctl.
//
status = STATUS_NO_SUCH_DEVICE;
*NewPathId = NULL;
} else {
//
// return the new path.
//
*NewPathId = hintPath->PathId;
DebugPrint((0,
"DsmInvalidatePath: Returning (%x) as newPath\n",
hintPath->PathId));
status = STATUS_SUCCESS;
}
return status;
}
NTSTATUS
DsmMoveDevice(
IN PVOID DsmContext,
IN PDSM_IDS DsmIds,
IN PVOID MPIOPath,
IN PVOID SuggestedPath,
IN ULONG Flags
)
{
return STATUS_SUCCESS;
}
NTSTATUS
DsmRemovePending(
IN PVOID DsmContext,
IN PVOID DsmId
)
{
PDSM_CONTEXT dsmContext = DsmContext;
PDEVICE_INFO deviceInfo = DsmId;
KIRQL irql;
DebugPrint((0,
"RemovePending: Marking %x as PENDING_REMOVED\n",
deviceInfo));
KeAcquireSpinLock(&dsmContext->SpinLock, &irql);
//
// Mark the device as being unavailable, as a remove will be
// coming shortly.
//
deviceInfo->State = DEV_PENDING_REMOVE;
KeReleaseSpinLock(&dsmContext->SpinLock, irql);
return STATUS_SUCCESS;
}
NTSTATUS
DsmRemoveDevice(
IN PVOID DsmContext,
IN PVOID DsmId,
IN PVOID PathId
)
{
PDSM_CONTEXT dsmContext = DsmContext;
PDEVICE_INFO deviceInfo;
PFAILOVER_GROUP failGroup;
PGROUP_ENTRY group;
ULONG state;
WCHAR buffer[64];
DebugPrint((0,
"DsmRemoveDevice: Removing %x\n",
DsmId));
//
// DsmId is our deviceInfo structure.
//
deviceInfo = DsmId;
//
// Get it's Multi-Path Group entry.
//
group = deviceInfo->Group;
//
// Get the Fail-over group.
//
failGroup = deviceInfo->FailGroup;
//
// If it's active, need to 'Fail-Over' to another device in
// the group.
//
state = deviceInfo->State;
//
// Set the state of the Failing Devicea
//
deviceInfo->State = DEV_FAILED;
if (state == DEV_ACTIVE) {
//
// Find the next available device.
// This is basically a fail-over for just
// this device.
//
DsmSetNewPath(DsmContext,
group,
deviceInfo,
NULL);
}
//
// Remove it's entry from the Fail-Over Group.
//
DsmRemoveDeviceFailGroup(DsmContext,
failGroup,
deviceInfo);
//
// Remove it from it's multi-path group. This has the side-effect
// of cleaning up the Group if the number of devices goes to zero.
//
DsmRemoveDeviceEntry(DsmContext,
group,
deviceInfo);
swprintf(buffer, L"Removing Device (%ws)", L"It's Name");
DsmWriteEvent(dsmContext->MPIOContext,
L"GenDsm",
buffer,
2);
return STATUS_SUCCESS;
}
NTSTATUS
DsmRemovePath(
IN PDSM_CONTEXT DsmContext,
IN PVOID PathId
)
{
PFAILOVER_GROUP failGroup;
KIRQL irql;
failGroup = DsmFindFOGroup(DsmContext,
PathId);
if (failGroup == NULL) {
//
// It's already been removed.
// LOG though.
//
return STATUS_SUCCESS;
}
//
// The claim is that a path won't be removed, until all
// the devices on it are.
//
ASSERT(failGroup->Count == 0);
KeAcquireSpinLock(&DsmContext->SpinLock, &irql);
//
// Need to find any other FOG's using this as their alternate path and
// update them to use something else (if available).
// BUGBUG: that it's not done.
//
//
// Yank it from the list.
//
RemoveEntryList(&failGroup->ListEntry);
DsmContext->NumberFOGroups--;
//
// Zero the entry.
//
RtlZeroMemory(failGroup, sizeof(FAILOVER_GROUP));
KeReleaseSpinLock(&DsmContext->SpinLock, irql);
//
// Free the allocation.
//
ExFreePool(failGroup);
return STATUS_SUCCESS;
}
NTSTATUS
DsmBringPathOnLine(
IN PVOID DsmContext,
IN PVOID PathId,
OUT PULONG DSMError
)
{
PFAILOVER_GROUP failGroup;
//
// PathVerify has been called already, so if
// it came back successfully, then this is O.K.
//
failGroup = DsmFindFOGroup(DsmContext,
PathId);
if (failGroup == NULL) {
//
// LOG
//
*DSMError = 0;
return STATUS_DEVICE_NOT_CONNECTED;
}
//
// Should be in FG_PENDING
//
ASSERT(failGroup->State == FG_PENDING);
//
// Indicate that it's ready to go.
//
failGroup->State = FG_NORMAL;
return STATUS_SUCCESS;
}
PVOID
DsmLBGetPath(
IN PVOID DsmContext,
IN PSCSI_REQUEST_BLOCK Srb,
IN PDSM_IDS DsmList,
IN PVOID CurrentPath,
OUT NTSTATUS *Status
)
{
PDSM_CONTEXT dsmContext = DsmContext;
PDEVICE_INFO deviceInfo;
PGROUP_ENTRY group;
PFAILOVER_GROUP failGroup = NULL;
ULONG i;
KIRQL irql;
KeAcquireSpinLock(&dsmContext->SpinLock, &irql);
//
// Up-front checking to minimally validate
// the list of DsmId's being passed in.
//
ASSERT(DsmList->Count);
ASSERT(DsmList->IdList[0]);
//
// Grab the first device from the list.
//
deviceInfo = DsmList->IdList[0];
ASSERT(deviceInfo->DeviceSig == DSM_DEVICE_SIG);
//
// Get the multi-path group.
//
group = deviceInfo->Group;
//
// See if Load-Balancing has been initialized.
//
if (group->LoadBalanceInit == FALSE) {
PDEVICE_INFO lbDevice;
BOOLEAN doInit = TRUE;
//
// Check to see whether we are really ready to run
// the LBInit. If any of the list aren't verified, then
// we will hold off.
//
for (i = 0; i < DsmList->Count; i++) {
lbDevice = DsmList->IdList[i];
//
// Check to see whether pathVerify has been invoked
// on this device. Due to how PnP builds the device stacks
// there is a period of time between the PDO showing up, and
// when the FDO (mpdev.sys) gets loaded and registers.
//
if (lbDevice->NeedsVerification) {
DebugPrint((0,
"LBGetPath: (%x) needs verify\n",
lbDevice));
doInit = FALSE;
break;
}
}
if (doInit) {
//
// Set-up the load-balancing. This routine
// builds a static assignment of multi-path group to
// a particular path.
//
DsmLBInit(DsmContext,
group);
}
}
#if DBG
//
// Ensure that mpctl and this dsm are in sync.
//
if (DsmList->Count != group->NumberDevices) {
BOOLEAN doAssert = TRUE;
for (i = 0; i <group->NumberDevices; i++) {
deviceInfo = group->DeviceList[i];
if ((deviceInfo->State == DEV_PENDING_REMOVE) ||
(deviceInfo->State == DEV_FAILED)) {
//
// The reason the lists are off is that this one
// has been marked for removal. mpio has already
// adjusted it's structures to show it not being used.
//
doAssert = FALSE;
}
}
if (doAssert) {
ASSERT(DsmList->Count == group->NumberDevices);
}
}
#endif
//
// Find the active device.
//
//for (i = 0; i < group->NumberDevices; i++) {
for (i = 0; i < DsmList->Count; i++) {
//
// Get each of the DsmId's, in reality the deviceInfo.
//
deviceInfo = DsmList->IdList[i];
ASSERT(deviceInfo->DeviceSig == DSM_DEVICE_SIG);
//
// Ensure that the device is in our list.
//
ASSERT(DsmFindDevice(DsmContext, deviceInfo));
//
// NOTE: This assumes 'static' Load-Balancing. Once others
// are implemented, this section will have to be updated.
//
// Return the path on which the ACTIVE device resides.
//
if (deviceInfo->State == DEV_ACTIVE) {
//
// Get the F.O.Group, as it contains the
// correct PathId for this device.
//
failGroup = deviceInfo->FailGroup;
*Status = STATUS_SUCCESS;
KeReleaseSpinLock(&dsmContext->SpinLock, irql);
return failGroup->PathId;
}
}
KeReleaseSpinLock(&dsmContext->SpinLock, irql);
//
// Should never have gotten here.
//
DebugPrint((0,
"LBGetPath: Returning STATUS_DEVICE_NOT_CONNECTED\n"));
DbgBreakPoint();
ASSERT(failGroup);
*Status = STATUS_DEVICE_NOT_CONNECTED;
return NULL;
}
ULONG
DsmCategorizeRequest(
IN PVOID DsmContext,
IN PDSM_IDS DsmIds,
IN PIRP Irp,
IN PSCSI_REQUEST_BLOCK Srb,
IN PVOID CurrentPath,
OUT PVOID *PathId,
OUT NTSTATUS *Status
)
{
ULONG dsmStatus;
NTSTATUS status;
//
// Requests to broadcast
// Reset
// Reserve
// Release
//
// Requests to Handle
// None for now.
//
//
// For all other requests, punt it back to the bus-driver.
// Need to get a path for the request first, so call the Load-Balance
// function.
//
*PathId = DsmLBGetPath(DsmContext,
Srb,
DsmIds,
CurrentPath,
&status);
if (NT_SUCCESS(status)) {
//
// Indicate that the path is updated, and mpctl should handle the request.
//
dsmStatus = DSM_PATH_SET;
} else {
//
// Indicate the error back to mpctl.
//
dsmStatus = DSM_ERROR;
//
// Mark-up the Srb to show that a failure has occurred.
// This value is really only for this DSM to know what to do
// in the InterpretError routine - Fatal Error.
// It could be something more meaningful.
//
Srb->SrbStatus = SRB_STATUS_NO_DEVICE;
}
//
// Pass back status info to mpctl.
//
*Status = status;
return dsmStatus;
}
NTSTATUS
DsmBroadcastRequest(
IN PVOID DsmContext,
IN PDSM_IDS DsmIds,
IN PIRP Irp,
IN PSCSI_REQUEST_BLOCK Srb,
IN PKEVENT Event
)
{
PDSM_CONTEXT dsmContext = DsmContext;
KIRQL irql;
KeAcquireSpinLock(&dsmContext->SpinLock, &irql);
//
// BUGBUG: Need to handle Reset, Reserve, and Release.
//
KeReleaseSpinLock(&dsmContext->SpinLock, irql);
return STATUS_INVALID_DEVICE_REQUEST;
}
NTSTATUS
DsmSrbDeviceControl(
IN PVOID DsmContext,
IN PDSM_IDS DsmIds,
IN PIRP Irp,
IN PSCSI_REQUEST_BLOCK Srb,
IN PKEVENT Event
)
{
PDSM_CONTEXT dsmContext = DsmContext;
KIRQL irql;
KeAcquireSpinLock(&dsmContext->SpinLock, &irql);
//
// BUGBUG: Need to handle ??
//
KeReleaseSpinLock(&dsmContext->SpinLock, irql);
return STATUS_INVALID_DEVICE_REQUEST;
}
VOID
DsmXCompletion(
IN PVOID DsmId,
IN PIRP Irp,
IN PSCSI_REQUEST_BLOCK Srb,
IN PVOID DsmContext
)
{
PCOMPLETION_CONTEXT completionContext = DsmContext;
PDEVICE_INFO deviceInfo;
PDSM_CONTEXT dsmContext;
UCHAR opCode;
//
// If it's read or write, save stats.
// Categorize set-up the Context to have path, target info.
// TODO
//
ASSERT(DsmContext);
dsmContext = completionContext->DsmContext;
deviceInfo = completionContext->DeviceInfo;
opCode = Srb->Cdb[0];
//
// Indicate one less request on this device.
//
InterlockedDecrement(&deviceInfo->Requests);
//
// TODO: Use the timestamp.
// Path/Device up-time, ave. time/request...
//
//
// If it's a read or a write, update the stats.
//
if (opCode == SCSIOP_READ) {
deviceInfo->Stats.NumberReads++;
deviceInfo->Stats.BytesRead.QuadPart += Srb->DataTransferLength;
} else if (opCode == SCSIOP_WRITE) {
deviceInfo->Stats.NumberWrites++;
deviceInfo->Stats.BytesWritten.QuadPart += Srb->DataTransferLength;
}
//
// Release the allocation.
//
ExFreeToNPagedLookasideList(&dsmContext->ContextList,
DsmContext);
}
VOID
DsmSetCompletion(
IN PVOID DsmContext,
IN PVOID DsmId,
IN PIRP Irp,
IN PSCSI_REQUEST_BLOCK Srb,
IN OUT PDSM_COMPLETION_INFO DsmCompletion
)
{
PCOMPLETION_CONTEXT completionContext;
PDSM_CONTEXT dsmContext = DsmContext;
PDEVICE_INFO deviceInfo = DsmId;
//
// Save the DeviceInfo as being the target for this request.
// Get a timestamp
// TODO Determine other data.
//
completionContext = ExAllocateFromNPagedLookasideList(&dsmContext->ContextList);
if (completionContext == NULL) {
//
// LOG
//
}
//
// Time stamp this.
//
KeQueryTickCount(&completionContext->TickCount);
//
// Indicate the target for this request.
//
completionContext->DeviceInfo = deviceInfo;
completionContext->DsmContext = DsmContext;
//
// Indicate one more request on this device.
// LB may use this.
//
InterlockedIncrement(&deviceInfo->Requests);
DsmCompletion->DsmCompletionRoutine = DsmXCompletion;
DsmCompletion->DsmContext = completionContext;
return;
}
ULONG
DsmInterpretError(
IN PVOID DsmContext,
IN PVOID DsmId,
IN PSCSI_REQUEST_BLOCK Srb,
IN OUT NTSTATUS *Status,
OUT PBOOLEAN Retry
)
{
ULONG errorMask = 0;
PSENSE_DATA senseData = Srb->SenseInfoBuffer;
BOOLEAN failover = FALSE;
BOOLEAN retry = FALSE;
BOOLEAN handled = FALSE;
//
// Check the NT Status first.
// Several are clearly failover conditions.
//
switch (*Status) {
case STATUS_DEVICE_NOT_CONNECTED:
case STATUS_DEVICE_DOES_NOT_EXIST:
case STATUS_NO_SUCH_DEVICE:
//
// The port pdo has either been removed or is
// very broken. A fail-over is necessary.
//
handled = TRUE;
failover = TRUE;
break;
case STATUS_IO_DEVICE_ERROR:
//
// See if it's a unit attention.
//
if (Srb->SrbStatus & SRB_STATUS_AUTOSENSE_VALID) {
if (senseData->SenseKey == SCSI_SENSE_UNIT_ATTENTION) {
retry = TRUE;
handled = TRUE;
}
}
break;
default:
break;
}
if (handled == FALSE) {
if (Srb) {
//
// The ntstatus didn't indicate a fail-over condition, but
// check various srb status for failover-class error.
//
switch (Srb->SrbStatus) {
case SRB_STATUS_SELECTION_TIMEOUT:
case SRB_STATUS_INVALID_LUN:
case SRB_STATUS_INVALID_TARGET_ID:
case SRB_STATUS_NO_DEVICE:
case SRB_STATUS_NO_HBA:
case SRB_STATUS_INVALID_PATH_ID:
//
// All of these are fatal.
//
failover = TRUE;
break;
default:
break;
}
}
}
if (failover) {
DebugPrint((0,
"InterpretError: Marking Fatal. Srb (%x). *Status (%x)\n",
Srb,
*Status));
errorMask = DSM_FATAL_ERROR;
}
//
// TODO: Gather a list of status that indicate a retry is necessary.
// Look at InterpretSenseInfo.
//
*Retry = retry;
return errorMask;
}
NTSTATUS
DsmUnload(
IN PVOID DsmContext
)
{
//
// It's the responsibility of the mpio bus driver to have already
// destroyed all devices and paths.
// As those functions free allocations for the objects, the only thing
// needed here is to free the DsmContext.
//
ExFreePool(DsmContext);
return STATUS_SUCCESS;
}
//
// Utility functions.
//
PGROUP_ENTRY
DsmFindDevice(
IN PDSM_CONTEXT DsmContext,
IN PDEVICE_INFO DeviceInfo
)
{
PDEVICE_INFO deviceInfo;
PLIST_ENTRY entry;
ULONG i;
//
// Run through the DeviceInfo List
//
entry = DsmContext->DeviceList.Flink;
for (i = 0; i < DsmContext->NumberDevices; i++, entry = entry->Flink) {
//
// Extract the deviceInfo structure.
//
deviceInfo = CONTAINING_RECORD(entry, DEVICE_INFO, ListEntry);
ASSERT(deviceInfo);
//
// Call the Serial Number compare routine.
//
if (DsmCompareDevices(DsmContext,
DeviceInfo,
deviceInfo)) {
return deviceInfo->Group;
}
}
DebugPrint((0,
"DsmFindDevice: DsmContext (%x), DeviceInfo (%x)\n",
DsmContext,
DeviceInfo));
return NULL;
}
PGROUP_ENTRY
DsmBuildGroupEntry(
IN PDSM_CONTEXT DsmContext,
IN PDEVICE_INFO DeviceInfo
)
{
PGROUP_ENTRY group;
//
// Allocate the memory for the multi-path group.
//
group = ExAllocatePool(NonPagedPool, sizeof(GROUP_ENTRY));
if (group == NULL) {
return NULL;
}
RtlZeroMemory(group, sizeof(GROUP_ENTRY));
//
// Add it to the list of multi-path groups.
//
ExInterlockedInsertTailList(&DsmContext->GroupList,
&group->ListEntry,
&DsmContext->SpinLock);
group->GroupNumber = InterlockedIncrement(&DsmContext->NumberGroups);
group->GroupSig = DSM_GROUP_SIG;
ASSERT(group->GroupNumber >= 1);
return group;
}
NTSTATUS
DsmAddDeviceEntry(
IN PDSM_CONTEXT DsmContext,
IN PGROUP_ENTRY Group,
IN PDEVICE_INFO DeviceInfo,
IN ULONG DeviceState
)
{
ULONG numberDevices;
ULONG i;
KIRQL irql;
//
// Ensure that this is a valid config - namely, it hasn't
// exceeded the number of paths supported.
//
numberDevices = Group->NumberDevices;
if (numberDevices >= MAX_PATHS) {
return STATUS_UNSUCCESSFUL;
}
KeAcquireSpinLock(&DsmContext->SpinLock, &irql);
#if DBG
//
// Ensure that this isn't a second copy of the same pdo.
//
for (i = 0; i < numberDevices; i++) {
if (Group->DeviceList[i]->PortPdo == DeviceInfo->PortPdo) {
DebugPrint((0,
"DsmAddDeviceEntry: Received same PDO twice\n"));
DbgBreakPoint();
}
}
#endif
//
// Indicate one device is present in
// this group.
//
Group->DeviceList[numberDevices] = DeviceInfo;
//
// Indicate one more in the list.
//
Group->NumberDevices++;
//
// Set-up this device's group id.
//
DeviceInfo->Group = Group;
//
// Set-up whether this is an active/passive member of the
// group.
//
DeviceInfo->State = DeviceState;
//
// One more deviceInfo entry.
//
DsmContext->NumberDevices++;
//
// Finally, add it to the global list of devices.
//
InsertTailList(&DsmContext->DeviceList,
&DeviceInfo->ListEntry);
KeReleaseSpinLock(&DsmContext->SpinLock, irql);
return STATUS_SUCCESS;
}
VOID
DsmRemoveDeviceEntry(
IN PDSM_CONTEXT DsmContext,
IN PGROUP_ENTRY Group,
IN PDEVICE_INFO DeviceInfo
)
{
KIRQL irql;
NTSTATUS status;
ULONG i;
ULONG j;
BOOLEAN freeGroup = FALSE;
KeAcquireSpinLock(&DsmContext->SpinLock, &irql);
//
// Find it's offset in the array of devices.
//
for (i = 0; i < Group->NumberDevices; i++) {
if (Group->DeviceList[i] == DeviceInfo) {
//
// Zero out it's entry.
//
Group->DeviceList[i] = NULL;
//
// Reduce the number in the group.
//
Group->NumberDevices--;
//
// Collapse the array.
//
// BUGBUG: If any requests come in during this time, it's
// possible to either bugcheck or get an incorrect deviceInfo
// structure.
//
for (j = i; j < Group->NumberDevices; j++) {
//
// Shuffle all entries down to fill the hole.
//
Group->DeviceList[j] = Group->DeviceList[j + 1];
}
//
// Zero out the last one.
//
Group->DeviceList[j] = NULL;
break;
}
}
//
// See if anything is left in the Group.
//
if (Group->NumberDevices == 0) {
//
// Yank it from the Group list.
//
RemoveEntryList(&Group->ListEntry);
DsmContext->NumberGroups--;
//
// Zero it.
//
RtlZeroMemory(Group,
sizeof(GROUP_ENTRY));
freeGroup = TRUE;
}
//
// Yank the device out of the Global list.
//
RemoveEntryList(&DeviceInfo->ListEntry);
DsmContext->NumberDevices--;
//
// Zero it.
//
RtlZeroMemory(DeviceInfo,
sizeof(DEVICE_INFO));
KeReleaseSpinLock(&DsmContext->SpinLock, irql);
//
// Free the allocation.
//
ExFreePool(DeviceInfo);
if (freeGroup) {
//
// Free the allocation.
//
ExFreePool(Group);
}
}
PFAILOVER_GROUP
DsmFindFOGroup(
IN PDSM_CONTEXT DsmContext,
IN PVOID PathId
)
{
PFAILOVER_GROUP failOverGroup;
PLIST_ENTRY entry;
ULONG i;
//
// Run through the list of Fail-Over Groups
//
entry = DsmContext->FailGroupList.Flink;
for (i = 0; i < DsmContext->NumberFOGroups; i++, entry = entry->Flink) {
//
// Extract the fail-over group structure.
//
failOverGroup = CONTAINING_RECORD(entry, FAILOVER_GROUP, ListEntry);
ASSERT(failOverGroup);
//
// Check for a match of the PathId.
//
if (failOverGroup->PathId == PathId) {
return failOverGroup;
}
}
return NULL;
}
PFAILOVER_GROUP
DsmBuildFOGroup(
IN PDSM_CONTEXT DsmContext,
IN PDEVICE_INFO DeviceInfo,
IN PVOID PathId
)
{
PFAILOVER_GROUP failOverGroup;
KIRQL irql;
ULONG numberGroups;
//
// Allocate an entry.
//
failOverGroup = ExAllocatePool(NonPagedPool, sizeof(FAILOVER_GROUP));
if (failOverGroup == NULL) {
return NULL;
}
RtlZeroMemory(failOverGroup, sizeof(FAILOVER_GROUP));
KeAcquireSpinLock(&DsmContext->SpinLock, &irql);
//
// Get the current number of groups, and add the one that's
// being created.
//
numberGroups = DsmContext->NumberFOGroups++;
//
// Set the PathId - All devices on the same PathId will
// failover together.
//
failOverGroup->PathId = PathId;
//
// Set the initial state to NORMAL.
//
failOverGroup->State = FG_NORMAL;
failOverGroup->FailOverSig = DSM_FOG_SIG;
//
// Add it to the global list.
//
InsertTailList(&DsmContext->FailGroupList,
&failOverGroup->ListEntry);
KeReleaseSpinLock(&DsmContext->SpinLock, irql);
return failOverGroup;
}
NTSTATUS
DsmUpdateFOGroup(
IN PDSM_CONTEXT DsmContext,
IN PFAILOVER_GROUP FailGroup,
IN PDEVICE_INFO DeviceInfo
)
{
PGROUP_ENTRY group;
ULONG count;
ULONG i;
KIRQL irql;
KeAcquireSpinLock(&DsmContext->SpinLock, &irql);
//
// Add the device to the list of devices that are on this path.
//
count = FailGroup->Count++;
FailGroup->DeviceList[count] = DeviceInfo;
//
// Get the MultiPath group for this device.
//
group = DeviceInfo->Group;
//
// Indicate that the L.B. policy needs to be updated.
// The next call to LBGetPath will cause the re-shuffle to
// take place.
//
group->LoadBalanceInit = FALSE;
//
// Indicate the need to wait for PathVerify
// This just eliminates the need to handle unit attentions
// on this device when LoadBalancing is set-up.
//
DeviceInfo->NeedsVerification = TRUE;
//
// Set the device's F.O. Group.
//
DeviceInfo->FailGroup = FailGroup;
KeReleaseSpinLock(&DsmContext->SpinLock, irql);
return STATUS_SUCCESS;
}
VOID
DsmRemoveDeviceFailGroup(
IN PDSM_CONTEXT DsmContext,
IN PFAILOVER_GROUP FailGroup,
IN PDEVICE_INFO DeviceInfo
)
{
ULONG count;
KIRQL irql;
ULONG i;
ULONG j;
KeAcquireSpinLock(&DsmContext->SpinLock, &irql);
//
// Find it's offset in the array of devices.
//
for (i = 0; i < FailGroup->Count; i++) {
if (FailGroup->DeviceList[i] == DeviceInfo) {
//
// Zero out it's entry.
//
FailGroup->DeviceList[i] = NULL;
//
// Reduce the number in the group.
//
FailGroup->Count--;
//
// Collapse the array.
//
for (j = i; j < FailGroup->Count; j++) {
//
// Shuffle all entries down to fill the hole.
//
FailGroup->DeviceList[j] = FailGroup->DeviceList[j + 1];
}
//
// Zero out the last one.
//
FailGroup->DeviceList[j] = NULL;
break;
}
}
KeReleaseSpinLock(&DsmContext->SpinLock, irql);
return;
}
PFAILOVER_GROUP
DsmSetNewPath(
IN PDSM_CONTEXT DsmContext,
IN PGROUP_ENTRY Group,
IN PDEVICE_INFO FailingDevice,
IN PFAILOVER_GROUP SelectedPath
)
{
PFAILOVER_GROUP failGroup;
PGROUP_ENTRY group;
PDEVICE_INFO device;
ULONG i;
NTSTATUS status;
BOOLEAN matched = FALSE;
if (SelectedPath) {
//
// This indicates that a new path has already been selected
// for at least one device in the Fail-Over Group.
// Run the list of new devices and find the matching
// multi-path group.
//
for (i = 0; i < SelectedPath->Count; i++) {
//
// Get the device from the newly selected Path.
//
device = SelectedPath->DeviceList[i];
//
// Determine if the device's group matches the failing
// device's group.
//
if (device->Group == Group) {
//
// The new device should be either ACTIVE or PASSIVE
//
if ((device->State == DEV_ACTIVE) ||
(device->State == DEV_PASSIVE)) {
//
// Set it to ACTIVE.
//
device->State = DEV_ACTIVE;
//
// Ensure that it's ready.
//
status = DsmSendTUR(device->TargetObject);
ASSERT(status == STATUS_SUCCESS);
matched = TRUE;
break;
}
}
}
//
// When the first call was made and a path selected, all devices
// on the path were checked for validity.
//
ASSERT(matched == TRUE);
//
// Just return the SelectedPath
//
failGroup = SelectedPath;
} else {
//
// Go through Group, looking for an available device.
//
for (i = 0; i < Group->NumberDevices; i++) {
//
// Look for any that are Passive. They are the best
// choice. This would indicate either an ActiveN/PassiveN arrangement.
//
device = Group->DeviceList[i];
if (device->State == DEV_PASSIVE) {
matched = TRUE;
break;
}
}
if (matched) {
//
// Mark the device as active.
//
device->State = DEV_ACTIVE;
//
// Ensure that it's ready.
//
status = DsmSendTUR(device->TargetObject);
if (status != STATUS_SUCCESS) {
DebugPrint((0,
"SetNewPath: SendTUR (%x) (%x)\n",
status,
device->TargetObject));
}
ASSERT(status == STATUS_SUCCESS);
//
// Get the Fail-Over group from the selected device.
//
failGroup = device->FailGroup;
} else {
//
// No passive devices. This indicates either an Active/Active arrangement,
// or everything is failed.
// Look for active devices.
//
for (i = 0; i < Group->NumberDevices; i++) {
device = Group->DeviceList[i];
if (device->State == DEV_ACTIVE) {
matched = TRUE;
break;
}
}
if (matched) {
//
// The device is already active, just return the
// new path info.
//
failGroup = device->FailGroup;
//
// Ensure that it's ready.
//
status = DsmSendTUR(device->TargetObject);
} else {
//
// Everything has failed. Should try to do something?? TODO
//
failGroup = NULL;
}
}
if (failGroup) {
//
// Run through all the devices to ensure that they are
// in a reasonable state.
//
for (i = 0; i < failGroup->Count; i++) {
device = failGroup->DeviceList[i];
if ((device->State != DEV_ACTIVE) &&
(device->State != DEV_PASSIVE)) {
//
// Really need to find a new fail-over group.
// TODO.
// This isn't necessarily a valid assert. If static lb is in
// effect and this is one of the first to fail-over, others
// could be considered bad.
//
ASSERT(device->State == DEV_ACTIVE);
}
}
}
}
return failGroup;
}
VOID
DsmLBInit(
IN PDSM_CONTEXT DsmContext,
IN PGROUP_ENTRY Group
)
{
PFAILOVER_GROUP failGroup;
PDEVICE_INFO device;
PLIST_ENTRY entry;
ULONG numberPaths;
ULONG assignedPath;
ULONG i;
BOOLEAN found;
//
// TODO: Once the Wmi support is here, this will be configurable
// Need to add code to handle each of the different policies.
//
//
// Doing 'static' LB. Out of each Multi-Path Group, one
// device will be active and assigned to a particular path.
// The assignment is based on the group ordinal modulus the total
// number of paths.
//
numberPaths = DsmContext->NumberFOGroups;
assignedPath = Group->GroupNumber % numberPaths;
// assignedPath = 0;
DebugPrint((2,
"DsmLBInit: NumberFOGs (%x), Group Number (%x), assignedPath (%x)\n",
DsmContext->NumberFOGroups,
Group->GroupNumber,
assignedPath));
//
// Get the Fail-Over Group with the correct path.
//
i = 0;
found = FALSE;
//
// Get the first entry.
//
entry = DsmContext->FailGroupList.Flink;
do {
//
// Extract the F.O. Group entry.
//
failGroup = CONTAINING_RECORD(entry, FAILOVER_GROUP, ListEntry);
ASSERT(failGroup);
if (i == assignedPath) {
//
// This is the one.
//
found = TRUE;
} else {
//
// Advance to the next entry.
//
entry = entry->Flink;
i++;
}
//
// BUGBUG: Need to terminate this loop based on #of FG's.
//
} while (found == FALSE);
//
// It may occur that though there are multiple paths/groups, not
// all devices have been put into the DeviceList.
// If there is only 1, special case this. It will get fixed up
// when the second device arrives.
//
if (Group->NumberDevices == 1) {
//
// LOG. Indicates something "might" be wrong - definitely
// not multi-pathing this device, so could lead to disaster
//
//
// Grab device 0 and set it active.
//
device = Group->DeviceList[0];
device->State = DEV_ACTIVE;
//
// Go ahead state that this is init'ed. If/when another
// device shows up, we will re-do this.
//
Group->LoadBalanceInit = TRUE;
Group->LoadBalanceType = LB_STATIC;
DebugPrint((0,
"DsmLBInit: Only One Device (%x) currently in group. Setting it Active\n",
device));
return;
}
//
// Find the device with the same F.O. Group
// in the mulit-path group.
//
for (i = 0; i < Group->NumberDevices; i++) {
//
// Get the device info.
//
device = Group->DeviceList[i];
//
// See if there is a match.
//
if (device->FailGroup == failGroup) {
//
// Set the device to active.
//
device->State = DEV_ACTIVE;
//
// Done setting up this multi-path group.
// Indicate that it's so, and that we are using
// STATIC Load-Balancing.
//
Group->LoadBalanceInit = TRUE;
Group->LoadBalanceType = LB_STATIC;
return;
} else {
//
// This makes the assumption, once again that Static LB is in
// effect. As this entire routine would need to be changes for
// any other policy, it's OK.
//
if (device->State == DEV_ACTIVE) {
device->State = DEV_PASSIVE;
} else {
//
// Don't muck with the state. It could be REMOVE_PENDING or FAILED
// and just waiting for the cleanup.
//
NOTHING;
}
}
}
}
NTSTATUS
DsmQueryData(
IN PVOID DsmContext,
IN PIRP Irp,
IN ULONG GuidIndex,
IN ULONG InstanceIndex,
IN ULONG InstanceCount,
IN OUT PULONG InstanceLengthArray,
IN ULONG BufferAvail,
OUT PUCHAR Buffer,
OUT PULONG DataLength
)
{
PDSM_CONTEXT context = DsmContext;
NTSTATUS status = STATUS_UNSUCCESSFUL;
ULONG dataLength;
switch(GuidIndex) {
case GENDSM_CONFIGINFOGuidIndex: {
PGENDSM_CONFIGINFO configInfo;
dataLength = sizeof(GENDSM_CONFIGINFO);
if (dataLength > BufferAvail) {
//
// Buffer is too small. Indicate this back
// to the mpio driver.
//
*DataLength = dataLength;
status = STATUS_BUFFER_TOO_SMALL;
} else {
//
// Get the buffer.
//
configInfo = (PGENDSM_CONFIGINFO)Buffer;
//
// Set-up the necessary info.
//
configInfo->NumberFOGroups = context->NumberFOGroups;
configInfo->NumberMPGroups = context->NumberGroups;
configInfo->LoadBalancePolicy = DSM_LB_STATIC;
//
// Indicate the size of returned data to
// WMI and MPIO.
//
*DataLength = dataLength;
*InstanceLengthArray = dataLength;
status = STATUS_SUCCESS;
}
break;
}
case BinaryMofGuidIndex: {
//
// Check that the buffer size can handle the binary
// mof data.
//
dataLength = sizeof(DsmBinaryMofData);
if (dataLength > BufferAvail) {
//
// Buffer is too small.
// Indicate such with status.
//
status = STATUS_BUFFER_TOO_SMALL;
//
// Update DataLength, so that the mpio pdo knows
// the correct size to report back to Wmi.
//
*DataLength = dataLength;
} else {
RtlCopyMemory(Buffer, DsmBinaryMofData, dataLength);
//
// Set both of these on all successful operations.
// InstanceLengthArray gives wMI it's info and DataLength
// gives the mpio pdo it's info.
//
*InstanceLengthArray = dataLength;
*DataLength = dataLength;
status = STATUS_SUCCESS;
}
break;
}
default:
status = STATUS_WMI_GUID_NOT_FOUND;
break;
}
return status;
}
VOID
DsmWmiInitialize(
IN PDSM_WMILIB_CONTEXT WmiInfo
)
{
RtlZeroMemory(WmiInfo, sizeof(DSM_WMILIB_CONTEXT));
//
// This will jam in the entry points and guids for
// supported WMI operations.
//
WmiInfo->GuidCount = DsmGuidCount;
WmiInfo->GuidList = DsmGuidList;
WmiInfo->QueryWmiDataBlock = DsmQueryData;
//
// SetDataBlock and Item, Execute, and FunctionControl are currently
// not needed, so leave them set to zero.
//
return;
}
VOID
DsmDebugPrint(
ULONG DebugPrintLevel,
PCCHAR DebugMessage,
...
)
/*++
Routine Description:
Debug print for the DSM
Arguments:
Return Value:
None
--*/
{
va_list ap;
va_start(ap, DebugMessage);
if (DebugPrintLevel <= GenDSMDebug) {
_vsnprintf(DebugBuffer, DEBUG_BUFFER_LENGTH, DebugMessage, ap);
DbgPrint(DebugBuffer);
}
va_end(ap);
}