windows-nt/Source/XPSP1/NT/drivers/video/ms/s3/disp/textout.c
2020-09-26 16:20:57 +08:00

2702 lines
81 KiB
C

/******************************Module*Header*******************************\
*
* *******************
* * GDI SAMPLE CODE *
* *******************
*
* Module Name: textout.c
*
* On every TextOut, GDI provides an array of 'GLYPHPOS' structures
* for every glyph to be drawn. Each GLYPHPOS structure contains a
* glyph handle and a pointer to a monochrome bitmap that describes
* the glyph. (Note that unlike Windows 3.1, which provides a column-
* major glyph bitmap, Windows NT always provides a row-major glyph
* bitmap.) As such, there are three basic methods for drawing text
* with hardware acceleration:
*
* 1) Glyph caching -- Glyph bitmaps are cached by the accelerator
* (probably in off-screen memory), and text is drawn by
* referring the hardware to the cached glyph locations.
*
* 2) Glyph expansion -- Each individual glyph is colour-expanded
* directly to the screen from the monochrome glyph bitmap
* supplied by GDI.
*
* 3) Buffer expansion -- The CPU is used to draw all the glyphs into
* a 1bpp monochrome bitmap, and the hardware is then used
* to colour-expand the result.
*
* In addition, 2) and 3) can each have two permutations:
*
* a) Glyphs are bit-packed -- The fastest method, where no bits
* are used as padding between scans of the glyph.
*
* b) Glyphs are byte-, word-, or dword-packed -- The slower method,
* where the hardware requires that each scan be padded with
* unused bits to fill out to the end of the byte, word, or
* dword.
*
* The fastest method depends on a number of variables, such as the
* colour expansion speed, bus speed, CPU speed, average glyph size,
* and average string length.
*
* For the S3 with normal sized glyphs, I've found that caching the
* glyphs in off-screen memory is typically the slowest method.
* Buffer expansion is typically fastest on the slow ISA bus (or when
* memory-mapped I/O isn't available on the x86), and glyph expansion
* is best on fast buses such as VL and PCI.
*
* This driver implements glyph expansion and buffer expansion --
* methods 2) and 3). Depending on the hardware capabilities at
* run-time, we'll use whichever one will be faster.
*
* Copyright (c) 1992-1998 Microsoft Corporation
*
\**************************************************************************/
#include "precomp.h"
RECTL grclMax = { 0, 0, 0x8000, 0x8000 };
// Maximal clip rectangle for trivial clipping
BYTE gajBit[] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
// Converts bit index to set bit
#define FIFTEEN_BITS ((1 << 15)-1)
/******************************Public*Routine******************************\
* VOID vClipSolid
*
* Fills the specified rectangles with the specified colour, honouring
* the requested clipping. No more than four rectangles should be passed in.
* Intended for drawing the areas of the opaquing rectangle that extend
* beyond the text box. The rectangles must be in left to right, top to
* bottom order. Assumes there is at least one rectangle in the list.
*
\**************************************************************************/
VOID vClipSolid(
PDEV* ppdev,
LONG crcl,
RECTL* prcl,
ULONG iColor,
CLIPOBJ* pco)
{
BOOL bMore; // Flag for clip enumeration
CLIPENUM ce; // Clip enumeration object
ULONG i;
ULONG j;
RECTL arclTmp[4];
ULONG crclTmp;
RECTL* prclTmp;
RECTL* prclClipTmp;
LONG iLastBottom;
RECTL* prclClip;
RBRUSH_COLOR rbc;
ASSERTDD((crcl > 0) && (crcl <= 4), "Expected 1 to 4 rectangles");
ASSERTDD((pco != NULL) && (pco->iDComplexity != DC_TRIVIAL),
"Expected a non-null clip object");
rbc.iSolidColor = iColor;
if (pco->iDComplexity == DC_RECT)
{
crcl = cIntersect(&pco->rclBounds, prcl, crcl);
if (crcl != 0)
{
(ppdev->pfnFillSolid)(ppdev, crcl, prcl, 0xf0f0, rbc, NULL);
}
}
else // iDComplexity == DC_COMPLEX
{
// Bottom of last rectangle to fill
iLastBottom = prcl[crcl - 1].bottom;
// Initialize the clip rectangle enumeration to right-down so we can
// take advantage of the rectangle list being right-down:
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_RIGHTDOWN, 0);
// Scan through all the clip rectangles, looking for intersects
// of fill areas with region rectangles:
do {
// Get a batch of region rectangles:
bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (VOID*)&ce);
// Clip the rect list to each region rect:
for (j = ce.c, prclClip = ce.arcl; j-- > 0; prclClip++)
{
// Since the rectangles and the region enumeration are both
// right-down, we can zip through the region until we reach
// the first fill rect, and are done when we've passed the
// last fill rect.
if (prclClip->top >= iLastBottom)
{
// Past last fill rectangle; nothing left to do:
return;
}
// Do intersection tests only if we've reached the top of
// the first rectangle to fill:
if (prclClip->bottom > prcl->top)
{
// We've reached the top Y scan of the first rect, so
// it's worth bothering checking for intersection.
// Generate a list of the rects clipped to this region
// rect:
prclTmp = prcl;
prclClipTmp = arclTmp;
for (i = crcl, crclTmp = 0; i-- != 0; prclTmp++)
{
// Intersect fill and clip rectangles
if (bIntersect(prclTmp, prclClip, prclClipTmp))
{
// Add to list if anything's left to draw:
crclTmp++;
prclClipTmp++;
}
}
// Draw the clipped rects
if (crclTmp != 0)
{
(ppdev->pfnFillSolid)(ppdev, crclTmp, &arclTmp[0],
0xf0f0, rbc, NULL);
}
}
}
} while (bMore);
}
}
/******************************Public*Routine******************************\
* BOOL bIoTextOut
*
* Outputs text using the 'buffer expansion' method. We call GDI to draw
* all the glyphs to a single monochrome buffer, and then we use the
* hardware to colour expand the result to the screen.
*
\**************************************************************************/
BOOL bIoTextOut(
SURFOBJ* pso,
STROBJ* pstro,
FONTOBJ* pfo,
CLIPOBJ* pco,
RECTL* prclOpaque,
BRUSHOBJ* pboFore,
BRUSHOBJ* pboOpaque)
{
PDEV* ppdev;
RECTL* prclBounds;
LONG lDelta;
ULONG ulBufferHeight;
ULONG ulBufferBytes;
BOOL bTmpAlloc;
VOID* pvTmp;
SURFOBJ* psoTmp;
BOOL bOpaque;
BRUSHOBJ boFore;
BRUSHOBJ boOpaque;
BOOL bRet;
XLATECOLORS xlc; // Temporary for keeping colours
XLATEOBJ xlo; // Temporary for passing colours
CLIPENUM ce; // Clip enumeration object
RBRUSH_COLOR rbc;
RECTL* prclClip;
RECTL rclClip;
BOOL bMore;
ROP4 rop4;
ppdev = (PDEV*) pso->dhpdev;
// If asked to do an opaque TextOut, we'll set it up so that the
// 1bpp blt we do will automatically opaque the 'rclBkGround'
// rectangle. But we have to handle here the case if 'prclOpaque'
// is bigger than 'rclBkGround':
if ((prclOpaque != NULL) &&
((prclOpaque->left != pstro->rclBkGround.left) ||
(prclOpaque->top != pstro->rclBkGround.top) ||
(prclOpaque->right != pstro->rclBkGround.right) ||
(prclOpaque->bottom != pstro->rclBkGround.bottom)))
{
rbc.iSolidColor = pboOpaque->iSolidColor;
prclClip = prclOpaque;
if ((pco == NULL) || (pco->iDComplexity == DC_TRIVIAL))
{
Output_Opaque:
ppdev->pfnFillSolid(ppdev,
1,
prclClip,
0xf0f0,
rbc,
NULL);
}
else if (pco->iDComplexity == DC_RECT)
{
if (bIntersect(&pco->rclBounds, prclOpaque, &rclClip))
{
prclClip = &rclClip;
// Save some code size by jumping to the common
// functions calls:
goto Output_Opaque;
}
}
else // pco->iDComplexity == DC_COMPLEX
{
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do
{
bMore = CLIPOBJ_bEnum(pco,
sizeof(ce) - sizeof(RECTL),
(ULONG*) &ce);
ce.c = cIntersect(prclOpaque, ce.arcl, ce.c);
if (ce.c != 0)
{
ppdev->pfnFillSolid(ppdev,
ce.c,
&ce.arcl[0],
0xf0f0,
rbc,
NULL);
}
} while (bMore);
}
}
// If there is an opaque rectangle then it will be bigger than the
// background rectangle. We want to test with whichever is bigger.
prclBounds = prclOpaque;
if (prclBounds == NULL)
{
prclBounds = &pstro->rclBkGround;
}
if ((pco != NULL) && (pco->iDComplexity != DC_TRIVIAL))
{
// I'm not entirely sure why, but GDI will occasionally send
// us TextOut's where the opaquing rectangle does not intersect
// with the clip object bounds -- meaning that the text out
// should have already been trivially rejected. We will do so
// here because the blt code usually assumes that all trivial
// rejections will have already been performed, and we will be
// passing this call on to the blt code:
if ((pco->rclBounds.top >= pstro->rclBkGround.bottom) ||
(pco->rclBounds.left >= pstro->rclBkGround.right) ||
(pco->rclBounds.right <= pstro->rclBkGround.left) ||
(pco->rclBounds.bottom <= pstro->rclBkGround.top))
{
// The entire operation was trivially rejected:
return(TRUE);
}
}
// See if the temporary buffer is big enough for the text; if
// not, try to allocate enough memory. We round up to the
// nearest dword multiple:
lDelta = ((((pstro->rclBkGround.right + 31) & ~31) -
(pstro->rclBkGround.left & ~31)) >> 3);
ulBufferHeight = pstro->rclBkGround.bottom - pstro->rclBkGround.top;
ulBufferBytes = lDelta * ulBufferHeight;
if (((ULONG) lDelta > FIFTEEN_BITS) ||
(ulBufferHeight > FIFTEEN_BITS))
{
// Fail if the math will have overflowed:
return(FALSE);
}
// Use our temporary buffer if it's big enough, otherwise
// allocate a buffer on the fly:
if (ulBufferBytes >= TMP_BUFFER_SIZE)
{
// The textout is so big that I doubt this allocation will
// cost a significant amount in performance:
bTmpAlloc = TRUE;
pvTmp = EngAllocUserMem(ulBufferBytes, ALLOC_TAG);
if (pvTmp == NULL)
return(FALSE);
}
else
{
bTmpAlloc = FALSE;
pvTmp = ppdev->pvTmpBuffer;
}
psoTmp = ppdev->psoText;
// Adjust 'lDelta' and 'pvScan0' of our temporary 1bpp surface object
// so that when GDI starts drawing the text, it will begin in the
// first dword
psoTmp->pvScan0 = (BYTE*) pvTmp - (pstro->rclBkGround.top * lDelta)
- ((pstro->rclBkGround.left & ~31) >> 3);
psoTmp->lDelta = lDelta;
ASSERTDD(((ULONG_PTR)psoTmp->pvScan0 &3)==0,"pvScan0 must be dword aligned");
ASSERTDD((lDelta & 3) == 0, "lDelta must be dword aligned");
// Get GDI to draw the text for us into a 1bpp buffer:
boFore.iSolidColor = 1;
boOpaque.iSolidColor = 0;
bRet = EngTextOut(psoTmp,
pstro,
pfo,
pco,
NULL,
&pstro->rclBkGround,
&boFore,
&boOpaque,
NULL,
0x0d0d);
if (bRet)
{
// Transparently blt the 1bpp buffer to the screen:
xlc.iForeColor = pboFore->iSolidColor;
xlc.iBackColor = pboOpaque->iSolidColor;
xlo.pulXlate = (ULONG*) &xlc;
prclClip = &pstro->rclBkGround;
// Rop 'aacc' works out to a transparent blt, while 'cccc' works
// out to an opaque blt:
rop4 = (prclOpaque != NULL) ? 0xcccc : 0xaacc;
if ((pco == NULL) || (pco->iDComplexity == DC_TRIVIAL))
{
Output_Text:
ppdev->pfnXfer1bpp(ppdev,
1,
prclClip,
rop4,
psoTmp,
(POINTL*) &pstro->rclBkGround,
&pstro->rclBkGround,
&xlo);
}
else if (pco->iDComplexity == DC_RECT)
{
if (bIntersect(&pco->rclBounds, &pstro->rclBkGround, &rclClip))
{
prclClip = &rclClip;
// Save some code size by jumping to the common
// functions calls:
goto Output_Text;
}
}
else // pco->iDComplexity == DC_COMPLEX
{
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do
{
bMore = CLIPOBJ_bEnum(pco,
sizeof(ce) - sizeof(RECTL),
(ULONG*) &ce);
ce.c = cIntersect(&pstro->rclBkGround, ce.arcl, ce.c);
if (ce.c != 0)
{
ppdev->pfnXfer1bpp(ppdev,
ce.c,
&ce.arcl[0],
rop4,
psoTmp,
(POINTL*) &pstro->rclBkGround,
&pstro->rclBkGround,
&xlo);
}
} while (bMore);
}
}
// Free up any memory we allocated for the temp buffer:
if (bTmpAlloc)
{
EngFreeUserMem(pvTmp);
}
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID vMmGeneralText
*
* Handles any strings that need to be clipped, using the 'glyph
* expansion' method.
*
\**************************************************************************/
VOID vMmGeneralText(
PDEV* ppdev,
STROBJ* pstro,
CLIPOBJ* pco)
{
BYTE* pjMmBase;
BOOL bMoreGlyphs;
ULONG cGlyphOriginal;
ULONG cGlyph;
GLYPHPOS* pgpOriginal;
GLYPHPOS* pgp;
GLYPHBITS* pgb;
POINTL ptlOrigin;
BOOL bMore;
CLIPENUM ce;
RECTL* prclClip;
ULONG ulCharInc;
LONG cxGlyph;
LONG cyGlyph;
BYTE* pjGlyph;
LONG cj;
LONG cw;
LONG xLeft;
LONG yTop;
LONG xRight;
LONG yBottom;
LONG xBias;
LONG lDelta;
LONG cx;
LONG cy;
BYTE iDComplexity;
ASSERTDD(pco != NULL, "Don't expect NULL clip objects here");
pjMmBase = ppdev->pjMmBase;
do {
if (pstro->pgp != NULL)
{
// There's only the one batch of glyphs, so save ourselves
// a call:
pgpOriginal = pstro->pgp;
cGlyphOriginal = pstro->cGlyphs;
bMoreGlyphs = FALSE;
}
else
{
bMoreGlyphs = STROBJ_bEnum(pstro, &cGlyphOriginal, &pgpOriginal);
}
if (cGlyphOriginal > 0)
{
ulCharInc = pstro->ulCharInc;
iDComplexity = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
if (iDComplexity != DC_COMPLEX)
{
// We could call 'cEnumStart' and 'bEnum' when the clipping is
// DC_RECT, but the last time I checked, those two calls took
// more than 150 instructions to go through GDI. Since
// 'rclBounds' already contains the DC_RECT clip rectangle,
// and since it's such a common case, we'll special case it:
bMore = FALSE;
ce.c = 1;
if (iDComplexity == DC_TRIVIAL)
prclClip = &grclMax;
else
prclClip = &pco->rclBounds;
goto SingleRectangle;
}
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do {
bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
for (prclClip = &ce.arcl[0]; ce.c != 0; ce.c--, prclClip++)
{
SingleRectangle:
pgp = pgpOriginal;
cGlyph = cGlyphOriginal;
pgb = pgp->pgdf->pgb;
ptlOrigin.x = pgb->ptlOrigin.x + pgp->ptl.x;
ptlOrigin.y = pgb->ptlOrigin.y + pgp->ptl.y;
// Loop through all the glyphs for this rectangle:
while (TRUE)
{
cxGlyph = pgb->sizlBitmap.cx;
cyGlyph = pgb->sizlBitmap.cy;
pjGlyph = pgb->aj;
if ((prclClip->left <= ptlOrigin.x) &&
(prclClip->top <= ptlOrigin.y) &&
(prclClip->right >= ptlOrigin.x + cxGlyph) &&
(prclClip->bottom >= ptlOrigin.y + cyGlyph))
{
//-----------------------------------------------------
// Unclipped glyph
IO_FIFO_WAIT(ppdev, 4);
MM_CUR_X(ppdev, pjMmBase, ptlOrigin.x);
MM_CUR_Y(ppdev, pjMmBase, ptlOrigin.y);
MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, cxGlyph - 1);
MM_MIN_AXIS_PCNT(ppdev, pjMmBase, cyGlyph - 1);
IO_GP_WAIT(ppdev);
if (cxGlyph <= 8)
{
//-----------------------------------------------------
// 1 to 8 pels in width
MM_CMD(ppdev, pjMmBase,
(RECTANGLE_FILL | WAIT | DRAWING_DIR_TBLRXM |
DRAW | LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE | BYTE_SWAP | BUS_SIZE_16));
CHECK_DATA_READY(ppdev);
MM_TRANSFER_BYTE_THIN(ppdev, pjMmBase, pjGlyph, cyGlyph);
CHECK_DATA_COMPLETE(ppdev);
}
else if (cxGlyph <= 16)
{
//-----------------------------------------------------
// 9 to 16 pels in width
MM_CMD(ppdev, pjMmBase,
(RECTANGLE_FILL | WAIT | DRAWING_DIR_TBLRXM |
DRAW | LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE | BYTE_SWAP | BUS_SIZE_16));
CHECK_DATA_READY(ppdev);
MM_TRANSFER_WORD_ALIGNED(ppdev, pjMmBase, pjGlyph, cyGlyph);
CHECK_DATA_COMPLETE(ppdev);
}
else
{
lDelta = (cxGlyph + 7) >> 3;
if (!(lDelta & 1))
{
//-----------------------------------------------------
// Even number of bytes in width
MM_CMD(ppdev, pjMmBase,
(RECTANGLE_FILL | WAIT | DRAWING_DIR_TBLRXM |
DRAW | LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE | BYTE_SWAP | BUS_SIZE_16));
CHECK_DATA_READY(ppdev);
MM_TRANSFER_WORD_ALIGNED(ppdev, pjMmBase, pjGlyph,
((lDelta * cyGlyph) >> 1));
CHECK_DATA_COMPLETE(ppdev);
}
else
{
//-----------------------------------------------------
// Odd number of bytes in width
// We revert to byte transfers instead of word transfers
// because word transfers would cause us to do unaligned
// reads for every second scan, which could cause us to
// read past the end of the glyph bitmap, and access
// violate.
MM_CMD(ppdev, pjMmBase,
(RECTANGLE_FILL | WAIT | DRAWING_DIR_TBLRXM |
DRAW | LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE | BYTE_SWAP | BUS_SIZE_16));
CHECK_DATA_READY(ppdev);
MM_TRANSFER_WORD_ODD(ppdev, pjMmBase, pjGlyph, lDelta,
cyGlyph);
CHECK_DATA_COMPLETE(ppdev);
}
}
}
else
{
//-----------------------------------------------------
// Clipped glyph
// Find the intersection of the glyph rectangle
// and the clip rectangle:
xLeft = max(prclClip->left, ptlOrigin.x);
yTop = max(prclClip->top, ptlOrigin.y);
xRight = min(prclClip->right, ptlOrigin.x + cxGlyph);
yBottom = min(prclClip->bottom, ptlOrigin.y + cyGlyph);
// Check for trivial rejection:
if (((cx = xRight - xLeft) > 0) &&
((cy = yBottom - yTop) > 0))
{
IO_FIFO_WAIT(ppdev, 5);
xBias = (xLeft - ptlOrigin.x) & 7;
if (xBias != 0)
{
// 'xBias' is the bit position in the monochrome glyph
// bitmap of the first pixel to be lit, relative to
// the start of the byte. That is, if 'xBias' is 2,
// then the first unclipped pixel is represented by bit
// 2 of the corresponding bitmap byte.
//
// Normally, the accelerator expects bit 0 to be the
// first lit byte. We use the scissors so that the
// first 'xBias' bits of the byte will not be displayed.
//
// (What we're doing is simply aligning the monochrome
// blt using the hardware clipping.)
MM_SCISSORS_L(ppdev, pjMmBase, xLeft);
xLeft -= xBias;
cx += xBias;
}
MM_CUR_X(ppdev, pjMmBase, xLeft);
MM_CUR_Y(ppdev, pjMmBase, yTop);
MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, cx - 1);
MM_MIN_AXIS_PCNT(ppdev, pjMmBase, cy - 1);
lDelta = (cxGlyph + 7) >> 3;
pjGlyph += (yTop - ptlOrigin.y) * lDelta
+ ((xLeft - ptlOrigin.x) >> 3);
cj = (cx + 7) >> 3;
IO_GP_WAIT(ppdev);
MM_CMD(ppdev, pjMmBase,
(RECTANGLE_FILL | WAIT | DRAWING_DIR_TBLRXM |
DRAW | LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE | BYTE_SWAP | BUS_SIZE_16));
CHECK_DATA_READY(ppdev);
// We use byte transfers because I don't expect we'll be
// asked to clip many large glyphs where it would be
// worth the overhead of setting up for word transfers:
do {
MM_TRANSFER_BYTE(ppdev, pjMmBase, pjGlyph, cj);
pjGlyph += lDelta;
} while (--cy != 0);
CHECK_DATA_COMPLETE(ppdev);
if (xBias != 0)
{
// Reset the scissors if we used it:
IO_FIFO_WAIT(ppdev, 1);
MM_ABS_SCISSORS_L(ppdev, pjMmBase, 0);
}
}
}
if (--cGlyph == 0)
break;
// Get ready for next glyph:
pgp++;
pgb = pgp->pgdf->pgb;
if (ulCharInc == 0)
{
ptlOrigin.x = pgp->ptl.x + pgb->ptlOrigin.x;
ptlOrigin.y = pgp->ptl.y + pgb->ptlOrigin.y;
}
else
{
ptlOrigin.x += ulCharInc;
}
}
}
} while (bMore);
}
} while (bMoreGlyphs);
}
/******************************Public*Routine******************************\
* CACHEDFONT* pcfAllocateCachedFont()
*
* Initializes our font data structure.
*
\**************************************************************************/
CACHEDFONT* pcfAllocateCachedFont(
PDEV* ppdev)
{
CACHEDFONT* pcf;
CACHEDGLYPH** ppcg;
LONG i;
pcf = EngAllocMem(FL_ZERO_MEMORY, sizeof(CACHEDFONT), ALLOC_TAG);
if (pcf != NULL)
{
// Note that we rely on FL_ZERO_MEMORY to zero 'pgaChain' and
// 'cjAlloc':
pcf->cgSentinel.hg = HGLYPH_SENTINEL;
// Initialize the hash table entries to all point to our sentinel:
for (ppcg = &pcf->apcg[0], i = GLYPH_HASH_SIZE; i != 0; i--, ppcg++)
{
*ppcg = &pcf->cgSentinel;
}
}
return(pcf);
}
/******************************Public*Routine******************************\
* VOID vFreeCachedFont()
*
* Frees all memory associated with the cache we kept for this font.
*
\**************************************************************************/
VOID vFreeCachedFont(
CACHEDFONT* pcf)
{
GLYPHALLOC* pga;
GLYPHALLOC* pgaNext;
pga = pcf->pgaChain;
while (pga != NULL)
{
pgaNext = pga->pgaNext;
EngFreeMem(pga);
pga = pgaNext;
}
EngFreeMem(pcf);
}
/******************************Public*Routine******************************\
* VOID vTrimAndBitpackGlyph
*
* This routine takes a GDI byte-aligned glyphbits definition, trims off
* any unused pixels on the sides, and creates a bit-packed result that
* is a natural for the S3's monochrome expansion capabilities.
* "Bit-packed" is where a small monochrome bitmap is packed with no
* unused bits between strides. So if GDI gives us a 16x16 bitmap to
* represent '.' that really only has a 2x2 array of lit pixels, we would
* trim the result to give a single byte value of 0xf0.
*
* Use this routine if your monochrome expansion hardware can do bit-packed
* expansion (this is the fastest method). If your hardware requires byte-,
* word-, or dword-alignment on monochrome expansions, use
* vTrimAndPackGlyph().
*
* (This driver doesn't use this routine only because the hardware can't do
* bit-packing!)
*
\**************************************************************************/
VOID vTrimAndBitpackGlyph(
BYTE* pjBuf, // Note: Routine may touch preceding byte!
BYTE* pjGlyph,
LONG* pcxGlyph,
LONG* pcyGlyph,
POINTL* pptlOrigin,
LONG* pcj) // For returning the count of bytes of the result
{
LONG cxGlyph;
LONG cyGlyph;
POINTL ptlOrigin;
LONG cAlign;
LONG lDelta;
BYTE* pj;
BYTE jBit;
LONG cjSrcWidth;
LONG lSrcSkip;
LONG lDstSkip;
LONG cRem;
BYTE* pjSrc;
BYTE* pjDst;
LONG i;
LONG j;
BYTE jSrc;
///////////////////////////////////////////////////////////////
// Trim the glyph
cyGlyph = *pcyGlyph;
cxGlyph = *pcxGlyph;
ptlOrigin = *pptlOrigin;
cAlign = 0;
lDelta = (cxGlyph + 7) >> 3;
// Trim off any zero rows at the bottom of the glyph:
pj = pjGlyph + cyGlyph * lDelta; // One past last byte in glyph
while (cyGlyph > 0)
{
i = lDelta;
do {
if (*(--pj) != 0)
goto Done_Bottom_Trim;
} while (--i != 0);
// The entire last row has no lit pixels, so simply skip it:
cyGlyph--;
}
ASSERTDD(cyGlyph == 0, "cyGlyph should only be zero here");
// We found a space character. Set both dimensions to zero, so
// that it's easy to special-case later:
cxGlyph = 0;
Done_Bottom_Trim:
// If cxGlyph != 0, we know that the glyph has at least one non-zero
// row and column. By exploiting this knowledge, we can simplify our
// end-of-loop tests, because we don't have to check to see if we've
// decremented either 'cyGlyph' or 'cxGlyph' to zero:
if (cxGlyph != 0)
{
// Trim off any zero rows at the top of the glyph:
pj = pjGlyph; // First byte in glyph
while (TRUE)
{
i = lDelta;
do {
if (*(pj++) != 0)
goto Done_Top_Trim;
} while (--i != 0);
// The entire first row has no lit pixels, so simply skip it:
cyGlyph--;
ptlOrigin.y++;
pjGlyph = pj;
}
Done_Top_Trim:
// Trim off any zero columns at the right edge of the glyph:
while (TRUE)
{
j = cxGlyph - 1;
pj = pjGlyph + (j >> 3); // Last byte in first row of glyph
jBit = gajBit[j & 0x7];
i = cyGlyph;
do {
if ((*pj & jBit) != 0)
goto Done_Right_Trim;
pj += lDelta;
} while (--i != 0);
// The entire last column has no lit pixels, so simply skip it:
cxGlyph--;
}
Done_Right_Trim:
// Trim off any zero columns at the left edge of the glyph:
while (TRUE)
{
pj = pjGlyph; // First byte in first row of glyph
jBit = gajBit[cAlign];
i = cyGlyph;
do {
if ((*pj & jBit) != 0)
goto Done_Left_Trim;
pj += lDelta;
} while (--i != 0);
// The entire first column has no lit pixels, so simply skip it:
ptlOrigin.x++;
cxGlyph--;
cAlign++;
if (cAlign >= 8)
{
cAlign = 0;
pjGlyph++;
}
}
}
Done_Left_Trim:
///////////////////////////////////////////////////////////////
// Pack the glyph
cjSrcWidth = (cxGlyph + cAlign + 7) >> 3;
lSrcSkip = lDelta - cjSrcWidth;
lDstSkip = ((cxGlyph + 7) >> 3) - cjSrcWidth - 1;
cRem = ((cxGlyph - 1) & 7) + 1; // 0 -> 8
pjSrc = pjGlyph;
pjDst = pjBuf;
// Zero the buffer, because we're going to 'or' stuff into it:
memset(pjBuf, 0, (cxGlyph * cyGlyph + 7) >> 3);
// cAlign used to indicate which bit in the first byte of the unpacked
// glyph was the first non-zero pixel column. Now, we flip it to
// indicate which bit in the packed byte will receive the next non-zero
// glyph bit:
cAlign = (-cAlign) & 0x7;
if (cAlign > 0)
{
// It would be bad if our trimming calculations were wrong, because
// we assume any bits to the left of the 'cAlign' bit will be zero.
// As a result of this decrement, we will 'or' those zero bits into
// whatever byte precedes the glyph bits array:
pjDst--;
ASSERTDD((*pjSrc >> cAlign) == 0, "Trimmed off too many bits");
}
for (i = cyGlyph; i != 0; i--)
{
for (j = cjSrcWidth; j != 0; j--)
{
// Note that we may modify a byte past the end of our
// destination buffer, which is why we reserved an
// extra byte:
jSrc = *pjSrc;
*(pjDst) |= (jSrc >> (cAlign));
*(pjDst + 1) |= (jSrc << (8 - cAlign));
pjSrc++;
pjDst++;
}
pjSrc += lSrcSkip;
pjDst += lDstSkip;
cAlign += cRem;
if (cAlign >= 8)
{
cAlign -= 8;
pjDst++;
}
}
///////////////////////////////////////////////////////////////
// Return results
*pcxGlyph = cxGlyph;
*pcyGlyph = cyGlyph;
*pptlOrigin = ptlOrigin;
*pcj = ((cxGlyph * cyGlyph) + 7) >> 3;
}
/******************************Public*Routine******************************\
* VOID vTrimAndPackGlyph
*
* This routine takes a GDI byte-aligned glyphbits definition, trims off
* any unused pixels on the sides, and creates a word-algined result that
* is a natural for the S3's monochrome expansion capabilities.
* So if GDI gives us a 16x16 bitmap to represent '.' that really only
* has a 2x2 array of lit pixels, we would trim the result to give 2 words
* of 0xc000 and 0xc000.
*
* Use this routine if your monochrome expansion hardware requires byte-,
* word-, or dword-alignment on monochrome expansions. If your hardware
* can do bit-packed expansions, please use vTrimAndBitpackGlyph(), since
* it will be faster.
*
\**************************************************************************/
VOID vTrimAndPackGlyph(
PDEV* ppdev,
BYTE* pjBuf, // Note: Routine may touch preceding byte!
BYTE* pjGlyph,
LONG* pcxGlyph,
LONG* pcyGlyph,
POINTL* pptlOrigin,
LONG* pcj) // For returning the count of bytes of the result
{
LONG cxGlyph;
LONG cyGlyph;
POINTL ptlOrigin;
LONG cAlign;
LONG lDelta;
BYTE* pj;
BYTE jBit;
LONG cjSrcWidth;
LONG lSrcSkip;
LONG lDstSkip;
LONG lDstDelta;
BYTE* pjSrc;
BYTE* pjDst;
LONG i;
LONG j;
BYTE jSrc;
///////////////////////////////////////////////////////////////
// Trim the glyph
cyGlyph = *pcyGlyph;
cxGlyph = *pcxGlyph;
ptlOrigin = *pptlOrigin;
cAlign = 0;
// let [x] denote the least integer greater than or equal to x
// Set lDelta to be [cxGlyph/8]. This is the number of bytes occupied
// by the pixels in the horizontal direction of the monochrome glyph.
lDelta = (cxGlyph + 7) >> 3;
// Trim off any zero rows at the bottom of the glyph:
pj = pjGlyph + cyGlyph * lDelta; // One past last byte in glyph
while (cyGlyph > 0)
{
i = lDelta;
do {
if (*(--pj) != 0)
goto Done_Bottom_Trim;
} while (--i != 0);
// The entire last row has no lit pixels, so simply skip it:
cyGlyph--;
}
ASSERTDD(cyGlyph == 0, "cyGlyph should only be zero here");
// We found a space character. Set both dimensions to zero, so
// that it's easy to special-case later:
cxGlyph = 0;
Done_Bottom_Trim:
// If cxGlyph != 0, we know that the glyph has at least one non-zero
// row and column. By exploiting this knowledge, we can simplify our
// end-of-loop tests, because we don't have to check to see if we've
// decremented either 'cyGlyph' or 'cxGlyph' to zero:
if (cxGlyph != 0)
{
// Trim off any zero rows at the top of the glyph:
pj = pjGlyph; // First byte in glyph
while (TRUE)
{
i = lDelta;
do {
if (*(pj++) != 0)
goto Done_Top_Trim;
} while (--i != 0);
// The entire first row has no lit pixels, so simply skip it:
cyGlyph--;
ptlOrigin.y++;
pjGlyph = pj;
}
Done_Top_Trim:
// Trim off any zero columns at the right edge of the glyph:
while (TRUE)
{
j = cxGlyph - 1;
pj = pjGlyph + (j >> 3); // Last byte in first row of glyph
jBit = gajBit[j & 0x7];
i = cyGlyph;
do {
if ((*pj & jBit) != 0)
goto Done_Right_Trim;
pj += lDelta;
} while (--i != 0);
// The entire last column has no lit pixels, so simply skip it:
cxGlyph--;
}
Done_Right_Trim:
// Trim off any zero columns at the left edge of the glyph:
while (TRUE)
{
pj = pjGlyph; // First byte in first row of glyph
jBit = gajBit[cAlign];
i = cyGlyph;
do {
if ((*pj & jBit) != 0)
goto Done_Left_Trim;
pj += lDelta;
} while (--i != 0);
// The entire first column has no lit pixels, so simply skip it:
ptlOrigin.x++;
cxGlyph--;
cAlign++;
if (cAlign >= 8)
{
cAlign = 0;
pjGlyph++;
}
}
}
Done_Left_Trim:
///////////////////////////////////////////////////////////////
// Pack the glyph
// byte count of cell size (trimmed width + blank left columns).
cjSrcWidth = (cxGlyph + cAlign + 7) >> 3;
// difference between cell width and trimmed glyph width.
lSrcSkip = lDelta - cjSrcWidth;
// trimmed glyph width in bytes.
lDstDelta = (cxGlyph + 7) >> 3;
// Make the glyphs 'word-packed' (i.e., every scan is word aligned)
// unless in 24bpp mode, in which case we have to use 32 bit bus size,
// which in turn requires dword packing.
if (ppdev->iBitmapFormat == BMF_24BPP)
lDstDelta = (lDstDelta + 3) & ~3;
else
lDstDelta = (lDstDelta + 1) & ~1;
lDstSkip = lDstDelta - cjSrcWidth;
pjSrc = pjGlyph; // Start of trimmed glyph, not including empty left columns.
pjDst = pjBuf;
// Zero the first byte of the buffer, because we're going to 'or' stuff
// into it:
*pjDst = 0;
// cAlign used to indicate which bit in the first byte of the unpacked
// glyph was the first non-zero pixel column. Now, we flip it to
// indicate which bit in the packed byte will receive the next non-zero
// glyph bit:
cAlign = (-cAlign) & 0x7;
if (cAlign > 0)
{
// It would be bad if our trimming calculations were wrong, because
// we assume any bits to the left of the 'cAlign' bit will be zero.
// As a result of this decrement, we will 'or' those zero bits into
// whatever byte precedes the glyph bits array:
pjDst--;
ASSERTDD((*pjSrc >> cAlign) == 0, "Trimmed off too many bits");
}
for (i = cyGlyph; i != 0; i--)
{
for (j = cjSrcWidth; j != 0; j--)
{
// Note that we may modify a byte past the end of our
// destination buffer, which is why we reserved an
// extra byte:
jSrc = *pjSrc;
*(pjDst) |= (jSrc >> (cAlign));
*(pjDst + 1) = (jSrc << (8 - cAlign));
pjSrc++;
pjDst++;
}
pjSrc += lSrcSkip;
pjDst += lDstSkip;
}
///////////////////////////////////////////////////////////////
// Return results
*pcxGlyph = cxGlyph;
*pcyGlyph = cyGlyph;
*pptlOrigin = ptlOrigin;
*pcj = lDstDelta * cyGlyph;
}
/******************************Public*Routine******************************\
* LONG cjPutGlyphInCache
*
* Figures out where to be a glyph in off-screen memory, copies it
* there, and fills in any other data we'll need to display the glyph.
*
* This routine is rather device-specific, and will have to be extensively
* modified for other display adapters.
*
* Returns the number of bytes taken by the cached glyph bits.
*
\**************************************************************************/
LONG cjPutGlyphInCache(
PDEV* ppdev,
CACHEDGLYPH* pcg,
GLYPHBITS* pgb)
{
BYTE* pjGlyph;
LONG cxGlyph;
LONG cyGlyph;
POINTL ptlOrigin;
BYTE* pjSrc;
ULONG* pulDst;
LONG i;
LONG cPels;
ULONG ulGlyphThis;
ULONG ulGlyphNext;
ULONG ul;
ULONG ulStart;
LONG cj;
pjGlyph = pgb->aj;
cyGlyph = pgb->sizlBitmap.cy;
cxGlyph = pgb->sizlBitmap.cx;
ptlOrigin = pgb->ptlOrigin;
vTrimAndPackGlyph(ppdev, (BYTE*) &pcg->ad, pjGlyph, &cxGlyph, &cyGlyph,
&ptlOrigin, &cj);
///////////////////////////////////////////////////////////////
// Initialize the glyph fields
pcg->ptlOrigin = ptlOrigin;
pcg->cxLessOne = cxGlyph - 1;
pcg->cyLessOne = cyGlyph - 1;
pcg->cxcyLessOne = PACKXY(cxGlyph - 1, cyGlyph - 1);
pcg->cw = (cj + 1) >> 1;
pcg->cd = (cj + 3) >> 2;
return(cj);
}
/******************************Public*Routine******************************\
* CACHEDGLYPH* pcgNew()
*
* Creates a new CACHEDGLYPH structure for keeping track of the glyph in
* off-screen memory. bPutGlyphInCache is called to actually put the glyph
* in off-screen memory.
*
* This routine should be reasonably device-independent, as bPutGlyphInCache
* will contain most of the code that will have to be modified for other
* display adapters.
*
\**************************************************************************/
CACHEDGLYPH* pcgNew(
PDEV* ppdev,
CACHEDFONT* pcf,
GLYPHPOS* pgp)
{
GLYPHBITS* pgb;
GLYPHALLOC* pga;
CACHEDGLYPH* pcg;
LONG cjCachedGlyph;
HGLYPH hg;
LONG iHash;
CACHEDGLYPH* pcgFind;
LONG cjGlyphRow;
LONG cj;
// First, calculate the amount of storage we'll need for this glyph:
pgb = pgp->pgdf->pgb;
// The glyphs are 'word-packed':
cjGlyphRow = ((pgb->sizlBitmap.cx + 15) & ~15) >> 3;
cjCachedGlyph = sizeof(CACHEDGLYPH) + (pgb->sizlBitmap.cy * cjGlyphRow);
// Reserve an extra byte at the end for temporary usage by our pack
// routine:
cjCachedGlyph++;
if (cjCachedGlyph > pcf->cjAlloc)
{
// Have to allocate a new glyph allocation structure:
pga = EngAllocMem(FL_ZERO_MEMORY, GLYPH_ALLOC_SIZE, ALLOC_TAG);
if (pga == NULL)
{
// It's safe to return at this time because we haven't
// fatally altered any of our data structures:
return(NULL);
}
// Add this allocation to the front of the allocation linked list,
// so that we can free it later:
pga->pgaNext = pcf->pgaChain;
pcf->pgaChain = pga;
// Now we've got a chunk of memory where we can store our cached
// glyphs:
pcf->pcgNew = &pga->acg[0];
pcf->cjAlloc = GLYPH_ALLOC_SIZE - (sizeof(*pga) - sizeof(pga->acg[0]));
// It would be bad if we let in any glyphs that would be bigger
// than our basic allocation size:
ASSERTDD(cjCachedGlyph <= GLYPH_ALLOC_SIZE, "Woah, this is one big glyph!");
}
pcg = pcf->pcgNew;
///////////////////////////////////////////////////////////////
// Insert the glyph, in-order, into the list hanging off our hash
// bucket:
hg = pgp->hg;
pcg->hg = hg;
iHash = GLYPH_HASH_FUNC(hg);
pcgFind = pcf->apcg[iHash];
if (pcgFind->hg > hg)
{
pcf->apcg[iHash] = pcg;
pcg->pcgNext = pcgFind;
}
else
{
// The sentinel will ensure that we never fall off the end of
// this list:
while (pcgFind->pcgNext->hg < hg)
pcgFind = pcgFind->pcgNext;
// 'pcgFind' now points to the entry to the entry after which
// we want to insert our new node:
pcg->pcgNext = pcgFind->pcgNext;
pcgFind->pcgNext = pcg;
}
cj = cjPutGlyphInCache(ppdev, pcg, pgp->pgdf->pgb);
///////////////////////////////////////////////////////////////
// We now know the size taken up by the packed and trimmed glyph;
// adjust the pointer to the next glyph accordingly. We only need
// to ensure 'dword' alignment:
cjCachedGlyph = sizeof(CACHEDGLYPH) + ((cj + 7) & ~7);
pcf->pcgNew = (CACHEDGLYPH*) ((BYTE*) pcg + cjCachedGlyph);
pcf->cjAlloc -= cjCachedGlyph;
return(pcg);
}
/******************************Public*Routine******************************\
* BOOL bMmCachedProportionalText
*
* Draws proportionally spaced glyphs via glyph caching.
*
\**************************************************************************/
BOOL bMmCachedProportionalText(
PDEV* ppdev,
CACHEDFONT* pcf,
GLYPHPOS* pgp,
LONG cGlyph)
{
BYTE* pjMmBase;
LONG xOffset;
LONG yOffset;
HGLYPH hg;
CACHEDGLYPH* pcg;
LONG cyLessOne;
LONG x;
LONG y;
pjMmBase = ppdev->pjMmBase;
xOffset = ppdev->xOffset;
yOffset = ppdev->yOffset;
// Ensure that there is enough room in the FIFO for the
// coordinate and dimensions of the first glyph, so that we
// don't accidentally hold the bus for a long to while a
// previous big operation, such as a screen-to-screen blt,
// is done.
IO_FIFO_WAIT(ppdev, 4);
do {
hg = pgp->hg;
pcg = pcf->apcg[GLYPH_HASH_FUNC(hg)];
while (pcg->hg < hg)
pcg = pcg->pcgNext; // Traverse collision list, if any
if (pcg->hg > hg)
{
// This will hopefully not be the common case (that is,
// we will have a high cache hit rate), so if I were
// writing this in Asm I would have this out-of-line
// to avoid the jump around for the common case.
// But the Pentium has branch prediction, so what the
// heck.
pcg = pcgNew(ppdev, pcf, pgp);
if (pcg == NULL)
return(FALSE);
}
// Space glyphs are trimmed to a height of zero, and we don't
// even have to touch the hardware for them:
cyLessOne = pcg->cyLessOne;
if (cyLessOne >= 0)
{
x = pgp->ptl.x + pcg->ptlOrigin.x + xOffset;
y = pgp->ptl.y + pcg->ptlOrigin.y + yOffset;
DBG_FAKE_WAIT(ppdev, pjMmBase, 4); // For debug builds only
MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, pcg->cxLessOne);
MM_MIN_AXIS_PCNT(ppdev, pjMmBase, cyLessOne);
MM_ABS_CUR_X(ppdev, pjMmBase, x);
MM_ABS_CUR_Y(ppdev, pjMmBase, y);
IO_GP_WAIT(ppdev);
MM_CMD(ppdev, pjMmBase,
(RECTANGLE_FILL | WAIT | DRAWING_DIR_TBLRXM |
DRAW | LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE | BYTE_SWAP | BUS_SIZE_16));
CHECK_DATA_READY(ppdev);
MM_TRANSFER_WORD_ALIGNED(ppdev, pjMmBase, &pcg->ad[0], pcg->cw);
CHECK_DATA_COMPLETE(ppdev);
}
} while (pgp++, --cGlyph != 0);
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL bMmCachedClippedText
*
* Draws clipped text via glyph caching.
*
\**************************************************************************/
BOOL bMmCachedClippedText(
PDEV* ppdev,
CACHEDFONT* pcf,
STROBJ* pstro,
CLIPOBJ* pco)
{
BOOL bRet;
BYTE* pjMmBase;
LONG xOffset;
LONG yOffset;
BOOL bMoreGlyphs;
ULONG cGlyphOriginal;
ULONG cGlyph;
BOOL bClippingSet;
GLYPHPOS* pgpOriginal;
GLYPHPOS* pgp;
LONG xGlyph;
LONG yGlyph;
LONG x;
LONG y;
LONG xRight;
LONG cyLessOne;
BOOL bMore;
CLIPENUM ce;
RECTL* prclClip;
ULONG ulCharInc;
HGLYPH hg;
CACHEDGLYPH* pcg;
BYTE iDComplexity;
bRet = TRUE;
pjMmBase = ppdev->pjMmBase;
xOffset = ppdev->xOffset;
yOffset = ppdev->yOffset;
ulCharInc = pstro->ulCharInc;
// Ensure that there is enough room in the FIFO for the
// coordinate and dimensions of the first glyph, so that we
// don't accidentally hold the bus for a long to while a
// previous big operation, such as a screen-to-screen blt,
// is done.
IO_FIFO_WAIT(ppdev, 4);
do {
if (pstro->pgp != NULL)
{
// There's only the one batch of glyphs, so save ourselves
// a call:
pgpOriginal = pstro->pgp;
cGlyphOriginal = pstro->cGlyphs;
bMoreGlyphs = FALSE;
}
else
{
bMoreGlyphs = STROBJ_bEnum(pstro, &cGlyphOriginal, &pgpOriginal);
}
iDComplexity = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
if (cGlyphOriginal > 0)
{
if (iDComplexity != DC_COMPLEX)
{
// We could call 'cEnumStart' and 'bEnum' when the clipping is
// DC_RECT, but the last time I checked, those two calls took
// more than 150 instructions to go through GDI. Since
// 'rclBounds' already contains the DC_RECT clip rectangle,
// and since it's such a common case, we'll special case it:
bMore = FALSE;
ce.c = 1;
if (iDComplexity == DC_TRIVIAL)
prclClip = &grclMax;
else
prclClip = &pco->rclBounds;
goto SingleRectangle;
}
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do {
bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
for (prclClip = &ce.arcl[0]; ce.c != 0; ce.c--, prclClip++)
{
SingleRectangle:
// We don't always simply set the clipping rectangle here
// because it may actually end up that no text intersects
// this clip rectangle, so it would be for naught. This
// actually happens a lot when using NT's analog clock set
// to always-on-top, with a round shape:
bClippingSet = FALSE;
pgp = pgpOriginal;
cGlyph = cGlyphOriginal;
// We can't yet convert to absolute coordinates by adding
// in 'xOffset' or 'yOffset' here because we have yet to
// compare the coordinates to 'prclClip':
xGlyph = pgp->ptl.x;
yGlyph = pgp->ptl.y;
// Loop through all the glyphs for this rectangle:
while (TRUE)
{
hg = pgp->hg;
pcg = pcf->apcg[GLYPH_HASH_FUNC(hg)];
while (pcg->hg < hg)
pcg = pcg->pcgNext;
if (pcg->hg > hg)
{
// This will hopefully not be the common case (that is,
// we will have a high cache hit rate), so if I were
// writing this in Asm I would have this out-of-line
// to avoid the jump around for the common case.
// But the Pentium has branch prediction, so what the
// heck.
pcg = pcgNew(ppdev, pcf, pgp);
if (pcg == NULL)
{
bRet = FALSE;
goto AllDone;
}
}
// Space glyphs are trimmed to a height of zero, and we don't
// even have to touch the hardware for them:
cyLessOne = pcg->cyLessOne;
if (cyLessOne >= 0)
{
y = pcg->ptlOrigin.y + yGlyph;
x = pcg->ptlOrigin.x + xGlyph;
xRight = pcg->cxLessOne + x;
// Do trivial rejection:
if ((prclClip->right > x) &&
(prclClip->bottom > y) &&
(prclClip->left <= xRight) &&
(prclClip->top <= y + cyLessOne))
{
// Lazily set the hardware clipping:
if ((iDComplexity != DC_TRIVIAL) && (!bClippingSet))
{
bClippingSet = TRUE;
vSetClipping(ppdev, prclClip);
// Wait here for same reason we do IO_FIFO_WAIT(4) above...
IO_FIFO_WAIT(ppdev, 4);
}
DBG_FAKE_WAIT(ppdev, pjMmBase, 4); // For debug builds only
MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, pcg->cxLessOne);
MM_MIN_AXIS_PCNT(ppdev, pjMmBase, cyLessOne);
MM_ABS_CUR_X(ppdev, pjMmBase, xOffset + x);
MM_ABS_CUR_Y(ppdev, pjMmBase, yOffset + y);
IO_GP_WAIT(ppdev);
MM_CMD(ppdev, pjMmBase,
(RECTANGLE_FILL | WAIT | DRAWING_DIR_TBLRXM |
DRAW | LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE | BYTE_SWAP | BUS_SIZE_16));
CHECK_DATA_READY(ppdev);
MM_TRANSFER_WORD_ALIGNED(ppdev, pjMmBase, &pcg->ad[0], pcg->cw);
CHECK_DATA_COMPLETE(ppdev);
}
}
if (--cGlyph == 0)
break;
// Get ready for next glyph:
pgp++;
if (ulCharInc == 0)
{
xGlyph = pgp->ptl.x;
yGlyph = pgp->ptl.y;
}
else
{
xGlyph += ulCharInc;
}
}
}
} while (bMore);
}
} while (bMoreGlyphs);
AllDone:
if (iDComplexity != DC_TRIVIAL)
{
vResetClipping(ppdev);
}
return(bRet);
}
/******************************Public*Routine******************************\
* BOOL bMmTextOut
*
* Outputs text using the 'buffer expansion' method. The CPU draws to a
* 1bpp buffer, and the result is colour-expanded to the screen using the
* hardware.
*
* Note that this is x86 only ('vFastText', which draws the glyphs to the
* 1bpp buffer, is writen in Asm).
*
* If you're just getting your driver working, this is the fastest way to
* bring up working accelerated text. All you have to do is write the
* 'Xfer1bpp' function that's also used by the blt code. This
* 'bBufferExpansion' routine shouldn't need to be modified at all.
*
\**************************************************************************/
BOOL bMmTextOut(
SURFOBJ* pso,
STROBJ* pstro,
FONTOBJ* pfo,
CLIPOBJ* pco,
RECTL* prclOpaque,
BRUSHOBJ* pboFore,
BRUSHOBJ* pboOpaque)
{
PDEV* ppdev;
DSURF* pdsurf;
BYTE* pjMmBase;
BOOL bGlyphExpand;
BOOL bTextPerfectFit;
ULONG cGlyph;
BOOL bMoreGlyphs;
GLYPHPOS* pgp;
GLYPHBITS* pgb;
BYTE* pjGlyph;
LONG cyGlyph;
POINTL ptlOrigin;
LONG ulCharInc;
BYTE iDComplexity;
LONG lDelta;
LONG cw;
RECTL rclOpaque;
CACHEDFONT* pcf;
ppdev = (PDEV*) pso->dhpdev;
pjMmBase = ppdev->pjMmBase;
iDComplexity = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
if (prclOpaque != NULL)
{
////////////////////////////////////////////////////////////
// Opaque Initialization
////////////////////////////////////////////////////////////
if (iDComplexity == DC_TRIVIAL)
{
DrawOpaqueRect:
IO_FIFO_WAIT(ppdev, 8);
MM_FRGD_COLOR(ppdev, pjMmBase, pboOpaque->iSolidColor);
MM_PIX_CNTL(ppdev, pjMmBase, ALL_ONES);
MM_FRGD_MIX(ppdev, pjMmBase, FOREGROUND_COLOR | OVERPAINT);
MM_CUR_X(ppdev, pjMmBase, prclOpaque->left);
MM_CUR_Y(ppdev, pjMmBase, prclOpaque->top);
MM_MAJ_AXIS_PCNT(ppdev, pjMmBase,
prclOpaque->right - prclOpaque->left - 1);
MM_MIN_AXIS_PCNT(ppdev, pjMmBase,
prclOpaque->bottom - prclOpaque->top - 1);
MM_CMD(ppdev, pjMmBase, RECTANGLE_FILL | DRAWING_DIR_TBLRXM |
DRAW | DIR_TYPE_XY |
LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE);
}
else if (iDComplexity == DC_RECT)
{
if (bIntersect(prclOpaque, &pco->rclBounds, &rclOpaque))
{
prclOpaque = &rclOpaque;
goto DrawOpaqueRect;
}
}
else
{
vClipSolid(ppdev, 1, prclOpaque, pboOpaque->iSolidColor, pco);
}
// If we paint the glyphs in 'opaque' mode, we may not actually
// have to draw the opaquing rectangle up-front -- the process
// of laying down all the glyphs will automatically cover all
// of the pixels in the opaquing rectangle.
//
// The condition that must be satisfied is that the text must
// fit 'perfectly' such that the entire background rectangle is
// covered, and none of the glyphs overlap (if the glyphs
// overlap, such as for italics, they have to be drawn in
// transparent mode after the opaquing rectangle is cleared).
bTextPerfectFit = (pstro->flAccel & (SO_ZERO_BEARINGS |
SO_FLAG_DEFAULT_PLACEMENT | SO_MAXEXT_EQUAL_BM_SIDE |
SO_CHAR_INC_EQUAL_BM_BASE)) ==
(SO_ZERO_BEARINGS | SO_FLAG_DEFAULT_PLACEMENT |
SO_MAXEXT_EQUAL_BM_SIDE | SO_CHAR_INC_EQUAL_BM_BASE);
if (bTextPerfectFit)
{
// If the glyphs don't overlap, we can lay the glyphs down
// in 'opaque' mode, which on the S3 I've found to be faster
// than opaque mode:
IO_FIFO_WAIT(ppdev, 7);
MM_PIX_CNTL(ppdev, pjMmBase, CPU_DATA);
MM_FRGD_MIX(ppdev, pjMmBase, FOREGROUND_COLOR | OVERPAINT);
MM_BKGD_MIX(ppdev, pjMmBase, BACKGROUND_COLOR | OVERPAINT);
MM_FRGD_COLOR(ppdev, pjMmBase, pboFore->iSolidColor);
MM_BKGD_COLOR(ppdev, pjMmBase, pboOpaque->iSolidColor);
goto SkipTransparentInitialization;
}
}
////////////////////////////////////////////////////////////
// Transparent Initialization
////////////////////////////////////////////////////////////
// Initialize the hardware for transparent text:
IO_FIFO_WAIT(ppdev, 4);
MM_PIX_CNTL(ppdev, pjMmBase, CPU_DATA);
MM_FRGD_MIX(ppdev, pjMmBase, FOREGROUND_COLOR | OVERPAINT);
MM_BKGD_MIX(ppdev, pjMmBase, BACKGROUND_COLOR | LEAVE_ALONE);
MM_FRGD_COLOR(ppdev, pjMmBase, pboFore->iSolidColor);
SkipTransparentInitialization:
if ((pfo->cxMax <= GLYPH_CACHE_CX) &&
((pstro->rclBkGround.bottom - pstro->rclBkGround.top) <= GLYPH_CACHE_CY))
{
pcf = (CACHEDFONT*) pfo->pvConsumer;
if (pcf == NULL)
{
pcf = pcfAllocateCachedFont(ppdev);
if (pcf == NULL)
return(FALSE);
pfo->pvConsumer = pcf;
}
// Use our glyph cache:
if ((iDComplexity == DC_TRIVIAL) && (pstro->ulCharInc == 0))
{
do {
if (pstro->pgp != NULL)
{
// There's only the one batch of glyphs, so save ourselves
// a call:
pgp = pstro->pgp;
cGlyph = pstro->cGlyphs;
bMoreGlyphs = FALSE;
}
else
{
bMoreGlyphs = STROBJ_bEnum(pstro, &cGlyph, &pgp);
}
if (cGlyph > 0)
{
if (!bMmCachedProportionalText(ppdev, pcf, pgp, cGlyph))
return(FALSE);
}
} while (bMoreGlyphs);
}
else
{
if (!bMmCachedClippedText(ppdev, pcf, pstro, pco))
return(FALSE);
}
}
else
{
DISPDBG((4, "Text too big to cache: %li x %li",
pfo->cxMax, pstro->rclBkGround.bottom - pstro->rclBkGround.top));
vMmGeneralText(ppdev, pstro, pco);
}
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL bNwCachedProportionalText
*
* Draws proportionally spaced glyphs via glyph caching.
*
\**************************************************************************/
BOOL bNwCachedProportionalText(
PDEV* ppdev,
CACHEDFONT* pcf,
GLYPHPOS* pgp,
LONG cGlyph)
{
BYTE* pjMmBase;
LONG xOffset;
LONG yOffset;
HGLYPH hg;
CACHEDGLYPH* pcg;
LONG cxcyLessOne;
LONG x;
LONG y;
USHORT busmode = BUS_SIZE_16;
pjMmBase = ppdev->pjMmBase;
xOffset = ppdev->xOffset;
yOffset = ppdev->yOffset;
// Ensure that there is enough room in the FIFO for the
// coordinate and dimensions of the first glyph, so that we
// don't accidentally hold the bus for a long to while a
// previous big operation, such as a screen-to-screen blt,
// is done.
NW_FIFO_WAIT(ppdev, pjMmBase, 2);
if (ppdev->iBitmapFormat == BMF_24BPP)
busmode = BUS_SIZE_32;
do {
hg = pgp->hg;
pcg = pcf->apcg[GLYPH_HASH_FUNC(hg)];
while (pcg->hg < hg)
pcg = pcg->pcgNext; // Traverse collision list, if any
if (pcg->hg > hg)
{
// This will hopefully not be the common case (that is,
// we will have a high cache hit rate), so if I were
// writing this in Asm I would have this out-of-line
// to avoid the jump around for the common case.
// But the Pentium has branch prediction, so what the
// heck.
pcg = pcgNew(ppdev, pcf, pgp);
if (pcg == NULL)
return(FALSE);
}
// Space glyphs are trimmed to a height of zero, and we don't
// even have to touch the hardware for them:
cxcyLessOne = pcg->cxcyLessOne;
if (cxcyLessOne >= 0)
{
x = pgp->ptl.x + pcg->ptlOrigin.x + xOffset;
y = pgp->ptl.y + pcg->ptlOrigin.y + yOffset;
DBG_FAKE_WAIT(ppdev, pjMmBase, 2); // For debug builds only
NW_ABS_CURXY_FAST(ppdev, pjMmBase, x, y);
NW_ALT_PCNT_PACKED(ppdev, pjMmBase, cxcyLessOne);
NW_GP_WAIT(ppdev, pjMmBase);
NW_ALT_CMD(ppdev, pjMmBase,
(RECTANGLE_FILL | WAIT | DRAWING_DIR_TBLRXM |
DRAW | LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE | BYTE_SWAP | busmode));
CHECK_DATA_READY(ppdev);
#if defined(_X86_)
memcpy(pjMmBase, &pcg->ad[0], pcg->cd << 2);
#else
// Non-x86 platforms may be required to call the HAL to
// the I/O, or to do memory barriers:
MM_TRANSFER_DWORD_ALIGNED(ppdev, pjMmBase, &pcg->ad[0], pcg->cd);
#endif
CHECK_DATA_COMPLETE(ppdev);
}
} while (pgp++, --cGlyph != 0);
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL bNwCachedClippedText
*
* Draws clipped text via glyph caching.
*
\**************************************************************************/
BOOL bNwCachedClippedText(
PDEV* ppdev,
CACHEDFONT* pcf,
STROBJ* pstro,
CLIPOBJ* pco)
{
BOOL bRet;
BYTE* pjMmBase;
LONG xOffset;
LONG yOffset;
BOOL bMoreGlyphs;
ULONG cGlyphOriginal;
ULONG cGlyph;
BOOL bClippingSet;
GLYPHPOS* pgpOriginal;
GLYPHPOS* pgp;
LONG xGlyph;
LONG yGlyph;
LONG x;
LONG y;
LONG xRight;
LONG cyLessOne;
BOOL bMore;
CLIPENUM ce;
RECTL* prclClip;
ULONG ulCharInc;
HGLYPH hg;
CACHEDGLYPH* pcg;
BYTE iDComplexity;
USHORT busmode = BUS_SIZE_16;
bRet = TRUE;
pjMmBase = ppdev->pjMmBase;
xOffset = ppdev->xOffset;
yOffset = ppdev->yOffset;
ulCharInc = pstro->ulCharInc;
// Ensure that there is enough room in the FIFO for the
// coordinate and dimensions of the first glyph, so that we
// don't accidentally hold the bus for a long to while a
// previous big operation, such as a screen-to-screen blt,
// is done.
NW_FIFO_WAIT(ppdev, pjMmBase, 2);
if (ppdev->iBitmapFormat == BMF_24BPP)
busmode = BUS_SIZE_32;
do {
if (pstro->pgp != NULL)
{
// There's only the one batch of glyphs, so save ourselves
// a call:
pgpOriginal = pstro->pgp;
cGlyphOriginal = pstro->cGlyphs;
bMoreGlyphs = FALSE;
}
else
{
bMoreGlyphs = STROBJ_bEnum(pstro, &cGlyphOriginal, &pgpOriginal);
}
iDComplexity = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
if (cGlyphOriginal > 0)
{
if (iDComplexity != DC_COMPLEX)
{
// We could call 'cEnumStart' and 'bEnum' when the clipping is
// DC_RECT, but the last time I checked, those two calls took
// more than 150 instructions to go through GDI. Since
// 'rclBounds' already contains the DC_RECT clip rectangle,
// and since it's such a common case, we'll special case it:
bMore = FALSE;
ce.c = 1;
if (iDComplexity == DC_TRIVIAL)
prclClip = &grclMax;
else
prclClip = &pco->rclBounds;
goto SingleRectangle;
}
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do {
bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
for (prclClip = &ce.arcl[0]; ce.c != 0; ce.c--, prclClip++)
{
SingleRectangle:
// We don't always simply set the clipping rectangle here
// because it may actually end up that no text intersects
// this clip rectangle, so it would be for naught. This
// actually happens a lot when using NT's analog clock set
// to always-on-top, with a round shape:
bClippingSet = FALSE;
pgp = pgpOriginal;
cGlyph = cGlyphOriginal;
// We can't yet convert to absolute coordinates by adding
// in 'xOffset' or 'yOffset' here because we have yet to
// compare the coordinates to 'prclClip':
xGlyph = pgp->ptl.x;
yGlyph = pgp->ptl.y;
// Loop through all the glyphs for this rectangle:
while (TRUE)
{
hg = pgp->hg;
pcg = pcf->apcg[GLYPH_HASH_FUNC(hg)];
while (pcg->hg < hg)
pcg = pcg->pcgNext;
if (pcg->hg > hg)
{
// This will hopefully not be the common case (that is,
// we will have a high cache hit rate), so if I were
// writing this in Asm I would have this out-of-line
// to avoid the jump around for the common case.
// But the Pentium has branch prediction, so what the
// heck.
pcg = pcgNew(ppdev, pcf, pgp);
if (pcg == NULL)
{
bRet = FALSE;
goto AllDone;
}
}
// Space glyphs are trimmed to a height of zero, and we don't
// even have to touch the hardware for them:
cyLessOne = pcg->cyLessOne;
if (cyLessOne >= 0)
{
y = pcg->ptlOrigin.y + yGlyph;
x = pcg->ptlOrigin.x + xGlyph;
xRight = pcg->cxLessOne + x;
// Do trivial rejection:
if ((prclClip->right > x) &&
(prclClip->bottom > y) &&
(prclClip->left <= xRight) &&
(prclClip->top <= y + cyLessOne))
{
// Lazily set the hardware clipping:
if ((iDComplexity != DC_TRIVIAL) && (!bClippingSet))
{
bClippingSet = TRUE;
vSetClipping(ppdev, prclClip);
// Wait here for same reason we do NW_FIFO_WAIT(2) above...
NW_FIFO_WAIT(ppdev, pjMmBase, 2);
}
DBG_FAKE_WAIT(ppdev, pjMmBase, 2); // For debug builds only
NW_ABS_CURXY(ppdev, pjMmBase, xOffset + x, yOffset + y);
NW_ALT_PCNT_PACKED(ppdev, pjMmBase, pcg->cxcyLessOne);
NW_GP_WAIT(ppdev, pjMmBase);
NW_ALT_CMD(ppdev, pjMmBase,
(RECTANGLE_FILL | WAIT | DRAWING_DIR_TBLRXM |
DRAW | LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE | BYTE_SWAP | busmode));
CHECK_DATA_READY(ppdev);
MM_TRANSFER_DWORD_ALIGNED(ppdev, pjMmBase, &pcg->ad[0], pcg->cd);
CHECK_DATA_COMPLETE(ppdev);
}
}
if (--cGlyph == 0)
break;
// Get ready for next glyph:
pgp++;
if (ulCharInc == 0)
{
xGlyph = pgp->ptl.x;
yGlyph = pgp->ptl.y;
}
else
{
xGlyph += ulCharInc;
}
}
}
} while (bMore);
}
} while (bMoreGlyphs);
AllDone:
if (iDComplexity != DC_TRIVIAL)
{
vResetClipping(ppdev);
}
return(bRet);
}
/******************************Public*Routine******************************\
* BOOL bNwTextOut
*
* Outputs text using the 'buffer expansion' method. The CPU draws to a
* 1bpp buffer, and the result is colour-expanded to the screen using the
* hardware.
*
* Note that this is x86 only ('vFastText', which draws the glyphs to the
* 1bpp buffer, is writen in Asm).
*
* If you're just getting your driver working, this is the fastest way to
* bring up working accelerated text. All you have to do is write the
* 'Xfer1bpp' function that's also used by the blt code. This
* 'bBufferExpansion' routine shouldn't need to be modified at all.
*
\**************************************************************************/
BOOL bNwTextOut(
SURFOBJ* pso,
STROBJ* pstro,
FONTOBJ* pfo,
CLIPOBJ* pco,
RECTL* prclOpaque,
BRUSHOBJ* pboFore,
BRUSHOBJ* pboOpaque)
{
PDEV* ppdev;
DSURF* pdsurf;
BYTE* pjMmBase;
BOOL bGlyphExpand;
BOOL bTextPerfectFit;
ULONG cGlyph;
BOOL bMoreGlyphs;
GLYPHPOS* pgp;
GLYPHBITS* pgb;
BYTE* pjGlyph;
LONG cyGlyph;
POINTL ptlOrigin;
LONG ulCharInc;
BYTE iDComplexity;
LONG lDelta;
LONG cw;
RECTL rclOpaque;
CACHEDFONT* pcf;
LONG xOffset;
LONG yOffset;
ppdev = (PDEV*) pso->dhpdev;
pjMmBase = ppdev->pjMmBase;
xOffset = ppdev->xOffset;
yOffset = ppdev->yOffset;
iDComplexity = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
if (prclOpaque != NULL)
{
////////////////////////////////////////////////////////////
// Opaque Initialization
////////////////////////////////////////////////////////////
if (iDComplexity == DC_TRIVIAL)
{
DrawOpaqueRect:
NW_FIFO_WAIT(ppdev, pjMmBase, 6);
NW_FRGD_COLOR(ppdev, pjMmBase, pboOpaque->iSolidColor);
MM_PIX_CNTL(ppdev, pjMmBase, ALL_ONES);
MM_FRGD_MIX(ppdev, pjMmBase, FOREGROUND_COLOR | OVERPAINT);
NW_ABS_CURXY_FAST(ppdev, pjMmBase, prclOpaque->left + xOffset,
prclOpaque->top + yOffset);
NW_ALT_PCNT(ppdev, pjMmBase,
prclOpaque->right - prclOpaque->left - 1,
prclOpaque->bottom - prclOpaque->top - 1);
NW_ALT_CMD(ppdev, pjMmBase, RECTANGLE_FILL | DRAWING_DIR_TBLRXM |
DRAW | DIR_TYPE_XY |
LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE);
}
else if (iDComplexity == DC_RECT)
{
if (bIntersect(prclOpaque, &pco->rclBounds, &rclOpaque))
{
prclOpaque = &rclOpaque;
goto DrawOpaqueRect;
}
}
else
{
vClipSolid(ppdev, 1, prclOpaque, pboOpaque->iSolidColor, pco);
}
// If we paint the glyphs in 'opaque' mode, we may not actually
// have to draw the opaquing rectangle up-front -- the process
// of laying down all the glyphs will automatically cover all
// of the pixels in the opaquing rectangle.
//
// The condition that must be satisfied is that the text must
// fit 'perfectly' such that the entire background rectangle is
// covered, and none of the glyphs overlap (if the glyphs
// overlap, such as for italics, they have to be drawn in
// transparent mode after the opaquing rectangle is cleared).
bTextPerfectFit = (pstro->flAccel & (SO_ZERO_BEARINGS |
SO_FLAG_DEFAULT_PLACEMENT | SO_MAXEXT_EQUAL_BM_SIDE |
SO_CHAR_INC_EQUAL_BM_BASE)) ==
(SO_ZERO_BEARINGS | SO_FLAG_DEFAULT_PLACEMENT |
SO_MAXEXT_EQUAL_BM_SIDE | SO_CHAR_INC_EQUAL_BM_BASE);
if (bTextPerfectFit)
{
// If the glyphs don't overlap, we can lay the glyphs down
// in 'opaque' mode, which on the S3 I've found to be faster
// than opaque mode:
NW_FIFO_WAIT(ppdev, pjMmBase, 4);
MM_PIX_CNTL(ppdev, pjMmBase, CPU_DATA);
NW_ALT_MIX(ppdev, pjMmBase, FOREGROUND_COLOR | OVERPAINT,
BACKGROUND_COLOR | OVERPAINT);
NW_FRGD_COLOR(ppdev, pjMmBase, pboFore->iSolidColor);
NW_BKGD_COLOR(ppdev, pjMmBase, pboOpaque->iSolidColor);
goto SkipTransparentInitialization;
}
}
////////////////////////////////////////////////////////////
// Transparent Initialization
////////////////////////////////////////////////////////////
// Initialize the hardware for transparent text:
NW_FIFO_WAIT(ppdev, pjMmBase, 3);
MM_PIX_CNTL(ppdev, pjMmBase, CPU_DATA);
NW_ALT_MIX(ppdev, pjMmBase, FOREGROUND_COLOR | OVERPAINT,
BACKGROUND_COLOR | LEAVE_ALONE);
NW_FRGD_COLOR(ppdev, pjMmBase, pboFore->iSolidColor);
SkipTransparentInitialization:
if ((pfo->cxMax <= GLYPH_CACHE_CX) &&
((pstro->rclBkGround.bottom - pstro->rclBkGround.top) <= GLYPH_CACHE_CY))
{
pcf = (CACHEDFONT*) pfo->pvConsumer;
if (pcf == NULL)
{
pcf = pcfAllocateCachedFont(ppdev);
if (pcf == NULL)
return(FALSE);
pfo->pvConsumer = pcf;
}
// Use our glyph cache:
if ((iDComplexity == DC_TRIVIAL) && (pstro->ulCharInc == 0))
{
do {
if (pstro->pgp != NULL)
{
// There's only the one batch of glyphs, so save ourselves
// a call:
pgp = pstro->pgp;
cGlyph = pstro->cGlyphs;
bMoreGlyphs = FALSE;
}
else
{
bMoreGlyphs = STROBJ_bEnum(pstro, &cGlyph, &pgp);
}
if (cGlyph > 0)
{
if (!bNwCachedProportionalText(ppdev, pcf, pgp, cGlyph))
return(FALSE);
}
} while (bMoreGlyphs);
}
else
{
if (!bNwCachedClippedText(ppdev, pcf, pstro, pco))
return(FALSE);
}
}
else
{
DISPDBG((4, "Text too big to cache: %li x %li",
pfo->cxMax, pstro->rclBkGround.bottom - pstro->rclBkGround.top));
// Can't do large glyphs via accelerator at 24bpp:
if (ppdev->iBitmapFormat == BMF_24BPP)
{
BANK bnk;
BOOL b = TRUE;
vBankStart(ppdev,
(prclOpaque!= NULL) ? prclOpaque : &pstro->rclBkGround,
pco,
&bnk);
do {
b &= EngTextOut(bnk.pso,
pstro,
pfo,
bnk.pco,
NULL,
prclOpaque,
pboFore,
pboOpaque,
NULL,
0x0d0d);
} while (bBankEnum(&bnk));
return b;
}
vMmGeneralText(ppdev, pstro, pco);
}
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL DrvTextOut
*
* Calls the appropriate text drawing routine.
*
\**************************************************************************/
BOOL DrvTextOut(
SURFOBJ* pso,
STROBJ* pstro,
FONTOBJ* pfo,
CLIPOBJ* pco,
RECTL* prclExtra, // If we had set GCAPS_HORIZSTRIKE, we would have
// to fill these extra rectangles (it is used
// largely for underlines). It's not a big
// performance win (GDI will call our DrvBitBlt
// to draw the extra rectangles).
RECTL* prclOpaque,
BRUSHOBJ* pboFore,
BRUSHOBJ* pboOpaque,
POINTL* pptlBrush, // Always unused, unless GCAPS_ARBRUSHOPAQUE set
MIX mix) // Always a copy mix -- 0x0d0d
{
PDEV* ppdev;
DSURF* pdsurf;
pdsurf = (DSURF*) pso->dhsurf;
ppdev = (PDEV*) pso->dhpdev;
ASSERTDD(!(pdsurf->dt & DT_DIB), "Didn't expect DT_DIB");
ppdev->xOffset = pdsurf->x;
ppdev->yOffset = pdsurf->y;
// There seems to be a problem with 24 bpp accelerated large text
// on s3 diamond 968 so for now, punt to GDI
// The DDI spec says we'll only ever get foreground and background
// mixes of R2_COPYPEN:
ASSERTDD(mix == 0x0d0d, "GDI should only give us a copy mix");
return(ppdev->pfnTextOut(pso, pstro, pfo, pco, prclOpaque, pboFore,
pboOpaque));
}
/******************************Public*Routine******************************\
* BOOL bEnableText
*
* Performs the necessary setup for the text drawing subcomponent.
*
\**************************************************************************/
BOOL bEnableText(
PDEV* ppdev)
{
SIZEL sizl;
HBITMAP hbm;
if (ppdev->pfnTextOut == bIoTextOut)
{
// We need to allocate a temporary 1bpp surface object if we're
// going to have GDI draw the glyphs for us:
sizl.cx = ppdev->cxMemory;
sizl.cy = ppdev->cyMemory;
// We will be mucking with the surface's 'pvScan0' value, so we
// simply must pass in a non-NULL 'pvBits' value to EngCreateBitmap:
hbm = EngCreateBitmap(sizl, sizl.cx, BMF_1BPP, 0, ppdev->pvTmpBuffer);
if (hbm == 0)
return(FALSE);
ppdev->psoText = EngLockSurface((HSURF) hbm);
if (ppdev->psoText == NULL)
{
EngDeleteSurface((HSURF) hbm);
return(FALSE);
}
}
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID vDisableText
*
* Performs the necessary clean-up for the text drawing subcomponent.
*
\**************************************************************************/
VOID vDisableText(PDEV* ppdev)
{
HSURF hsurf;
SURFOBJ* psoText;
// Here we free any stuff allocated in 'bEnableText'.
psoText = ppdev->psoText;
if (psoText != NULL)
{
hsurf = psoText->hsurf;
EngUnlockSurface(psoText);
EngDeleteSurface(hsurf);
}
}
/******************************Public*Routine******************************\
* VOID vAssertModeText
*
* Disables or re-enables the text drawing subcomponent in preparation for
* full-screen entry/exit.
*
\**************************************************************************/
VOID vAssertModeText(
PDEV* ppdev,
BOOL bEnable)
{
// If we were to do off-screen glyph caching, we would probably want
// to invalidate our cache here, because it will get destroyed when
// we switch to full-screen.
}
/******************************Public*Routine******************************\
* VOID DrvDestroyFont
*
* Note: Don't forget to export this call in 'enable.c', otherwise you'll
* get some pretty big memory leaks!
*
* We're being notified that the given font is being deallocated; clean up
* anything we've stashed in the 'pvConsumer' field of the 'pfo'.
*
\**************************************************************************/
VOID DrvDestroyFont(
FONTOBJ* pfo)
{
CACHEDFONT* pcf;
pcf = pfo->pvConsumer;
if (pcf != NULL)
{
vFreeCachedFont(pcf);
pfo->pvConsumer = NULL;
}
}