5072 lines
148 KiB
C
5072 lines
148 KiB
C
/*++
|
||
|
||
Copyright (c) 1992 Microsoft Corporation
|
||
|
||
Module Name:
|
||
|
||
vga.c
|
||
|
||
Abstract:
|
||
|
||
This is the miniport driver for the VGA card.
|
||
|
||
Environment:
|
||
|
||
kernel mode only
|
||
|
||
Notes:
|
||
|
||
Revision History:
|
||
|
||
--*/
|
||
|
||
#include "dderror.h"
|
||
#include "devioctl.h"
|
||
#include "miniport.h"
|
||
|
||
#include "ntddvdeo.h"
|
||
#include "video.h"
|
||
#include "vga.h"
|
||
#include "vesa.h"
|
||
|
||
VP_STATUS
|
||
GetDeviceDataCallback(
|
||
PVOID HwDeviceExtension,
|
||
PVOID Context,
|
||
VIDEO_DEVICE_DATA_TYPE DeviceDataType,
|
||
PVOID Identifier,
|
||
ULONG IdentifierLength,
|
||
PVOID ConfigurationData,
|
||
ULONG ConfigurationDataLength,
|
||
PVOID ComponentInformation,
|
||
ULONG ComponentInformationLength
|
||
);
|
||
|
||
|
||
#if defined(ALLOC_PRAGMA)
|
||
#pragma alloc_text(INIT,DriverEntry)
|
||
#pragma alloc_text(PAGE,VgaFindAdapter)
|
||
#pragma alloc_text(PAGE,VgaInitialize)
|
||
#pragma alloc_text(PAGE,VgaStartIO)
|
||
#pragma alloc_text(PAGE,VgaLoadAndSetFont)
|
||
#pragma alloc_text(PAGE,VgaQueryCursorPosition)
|
||
#pragma alloc_text(PAGE,VgaSetCursorPosition)
|
||
#pragma alloc_text(PAGE,VgaQueryCursorAttributes)
|
||
#pragma alloc_text(PAGE,VgaSetCursorAttributes)
|
||
#pragma alloc_text(PAGE,VgaIsPresent)
|
||
#pragma alloc_text(PAGE,VgaSetPaletteReg)
|
||
#pragma alloc_text(PAGE,VgaSetColorLookup)
|
||
#pragma alloc_text(PAGE,VgaRestoreHardwareState)
|
||
#pragma alloc_text(PAGE,VgaSaveHardwareState)
|
||
#pragma alloc_text(PAGE,VgaGetBankSelectCode)
|
||
#pragma alloc_text(PAGE,VgaValidatorUcharEntry)
|
||
#pragma alloc_text(PAGE,VgaValidatorUshortEntry)
|
||
#pragma alloc_text(PAGE,VgaValidatorUlongEntry)
|
||
#pragma alloc_text(PAGE,GetDeviceDataCallback)
|
||
#pragma alloc_text(PAGE,VgaSetBankPosition)
|
||
#endif
|
||
|
||
|
||
|
||
ULONG
|
||
DriverEntry(
|
||
PVOID Context1,
|
||
PVOID Context2
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Installable driver initialization entry point.
|
||
This entry point is called directly by the I/O system.
|
||
|
||
Arguments:
|
||
|
||
Context1 - First context value passed by the operating system. This is
|
||
the value with which the miniport driver calls VideoPortInitialize().
|
||
|
||
Context2 - Second context value passed by the operating system. This is
|
||
the value with which the miniport driver calls VideoPortInitialize().
|
||
|
||
Return Value:
|
||
|
||
Status from VideoPortInitialize()
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
VIDEO_HW_INITIALIZATION_DATA hwInitData;
|
||
ULONG initializationStatus;
|
||
|
||
//
|
||
// Zero out structure.
|
||
//
|
||
|
||
VideoPortZeroMemory(&hwInitData, sizeof(VIDEO_HW_INITIALIZATION_DATA));
|
||
|
||
//
|
||
// Specify sizes of structure and extension.
|
||
//
|
||
|
||
hwInitData.HwInitDataSize = sizeof(VIDEO_HW_INITIALIZATION_DATA);
|
||
|
||
//
|
||
// Set entry points.
|
||
//
|
||
|
||
hwInitData.HwFindAdapter = VgaFindAdapter;
|
||
hwInitData.HwInitialize = VgaInitialize;
|
||
hwInitData.HwInterrupt = NULL;
|
||
hwInitData.HwStartIO = VgaStartIO;
|
||
|
||
//
|
||
// Determine the size we require for the device extension.
|
||
//
|
||
|
||
hwInitData.HwDeviceExtensionSize = sizeof(HW_DEVICE_EXTENSION);
|
||
|
||
//
|
||
// Both numbers for these fields are zero since they are allocated
|
||
// statically in the driver. We will pass pointers and sizes later in
|
||
// the find adapter routine.
|
||
//
|
||
|
||
// hwInitData.NumberOfAccessRanges = 0;
|
||
// hwInitData.NumEmulatorAccessEntries = 0;
|
||
|
||
//
|
||
// Always start with parameters for device0 in this case.
|
||
// We can leave it like this since we know we will only ever find one
|
||
// VGA type adapter in a machine.
|
||
//
|
||
|
||
// hwInitData.StartingDeviceNumber = 0;
|
||
|
||
//
|
||
// Once all the relevant information has been stored, call the video
|
||
// port driver to do the initialization.
|
||
//
|
||
|
||
hwInitData.AdapterInterfaceType = Isa;
|
||
|
||
initializationStatus = VideoPortInitialize(Context1,
|
||
Context2,
|
||
&hwInitData,
|
||
NULL);
|
||
if (initializationStatus == NO_ERROR)
|
||
{
|
||
return initializationStatus;
|
||
}
|
||
|
||
hwInitData.AdapterInterfaceType = PCIBus;
|
||
|
||
initializationStatus = VideoPortInitialize(Context1,
|
||
Context2,
|
||
&hwInitData,
|
||
NULL);
|
||
|
||
if (initializationStatus == NO_ERROR)
|
||
{
|
||
return initializationStatus;
|
||
}
|
||
|
||
hwInitData.AdapterInterfaceType = Eisa;
|
||
|
||
initializationStatus = VideoPortInitialize(Context1,
|
||
Context2,
|
||
&hwInitData,
|
||
NULL);
|
||
|
||
if (initializationStatus == NO_ERROR)
|
||
{
|
||
return initializationStatus;
|
||
}
|
||
|
||
hwInitData.AdapterInterfaceType = MicroChannel;
|
||
|
||
initializationStatus = VideoPortInitialize(Context1,
|
||
Context2,
|
||
&hwInitData,
|
||
NULL);
|
||
|
||
if (initializationStatus == NO_ERROR)
|
||
{
|
||
return initializationStatus;
|
||
}
|
||
|
||
//
|
||
// For MIPS ACER machines
|
||
//
|
||
// *** Must keep this at the end since it will cause the global access
|
||
// range structure to change in the driver. ***
|
||
//
|
||
|
||
hwInitData.AdapterInterfaceType = Internal;
|
||
|
||
initializationStatus = VideoPortInitialize(Context1,
|
||
Context2,
|
||
&hwInitData,
|
||
NULL);
|
||
|
||
return initializationStatus;
|
||
|
||
} // end DriverEntry()
|
||
|
||
VP_STATUS
|
||
GetDeviceDataCallback(
|
||
PVOID HwDeviceExtension,
|
||
PVOID Context,
|
||
VIDEO_DEVICE_DATA_TYPE DeviceDataType,
|
||
PVOID Identifier,
|
||
ULONG IdentifierLength,
|
||
PVOID ConfigurationData,
|
||
ULONG ConfigurationDataLength,
|
||
PVOID ComponentInformation,
|
||
ULONG ComponentInformationLength
|
||
)
|
||
{
|
||
PVIDEO_ACCESS_RANGE accessRange = Context;
|
||
PVIDEO_HARDWARE_CONFIGURATION_DATA configData = ConfigurationData;
|
||
ULONG i;
|
||
|
||
VideoDebugPrint((2, "VGA: controller information is present\n"));
|
||
|
||
//
|
||
// We do not want to try to detect the vga if there isn't one present.
|
||
// (Kind of a paradox?) The only MIPS box I am aware of which has
|
||
// an vga on the internal bus is the NeTPower NeTstation 100 and the Acer.
|
||
// It has an identifier of "ALI_S3".
|
||
//
|
||
|
||
if (!Identifier)
|
||
{
|
||
return ERROR_DEV_NOT_EXIST;
|
||
}
|
||
|
||
if (VideoPortCompareMemory(L"ALI_S3",
|
||
Identifier,
|
||
sizeof(L"ALI_S3")) != sizeof(L"ALI_S3"))
|
||
{
|
||
return ERROR_DEV_NOT_EXIST;
|
||
}
|
||
|
||
|
||
//
|
||
// Now lets get the base for the IO ports and memory location out of the
|
||
// configuration information.
|
||
//
|
||
|
||
VideoDebugPrint((2, "VGA: Internal Bus, get new IO bases\n"));
|
||
|
||
//
|
||
// For MIPS machine with an Internal Bus, adjust the access ranges.
|
||
//
|
||
|
||
VideoDebugPrint((3, "VGA: FrameBase Offset = %08lx\n", configData->FrameBase));
|
||
VideoDebugPrint((3, "VGA: IoBase Offset = %08lx\n", configData->ControlBase));
|
||
|
||
for (i=0; i < NUM_VGA_ACCESS_RANGES; i++)
|
||
{
|
||
if (accessRange[i].RangeInIoSpace)
|
||
{
|
||
accessRange[i].RangeStart.LowPart += configData->ControlBase;
|
||
accessRange[i].RangeInIoSpace = 0;
|
||
}
|
||
else
|
||
{
|
||
accessRange[i].RangeStart.LowPart += configData->FrameBase;
|
||
}
|
||
}
|
||
|
||
return NO_ERROR;
|
||
|
||
} //end GetDeviceDataCallback()
|
||
|
||
VP_STATUS
|
||
VgaAcquireResources(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine tries to acquire the vga resources.
|
||
|
||
Arguments:
|
||
|
||
Pointer to HwDeviceExtension
|
||
|
||
Returns:
|
||
|
||
Status code indicating whether or not the resources where acquired.
|
||
|
||
--*/
|
||
|
||
{
|
||
VP_STATUS status;
|
||
ULONG i, NumVgaAccessRanges = NUM_VGA_ACCESS_RANGES;
|
||
|
||
//
|
||
// We only want the vga to claim resources if it loaded because
|
||
// no other drivers were present. If other drivers were present,
|
||
// and claimed VGA resources, then we should only function as a
|
||
// vga compatible driver (provide full screen support).
|
||
//
|
||
// We'll do the following:
|
||
//
|
||
// (1) We'll try to grab VGA resources exclusively.
|
||
//
|
||
// (2) If we get the resources then we are operating as the fall
|
||
// back device. No other video drivers loaded. Keep resources.
|
||
//
|
||
// (3) If we do not get the resources exclusively, try to claim
|
||
// them shared.
|
||
//
|
||
// (4) If we get the resources then we are loading to provide vga
|
||
// full screen support. Free the resource so that we aren't
|
||
// holding legacy resources (so system can sleep/undock/etc).
|
||
//
|
||
// (5) If we still couldn't get the resources, then fail to load!
|
||
//
|
||
|
||
for (i=0; i<NUM_VGA_ACCESS_RANGES; i++) {
|
||
VgaAccessRange[i].RangeShareable = FALSE;
|
||
}
|
||
|
||
status = VideoPortVerifyAccessRanges(HwDeviceExtension,
|
||
NumVgaAccessRanges,
|
||
VgaAccessRange);
|
||
|
||
if (status != NO_ERROR) {
|
||
|
||
//
|
||
// Deal with the fact that the ATI HACK doesn't work
|
||
// if the device is on the other side of a PCI bridge.
|
||
//
|
||
|
||
NumVgaAccessRanges -= 2;
|
||
|
||
status = VideoPortVerifyAccessRanges(HwDeviceExtension,
|
||
NumVgaAccessRanges,
|
||
VgaAccessRange);
|
||
|
||
if (status != NO_ERROR) {
|
||
|
||
//
|
||
// We couldn't get the resource exclusively. Try to get
|
||
// them shared.
|
||
//
|
||
|
||
for (i=0; i<NumVgaAccessRanges; i++) {
|
||
VgaAccessRange[i].RangeShareable = TRUE;
|
||
}
|
||
|
||
status = VideoPortVerifyAccessRanges(HwDeviceExtension,
|
||
NumVgaAccessRanges,
|
||
VgaAccessRange);
|
||
|
||
if (status == NO_ERROR) {
|
||
|
||
//
|
||
// We were able to get the resource shared so we must be
|
||
// providing vga full screen support. Release our claim
|
||
// on resources.
|
||
//
|
||
|
||
VideoPortVerifyAccessRanges(HwDeviceExtension,
|
||
0,
|
||
NULL);
|
||
|
||
|
||
return NO_ERROR;
|
||
|
||
} else {
|
||
|
||
//
|
||
// If we haven't gotten the resources by now, that means we
|
||
// couldn't get them shared. This means we can't load at all.
|
||
//
|
||
|
||
return status;
|
||
}
|
||
}
|
||
}
|
||
|
||
//
|
||
// We got the resources exclusively which means we are acting
|
||
// as a fall back driver. But lets claim the resources as
|
||
// shared so that a PnP Driver that uses the resources can still
|
||
// load.
|
||
//
|
||
|
||
for (i=0; i<NumVgaAccessRanges; i++) {
|
||
VgaAccessRange[i].RangeShareable = TRUE;
|
||
}
|
||
|
||
status = VideoPortVerifyAccessRanges(HwDeviceExtension,
|
||
NumVgaAccessRanges,
|
||
VgaAccessRange);
|
||
|
||
return status;
|
||
}
|
||
|
||
VP_STATUS
|
||
VgaFindAdapter(
|
||
PVOID HwDeviceExtension,
|
||
PVOID HwContext,
|
||
PWSTR ArgumentString,
|
||
PVIDEO_PORT_CONFIG_INFO ConfigInfo,
|
||
PUCHAR Again
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine is called to determine if the adapter for this driver
|
||
is present in the system.
|
||
If it is present, the function fills out some information describing
|
||
the adapter.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Supplies the miniport driver's adapter storage. This
|
||
storage is initialized to zero before this call.
|
||
|
||
HwContext - Supplies the context value which was passed to
|
||
VideoPortInitialize().
|
||
|
||
ArgumentString - Supplies a NULL terminated ASCII string. This string
|
||
originates from the user.
|
||
|
||
ConfigInfo - Returns the configuration information structure which is
|
||
filled by the miniport driver. This structure is initialized with
|
||
any known configuration information (such as SystemIoBusNumber) by
|
||
the port driver. Where possible, drivers should have one set of
|
||
defaults which do not require any supplied configuration information.
|
||
|
||
Again - Indicates if the miniport driver wants the port driver to call
|
||
its VIDEO_HW_FIND_ADAPTER function again with a new device extension
|
||
and the same config info. This is used by the miniport drivers which
|
||
can search for several adapters on a bus.
|
||
|
||
Return Value:
|
||
|
||
This routine must return:
|
||
|
||
NO_ERROR - Indicates a host adapter was found and the
|
||
configuration information was successfully determined.
|
||
|
||
ERROR_INVALID_PARAMETER - Indicates an adapter was found but there was an
|
||
error obtaining the configuration information. If possible an error
|
||
should be logged.
|
||
|
||
ERROR_DEV_NOT_EXIST - Indicates no host adapter was found for the
|
||
supplied configuration information.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
PHW_DEVICE_EXTENSION hwDeviceExtension = HwDeviceExtension;
|
||
VP_STATUS status;
|
||
|
||
//
|
||
// Make sure the size of the structure is at least as large as what we
|
||
// are expecting (check version of the config info structure).
|
||
//
|
||
|
||
if (ConfigInfo->Length < sizeof(VIDEO_PORT_CONFIG_INFO)) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Make sure we only load one copy of the vga driver
|
||
//
|
||
|
||
if (VgaLoaded) {
|
||
|
||
return ERROR_DEV_NOT_EXIST;
|
||
|
||
}
|
||
|
||
//
|
||
// No interrupt information is necessary.
|
||
//
|
||
|
||
if (ConfigInfo->AdapterInterfaceType == Internal) {
|
||
|
||
//
|
||
// First check if there is a video adapter on the internal bus.
|
||
// Exit right away if there is not.
|
||
//
|
||
|
||
if (NO_ERROR != VideoPortGetDeviceData(hwDeviceExtension,
|
||
VpControllerData,
|
||
&GetDeviceDataCallback,
|
||
VgaAccessRange)) {
|
||
|
||
VideoDebugPrint((2, "VGA: VideoPort get controller info failed\n"));
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
status = VgaAcquireResources(hwDeviceExtension);
|
||
|
||
if (status != NO_ERROR) {
|
||
return status;
|
||
}
|
||
|
||
|
||
//
|
||
// Get logical IO port addresses.
|
||
//
|
||
|
||
if ( (hwDeviceExtension->IOAddress =
|
||
VideoPortGetDeviceBase(hwDeviceExtension,
|
||
VgaAccessRange->RangeStart,
|
||
VGA_MAX_IO_PORT - VGA_BASE_IO_PORT + 1,
|
||
VgaAccessRange->RangeInIoSpace)) == NULL) {
|
||
|
||
VideoDebugPrint((2, "VgaFindAdapter - Fail to get io address\n"));
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Determine whether a VGA is present.
|
||
//
|
||
|
||
if (!VgaIsPresent(hwDeviceExtension)) {
|
||
|
||
return ERROR_DEV_NOT_EXIST;
|
||
|
||
}
|
||
|
||
//
|
||
// Pass a pointer to the emulator range we are using.
|
||
//
|
||
|
||
ConfigInfo->NumEmulatorAccessEntries = VGA_NUM_EMULATOR_ACCESS_ENTRIES;
|
||
ConfigInfo->EmulatorAccessEntries = VgaEmulatorAccessEntries;
|
||
ConfigInfo->EmulatorAccessEntriesContext = (ULONG_PTR) hwDeviceExtension;
|
||
|
||
ConfigInfo->VdmPhysicalVideoMemoryAddress = VgaAccessRange[VGA_MEMORY].RangeStart;
|
||
ConfigInfo->VdmPhysicalVideoMemoryLength = VgaAccessRange[VGA_MEMORY].RangeLength;
|
||
|
||
//
|
||
// Minimum size of the buffer required to store the hardware state
|
||
// information returned by IOCTL_VIDEO_SAVE_HARDWARE_STATE.
|
||
//
|
||
|
||
ConfigInfo->HardwareStateSize = VGA_TOTAL_STATE_SIZE;
|
||
|
||
//
|
||
// Map the video memory into the system virtual address space so we can
|
||
// clear it out and use it for save and restore.
|
||
//
|
||
|
||
if ( (hwDeviceExtension->VideoMemoryAddress =
|
||
VideoPortGetDeviceBase(hwDeviceExtension,
|
||
VgaAccessRange[VGA_MEMORY].RangeStart,
|
||
VgaAccessRange[VGA_MEMORY].RangeLength, FALSE)) == NULL) {
|
||
|
||
VideoDebugPrint((1, "VgaFindAdapter - Fail to get memory address\n"));
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Indicate we do not wish to be called again for another initialization.
|
||
//
|
||
|
||
*Again = 0;
|
||
|
||
//
|
||
// Keep track of if we already got loaded, since we can be called back
|
||
// for a secondary bus (some machines have 2 PCI buses).
|
||
// If *we* acquired the resources, then we won't conflict with ourselves
|
||
// since we grabbed the resources as shared.
|
||
//
|
||
|
||
VgaLoaded = 1;
|
||
|
||
//
|
||
// Indicate a successful completion status.
|
||
//
|
||
|
||
return NO_ERROR;
|
||
|
||
} // VgaFindAdapter()
|
||
|
||
BOOLEAN
|
||
VgaInitialize(
|
||
PVOID HwDeviceExtension
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine does one time initialization of the device.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's adapter information.
|
||
|
||
Return Value:
|
||
|
||
None.
|
||
|
||
--*/
|
||
|
||
{
|
||
PHW_DEVICE_EXTENSION hwDeviceExtension = HwDeviceExtension;
|
||
|
||
//
|
||
// set up the default cursor position and type.
|
||
//
|
||
|
||
hwDeviceExtension->CursorPosition.Column = 0;
|
||
hwDeviceExtension->CursorPosition.Row = 0;
|
||
hwDeviceExtension->CursorTopScanLine = 0;
|
||
hwDeviceExtension->CursorBottomScanLine = 31;
|
||
hwDeviceExtension->CursorEnable = TRUE;
|
||
|
||
InitializeModeTable(hwDeviceExtension);
|
||
|
||
return TRUE;
|
||
|
||
} // VgaInitialize()
|
||
|
||
BOOLEAN
|
||
VgaStartIO(
|
||
PVOID HwDeviceExtension,
|
||
PVIDEO_REQUEST_PACKET RequestPacket
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine is the main execution routine for the miniport driver. It
|
||
acceptss a Video Request Packet, performs the request, and then returns
|
||
with the appropriate status.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's adapter information.
|
||
|
||
RequestPacket - Pointer to the video request packet. This structure
|
||
contains all the parameters passed to the VideoIoControl function.
|
||
|
||
Return Value:
|
||
|
||
This routine will return error codes from the various support routines
|
||
and will also return ERROR_INSUFFICIENT_BUFFER for incorrectly sized
|
||
buffers and ERROR_INVALID_FUNCTION for unsupported functions.
|
||
|
||
--*/
|
||
|
||
{
|
||
PHW_DEVICE_EXTENSION hwDeviceExtension = HwDeviceExtension;
|
||
VP_STATUS status;
|
||
VIDEO_MODE videoMode;
|
||
PVIDEO_MEMORY_INFORMATION memoryInformation;
|
||
ULONG inIoSpace;
|
||
|
||
#if DBG
|
||
//
|
||
// Keep a history of the commands.
|
||
// This will help track down the chip being in a DOS session while
|
||
// GDI and the S3 display driver "think" it's in GUI mode.
|
||
|
||
gaIOControlCode[giControlCode++] = RequestPacket->IoControlCode;
|
||
giControlCode %= MAX_CONTROL_HISTORY;
|
||
#endif
|
||
|
||
//
|
||
// Switch on the IoContolCode in the RequestPacket. It indicates which
|
||
// function must be performed by the driver.
|
||
//
|
||
|
||
switch (RequestPacket->IoControlCode) {
|
||
|
||
|
||
case IOCTL_VIDEO_MAP_VIDEO_MEMORY:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - MapVideoMemory\n"));
|
||
|
||
if ( (RequestPacket->OutputBufferLength <
|
||
(RequestPacket->StatusBlock->Information =
|
||
sizeof(VIDEO_MEMORY_INFORMATION))) ||
|
||
(RequestPacket->InputBufferLength < sizeof(VIDEO_MEMORY)) ) {
|
||
|
||
status = ERROR_INSUFFICIENT_BUFFER;
|
||
}
|
||
|
||
memoryInformation = RequestPacket->OutputBuffer;
|
||
|
||
memoryInformation->VideoRamBase = ((PVIDEO_MEMORY)
|
||
(RequestPacket->InputBuffer))->RequestedVirtualAddress;
|
||
|
||
memoryInformation->VideoRamLength =
|
||
hwDeviceExtension->PhysicalVideoMemoryLength;
|
||
|
||
inIoSpace = 0;
|
||
|
||
//
|
||
// Let try to take advantage of write combining if using a VESA mode.
|
||
//
|
||
|
||
//if (IS_LINEAR_MODE(hwDeviceExtension->CurrentMode)) {
|
||
// inIoSpace |= VIDEO_MEMORY_SPACE_P6CACHE;
|
||
//}
|
||
|
||
status = VideoPortMapMemory(hwDeviceExtension,
|
||
hwDeviceExtension->PhysicalVideoMemoryBase,
|
||
&(memoryInformation->VideoRamLength),
|
||
&inIoSpace,
|
||
&(memoryInformation->VideoRamBase));
|
||
|
||
memoryInformation->FrameBufferBase =
|
||
((PUCHAR) (memoryInformation->VideoRamBase)) +
|
||
hwDeviceExtension->PhysicalFrameBaseOffset.LowPart;
|
||
|
||
memoryInformation->FrameBufferLength =
|
||
hwDeviceExtension->PhysicalFrameLength;
|
||
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_UNMAP_VIDEO_MEMORY:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - UnMapVideoMemory\n"));
|
||
|
||
if (RequestPacket->InputBufferLength < sizeof(VIDEO_MEMORY)) {
|
||
|
||
status = ERROR_INSUFFICIENT_BUFFER;
|
||
}
|
||
|
||
status = VideoPortUnmapMemory(hwDeviceExtension,
|
||
((PVIDEO_MEMORY)
|
||
(RequestPacket->InputBuffer))->
|
||
RequestedVirtualAddress,
|
||
0);
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_QUERY_AVAIL_MODES:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - QueryAvailableModes\n"));
|
||
|
||
RequestPacket->StatusBlock->Information = 0;
|
||
status = VgaQueryAvailableModes(hwDeviceExtension,
|
||
(PVIDEO_MODE_INFORMATION)
|
||
RequestPacket->OutputBuffer,
|
||
RequestPacket->OutputBufferLength,
|
||
(PULONG)(&RequestPacket->StatusBlock->Information));
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - QueryNumAvailableModes\n"));
|
||
|
||
RequestPacket->StatusBlock->Information = 0;
|
||
status = VgaQueryNumberOfAvailableModes(hwDeviceExtension,
|
||
(PVIDEO_NUM_MODES)
|
||
RequestPacket->OutputBuffer,
|
||
RequestPacket->OutputBufferLength,
|
||
(PULONG)(&RequestPacket->StatusBlock->Information));
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_QUERY_CURRENT_MODE:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - QueryCurrentMode\n"));
|
||
|
||
RequestPacket->StatusBlock->Information = 0;
|
||
status = VgaQueryCurrentMode(hwDeviceExtension,
|
||
(PVIDEO_MODE_INFORMATION) RequestPacket->OutputBuffer,
|
||
RequestPacket->OutputBufferLength,
|
||
(PULONG)(&RequestPacket->StatusBlock->Information));
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_SET_CURRENT_MODE:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - SetCurrentModes\n"));
|
||
|
||
{
|
||
ULONG FrameBufferIsMoved = 0;
|
||
|
||
status = VgaSetMode(hwDeviceExtension,
|
||
(PVIDEO_MODE) RequestPacket->InputBuffer,
|
||
RequestPacket->InputBufferLength,
|
||
&FrameBufferIsMoved);
|
||
|
||
if (RequestPacket->OutputBufferLength >= sizeof(ULONG)) {
|
||
|
||
RequestPacket->StatusBlock->Information = sizeof(ULONG);
|
||
*(PULONG)RequestPacket->OutputBuffer = FrameBufferIsMoved;
|
||
}
|
||
}
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_RESET_DEVICE:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - Reset Device\n"));
|
||
|
||
videoMode.RequestedMode = DEFAULT_MODE;
|
||
|
||
{
|
||
ULONG FrameBufferIsMoved = 0;
|
||
|
||
status = VgaSetMode(hwDeviceExtension,
|
||
(PVIDEO_MODE) &videoMode,
|
||
sizeof(videoMode),
|
||
&FrameBufferIsMoved);
|
||
}
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_LOAD_AND_SET_FONT:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - LoadAndSetFont\n"));
|
||
|
||
status = VgaLoadAndSetFont(hwDeviceExtension,
|
||
(PVIDEO_LOAD_FONT_INFORMATION) RequestPacket->InputBuffer,
|
||
RequestPacket->InputBufferLength);
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_QUERY_CURSOR_POSITION:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - QueryCursorPosition\n"));
|
||
|
||
RequestPacket->StatusBlock->Information = 0;
|
||
status = VgaQueryCursorPosition(hwDeviceExtension,
|
||
(PVIDEO_CURSOR_POSITION) RequestPacket->OutputBuffer,
|
||
RequestPacket->OutputBufferLength,
|
||
(PULONG)(&RequestPacket->StatusBlock->Information));
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_SET_CURSOR_POSITION:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - SetCursorPosition\n"));
|
||
|
||
status = VgaSetCursorPosition(hwDeviceExtension,
|
||
(PVIDEO_CURSOR_POSITION)
|
||
RequestPacket->InputBuffer,
|
||
RequestPacket->InputBufferLength);
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_QUERY_CURSOR_ATTR:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - QueryCursorAttributes\n"));
|
||
|
||
RequestPacket->StatusBlock->Information = 0;
|
||
status = VgaQueryCursorAttributes(hwDeviceExtension,
|
||
(PVIDEO_CURSOR_ATTRIBUTES) RequestPacket->OutputBuffer,
|
||
RequestPacket->OutputBufferLength,
|
||
(PULONG)(&RequestPacket->StatusBlock->Information));
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_SET_CURSOR_ATTR:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - SetCursorAttributes\n"));
|
||
|
||
status = VgaSetCursorAttributes(hwDeviceExtension,
|
||
(PVIDEO_CURSOR_ATTRIBUTES) RequestPacket->InputBuffer,
|
||
RequestPacket->InputBufferLength);
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_SET_PALETTE_REGISTERS:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - SetPaletteRegs\n"));
|
||
|
||
status = VgaSetPaletteReg(hwDeviceExtension,
|
||
(PVIDEO_PALETTE_DATA) RequestPacket->InputBuffer,
|
||
RequestPacket->InputBufferLength);
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_SET_COLOR_REGISTERS:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - SetColorRegs\n"));
|
||
|
||
status = VgaSetColorLookup(hwDeviceExtension,
|
||
(PVIDEO_CLUT) RequestPacket->InputBuffer,
|
||
RequestPacket->InputBufferLength);
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_ENABLE_VDM:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - EnableVDM\n"));
|
||
|
||
hwDeviceExtension->TrappedValidatorCount = 0;
|
||
hwDeviceExtension->SequencerAddressValue = 0;
|
||
|
||
hwDeviceExtension->CurrentNumVdmAccessRanges =
|
||
NUM_MINIMAL_VGA_VALIDATOR_ACCESS_RANGE;
|
||
hwDeviceExtension->CurrentVdmAccessRange =
|
||
MinimalVgaValidatorAccessRange;
|
||
|
||
VideoPortSetTrappedEmulatorPorts(hwDeviceExtension,
|
||
hwDeviceExtension->CurrentNumVdmAccessRanges,
|
||
hwDeviceExtension->CurrentVdmAccessRange);
|
||
|
||
status = NO_ERROR;
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_RESTORE_HARDWARE_STATE:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - RestoreHardwareState\n"));
|
||
|
||
if(IsSavedModeVesa((PVIDEO_HARDWARE_STATE) RequestPacket->InputBuffer)){
|
||
|
||
status = VesaRestoreHardwareState(hwDeviceExtension,
|
||
(PVIDEO_HARDWARE_STATE) RequestPacket->InputBuffer,
|
||
RequestPacket->InputBufferLength);
|
||
} else {
|
||
|
||
status = VgaRestoreHardwareState(hwDeviceExtension,
|
||
(PVIDEO_HARDWARE_STATE) RequestPacket->InputBuffer,
|
||
RequestPacket->InputBufferLength);
|
||
}
|
||
|
||
break;
|
||
|
||
|
||
case IOCTL_VIDEO_SAVE_HARDWARE_STATE:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - SaveHardwareState\n"));
|
||
|
||
RequestPacket->StatusBlock->Information = 0;
|
||
|
||
{
|
||
USHORT ModeNumber;
|
||
|
||
ModeNumber = VBEGetMode(hwDeviceExtension);
|
||
|
||
if (ModeNumber & 0x100) {
|
||
|
||
status = VesaSaveHardwareState(hwDeviceExtension,
|
||
(PVIDEO_HARDWARE_STATE) RequestPacket->OutputBuffer,
|
||
RequestPacket->OutputBufferLength,
|
||
ModeNumber);
|
||
} else {
|
||
|
||
status = VgaSaveHardwareState(hwDeviceExtension,
|
||
(PVIDEO_HARDWARE_STATE) RequestPacket->OutputBuffer,
|
||
RequestPacket->OutputBufferLength,
|
||
(PULONG)(&RequestPacket->StatusBlock->Information));
|
||
}
|
||
}
|
||
|
||
break;
|
||
|
||
case IOCTL_VIDEO_GET_BANK_SELECT_CODE:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - GetBankSelectCode\n"));
|
||
|
||
RequestPacket->StatusBlock->Information = 0;
|
||
status = VgaGetBankSelectCode(hwDeviceExtension,
|
||
(PVIDEO_BANK_SELECT) RequestPacket->OutputBuffer,
|
||
RequestPacket->OutputBufferLength,
|
||
(PULONG)(&RequestPacket->StatusBlock->Information));
|
||
|
||
break;
|
||
|
||
case IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - Query Public Address Ranges\n"));
|
||
|
||
if (RequestPacket->OutputBufferLength <
|
||
(RequestPacket->StatusBlock->Information =
|
||
sizeof(VIDEO_PUBLIC_ACCESS_RANGES)) )
|
||
{
|
||
status = ERROR_INSUFFICIENT_BUFFER;
|
||
}
|
||
else
|
||
{
|
||
PVIDEO_PUBLIC_ACCESS_RANGES publicAccessRanges;
|
||
PHYSICAL_ADDRESS PhysicalRegisterAddress;
|
||
ULONG RegisterLength;
|
||
PVOID MappedAddress;
|
||
|
||
publicAccessRanges = RequestPacket->OutputBuffer;
|
||
|
||
PhysicalRegisterAddress.LowPart = VGA_END_BREAK_PORT;
|
||
PhysicalRegisterAddress.HighPart = 0;
|
||
RegisterLength = VGA_MAX_IO_PORT - VGA_END_BREAK_PORT;
|
||
publicAccessRanges->InIoSpace = TRUE;
|
||
MappedAddress = NULL;
|
||
|
||
status = VideoPortMapMemory(
|
||
HwDeviceExtension,
|
||
PhysicalRegisterAddress,
|
||
&RegisterLength,
|
||
&(publicAccessRanges->InIoSpace),
|
||
&MappedAddress
|
||
);
|
||
|
||
publicAccessRanges->VirtualAddress = (PVOID)((ULONG_PTR)MappedAddress - VGA_END_BREAK_PORT);
|
||
}
|
||
|
||
break;
|
||
|
||
case IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - Free Public Address Ranges\n"));
|
||
|
||
if (RequestPacket->InputBufferLength < sizeof(VIDEO_MEMORY))
|
||
{
|
||
status = ERROR_INSUFFICIENT_BUFFER;
|
||
}
|
||
else
|
||
{
|
||
PVIDEO_MEMORY mappedMemory;
|
||
|
||
mappedMemory = RequestPacket->InputBuffer;
|
||
|
||
status = VideoPortUnmapMemory(
|
||
HwDeviceExtension,
|
||
(PVOID)((ULONG_PTR)(mappedMemory->RequestedVirtualAddress)
|
||
+ VGA_END_BREAK_PORT),
|
||
0);
|
||
}
|
||
|
||
break;
|
||
|
||
case IOCTL_VIDEO_SET_BANK_POSITION:
|
||
|
||
VideoDebugPrint((2, "VgaStartIO - Set Bank Position\n"));
|
||
|
||
if (RequestPacket->InputBufferLength < sizeof(BANK_POSITION)) {
|
||
|
||
status = ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
} else {
|
||
|
||
PBANK_POSITION BankPosition;
|
||
|
||
BankPosition = RequestPacket->InputBuffer;
|
||
|
||
status = VgaSetBankPosition(
|
||
HwDeviceExtension,
|
||
BankPosition);
|
||
}
|
||
|
||
break;
|
||
|
||
//
|
||
// if we get here, an invalid IoControlCode was specified.
|
||
//
|
||
|
||
default:
|
||
|
||
VideoDebugPrint((1, "Fell through vga startIO routine - invalid command\n"));
|
||
|
||
status = ERROR_INVALID_FUNCTION;
|
||
|
||
break;
|
||
|
||
}
|
||
|
||
#if DBG
|
||
|
||
//
|
||
// Keep a history of the commands.
|
||
// This will help track down the chip being in a DOS session while
|
||
// GDI and the S3 display driver "think" it's in GUI mode.
|
||
|
||
gaIOControlCode[giControlCode++] = 0x00005555;
|
||
giControlCode %= MAX_CONTROL_HISTORY;
|
||
|
||
#endif
|
||
|
||
RequestPacket->StatusBlock->Status = status;
|
||
|
||
return TRUE;
|
||
|
||
} // VgaStartIO()
|
||
|
||
//
|
||
// private routines
|
||
//
|
||
|
||
VP_STATUS
|
||
VgaLoadAndSetFont(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_LOAD_FONT_INFORMATION FontInformation,
|
||
ULONG FontInformationSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Takes a buffer containing a user-defined font and loads it into the
|
||
VGA soft font memory and programs the VGA to the appropriate character
|
||
cell size.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
FontInformation - Pointer to the structure containing the information
|
||
about the loadable ROM font to be set.
|
||
|
||
FontInformationSize - Length of the input buffer supplied by the user.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - information returned successfully
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - input buffer not large enough for input data.
|
||
|
||
ERROR_INVALID_PARAMETER - invalid video mode
|
||
|
||
--*/
|
||
|
||
{
|
||
PUCHAR destination;
|
||
PUCHAR source;
|
||
USHORT width;
|
||
ULONG i;
|
||
UCHAR cr9;
|
||
|
||
//
|
||
// check if a mode has been set
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode == NULL) {
|
||
|
||
return ERROR_INVALID_FUNCTION;
|
||
|
||
}
|
||
|
||
//
|
||
// Text mode only; If we are in a graphics mode, return an error
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode->fbType & VIDEO_MODE_GRAPHICS) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Check if the size of the data in the input buffer is large enough
|
||
// and that it contains all the data.
|
||
//
|
||
|
||
if ( (FontInformationSize < sizeof(VIDEO_LOAD_FONT_INFORMATION)) ||
|
||
(FontInformationSize < sizeof(VIDEO_LOAD_FONT_INFORMATION) +
|
||
sizeof(UCHAR) * (FontInformation->FontSize - 1)) ) {
|
||
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Check for the width and height of the font
|
||
//
|
||
|
||
if ( ((FontInformation->WidthInPixels != 8) &&
|
||
(FontInformation->WidthInPixels != 9)) ||
|
||
(FontInformation->HeightInPixels > 32) ) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Check the size of the font buffer is the right size for the size
|
||
// font being passed down.
|
||
//
|
||
|
||
if (FontInformation->FontSize < FontInformation->HeightInPixels * 256 *
|
||
sizeof(UCHAR) ) {
|
||
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Since the font parameters are valid, store the parameters in the
|
||
// device extension and load the font.
|
||
//
|
||
|
||
HwDeviceExtension->FontPelRows = FontInformation->HeightInPixels;
|
||
HwDeviceExtension->FontPelColumns = FontInformation->WidthInPixels;
|
||
|
||
HwDeviceExtension->CurrentMode->row =
|
||
HwDeviceExtension->CurrentMode->vres / HwDeviceExtension->FontPelRows;
|
||
|
||
width =
|
||
HwDeviceExtension->CurrentMode->hres / HwDeviceExtension->FontPelColumns;
|
||
|
||
if (width < (USHORT)HwDeviceExtension->CurrentMode->col) {
|
||
|
||
HwDeviceExtension->CurrentMode->col = width;
|
||
|
||
}
|
||
|
||
source = &(FontInformation->Font[0]);
|
||
|
||
//
|
||
// Set up the destination and source pointers for the font
|
||
//
|
||
|
||
destination = (PUCHAR)HwDeviceExtension->VideoMemoryAddress;
|
||
|
||
//
|
||
// Map font buffer at A0000
|
||
//
|
||
|
||
VgaInterpretCmdStream(HwDeviceExtension, EnableA000Data);
|
||
|
||
//
|
||
// Move the font to its destination
|
||
//
|
||
|
||
for (i = 1; i <= 256; i++) {
|
||
|
||
VideoPortWriteRegisterBufferUchar(destination,
|
||
source,
|
||
FontInformation->HeightInPixels);
|
||
|
||
destination += 32;
|
||
source += FontInformation->HeightInPixels;
|
||
|
||
}
|
||
|
||
VgaInterpretCmdStream(HwDeviceExtension, DisableA000Color);
|
||
|
||
//
|
||
// Restore to a text mode.
|
||
//
|
||
|
||
//
|
||
// Set Height of font.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR, 0x9);
|
||
|
||
cr9 = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR) & 0xE0;
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR,
|
||
(UCHAR)(cr9 | (FontInformation->HeightInPixels - 1)));
|
||
|
||
//
|
||
// Set Width of font.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR, 0x12);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR,
|
||
(UCHAR)(((USHORT)FontInformation->HeightInPixels *
|
||
(USHORT)HwDeviceExtension->CurrentMode->row) - 1));
|
||
|
||
i = HwDeviceExtension->CurrentMode->vres /
|
||
HwDeviceExtension->CurrentMode->row;
|
||
|
||
//
|
||
// Set Cursor End
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR, 0xb);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR, (UCHAR)--i);
|
||
|
||
//
|
||
// Set Cursor Statr
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR, 0xa);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR, (UCHAR)--i);
|
||
|
||
return NO_ERROR;
|
||
|
||
} //end VgaLoadAndSetFont()
|
||
|
||
VP_STATUS
|
||
VgaQueryCursorPosition(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_CURSOR_POSITION CursorPosition,
|
||
ULONG CursorPositionSize,
|
||
PULONG OutputSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine returns the row and column of the cursor.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
CursorPosition - Pointer to the output buffer supplied by the user. This
|
||
is where the cursor position is stored.
|
||
|
||
CursorPositionSize - Length of the output buffer supplied by the user.
|
||
|
||
OutputSize - Pointer to a buffer in which to return the actual size of
|
||
the data in the buffer. If the buffer was not large enough, this
|
||
contains the minimum required buffer size.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - information returned successfully
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - output buffer not large enough to return
|
||
any useful data
|
||
|
||
ERROR_INVALID_PARAMETER - invalid video mode
|
||
|
||
--*/
|
||
|
||
{
|
||
//
|
||
// check if a mode has been set
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode == NULL) {
|
||
|
||
return ERROR_INVALID_FUNCTION;
|
||
|
||
}
|
||
|
||
//
|
||
// Text mode only; If we are in a graphics mode, return an error
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode->fbType & VIDEO_MODE_GRAPHICS) {
|
||
|
||
*OutputSize = 0;
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// If the buffer passed in is not large enough return an
|
||
// appropriate error code.
|
||
//
|
||
|
||
if (CursorPositionSize < (*OutputSize = sizeof(VIDEO_CURSOR_POSITION)) ) {
|
||
|
||
*OutputSize = 0;
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Store the postition of the cursor into the buffer.
|
||
//
|
||
|
||
CursorPosition->Column = HwDeviceExtension->CursorPosition.Column;
|
||
CursorPosition->Row = HwDeviceExtension->CursorPosition.Row;
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaQueryCursorPosition()
|
||
|
||
VP_STATUS
|
||
VgaSetCursorPosition(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_CURSOR_POSITION CursorPosition,
|
||
ULONG CursorPositionSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine verifies that the requested cursor position is within
|
||
the row and column bounds of the current mode and font. If valid, then
|
||
it sets the row and column of the cursor.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
CursorPosition - Pointer to the structure containing the cursor position.
|
||
|
||
CursorPositionSize - Length of the input buffer supplied by the user.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - information returned successfully
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - input buffer not large enough for input data
|
||
|
||
ERROR_INVALID_PARAMETER - invalid video mode
|
||
|
||
--*/
|
||
|
||
{
|
||
USHORT position;
|
||
|
||
//
|
||
// check if a mode has been set
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode == NULL) {
|
||
|
||
return ERROR_INVALID_FUNCTION;
|
||
|
||
}
|
||
|
||
//
|
||
// Text mode only; If we are in a graphics mode, return an error
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode->fbType & VIDEO_MODE_GRAPHICS) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Check if the size of the data in the input buffer is large enough.
|
||
//
|
||
|
||
if (CursorPositionSize < sizeof(VIDEO_CURSOR_POSITION)) {
|
||
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Check if the new values for the cursor positions are in the valid
|
||
// bounds for the screen.
|
||
//
|
||
|
||
if ((CursorPosition->Column >= HwDeviceExtension->CurrentMode->col) ||
|
||
(CursorPosition->Row >= HwDeviceExtension->CurrentMode->row)) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Store these new values in the device extension so we can use them in
|
||
// a QUERY.
|
||
//
|
||
|
||
HwDeviceExtension->CursorPosition.Column = CursorPosition->Column;
|
||
HwDeviceExtension->CursorPosition.Row = CursorPosition->Row;
|
||
|
||
//
|
||
// Calculate the position on the screen at which the cursor must be
|
||
// be displayed
|
||
//
|
||
|
||
position = (USHORT) (HwDeviceExtension->CurrentMode->col *
|
||
CursorPosition->Row + CursorPosition->Column);
|
||
|
||
|
||
//
|
||
// Address Cursor Location Low Register in CRT Controller Registers
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR, IND_CURSOR_LOW_LOC);
|
||
|
||
//
|
||
// Set Cursor Location Low Register
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR, (UCHAR) (position & 0x00FF));
|
||
|
||
//
|
||
// Address Cursor Location High Register in CRT Controller Registers
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR, IND_CURSOR_HIGH_LOC);
|
||
|
||
//
|
||
// Set Cursor Location High Register
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR, (UCHAR) (position >> 8));
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaSetCursorPosition()
|
||
|
||
VP_STATUS
|
||
VgaQueryCursorAttributes(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_CURSOR_ATTRIBUTES CursorAttributes,
|
||
ULONG CursorAttributesSize,
|
||
PULONG OutputSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine returns information about the height and visibility of the
|
||
cursor.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
CursorAttributes - Pointer to the output buffer supplied by the user.
|
||
This is where the cursor type is stored.
|
||
|
||
CursorAttributesSize - Length of the output buffer supplied by the user.
|
||
|
||
OutputSize - Pointer to a buffer in which to return the actual size of
|
||
the data in the buffer. If the buffer was not large enough, this
|
||
contains the minimum required buffer size.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - information returned successfully
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - output buffer not large enough to return
|
||
any useful data
|
||
|
||
ERROR_INVALID_PARAMETER - invalid video mode
|
||
|
||
--*/
|
||
|
||
{
|
||
//
|
||
// check if a mode has been set
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode == NULL) {
|
||
|
||
return ERROR_INVALID_FUNCTION;
|
||
|
||
}
|
||
|
||
//
|
||
// Text mode only; If we are in a graphics mode, return an error
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode->fbType & VIDEO_MODE_GRAPHICS) {
|
||
|
||
*OutputSize = 0;
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Find out the size of the data to be put in the the buffer and return
|
||
// that in the status information (whether or not the information is
|
||
// there). If the buffer passed in is not large enough return an
|
||
// appropriate error code.
|
||
//
|
||
|
||
if (CursorAttributesSize < (*OutputSize =
|
||
sizeof(VIDEO_CURSOR_ATTRIBUTES)) ) {
|
||
|
||
*OutputSize = 0;
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Store the cursor information into the buffer.
|
||
//
|
||
|
||
CursorAttributes->Height = (USHORT) HwDeviceExtension->CursorTopScanLine;
|
||
CursorAttributes->Width = (USHORT) HwDeviceExtension->CursorBottomScanLine;
|
||
CursorAttributes->Enable = HwDeviceExtension->CursorEnable;
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaQueryCursorAttributes()
|
||
|
||
VP_STATUS
|
||
VgaSetCursorAttributes(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_CURSOR_ATTRIBUTES CursorAttributes,
|
||
ULONG CursorAttributesSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine verifies that the requested cursor height is within the
|
||
bounds of the character cell. If valid, then it sets the new
|
||
visibility and height of the cursor.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
CursorType - Pointer to the structure containing the cursor information.
|
||
|
||
CursorTypeSize - Length of the input buffer supplied by the user.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - information returned successfully
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - input buffer not large enough for input data
|
||
|
||
ERROR_INVALID_PARAMETER - invalid video mode
|
||
|
||
--*/
|
||
|
||
{
|
||
UCHAR cursorLine;
|
||
|
||
//
|
||
// check if a mode has been set
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode == NULL) {
|
||
|
||
return ERROR_INVALID_FUNCTION;
|
||
|
||
}
|
||
|
||
//
|
||
// Text mode only; If we are in a graphics mode, return an error
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode->fbType & VIDEO_MODE_GRAPHICS) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Check if the size of the data in the input buffer is large enough.
|
||
//
|
||
|
||
if (CursorAttributesSize < sizeof(VIDEO_CURSOR_ATTRIBUTES)) {
|
||
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Check if the new values for the cursor type are in the valid range.
|
||
//
|
||
|
||
if ((CursorAttributes->Height >= HwDeviceExtension->FontPelRows) ||
|
||
(CursorAttributes->Width > 31)) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Store the cursor information in the device extension so we can use
|
||
// them in a QUERY.
|
||
//
|
||
|
||
HwDeviceExtension->CursorTopScanLine = (UCHAR) CursorAttributes->Height;
|
||
HwDeviceExtension->CursorBottomScanLine = (UCHAR) CursorAttributes->Width;
|
||
HwDeviceExtension->CursorEnable = CursorAttributes->Enable;
|
||
|
||
//
|
||
// Address Cursor Start Register in CRT Controller Registers
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR,
|
||
IND_CURSOR_START);
|
||
|
||
//
|
||
// Set Cursor Start Register by writting to CRTCtl Data Register
|
||
// Preserve the high three bits of this register.
|
||
//
|
||
// Only the Five low bits are used for the cursor height.
|
||
// Bit 5 is cursor enable, bit 6 and 7 preserved.
|
||
//
|
||
|
||
cursorLine = (UCHAR) CursorAttributes->Height & 0x1F;
|
||
|
||
cursorLine |= VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR) & 0xC0;
|
||
|
||
if (!CursorAttributes->Enable) {
|
||
|
||
cursorLine |= 0x20; // Flip cursor off bit
|
||
|
||
}
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress + CRTC_DATA_PORT_COLOR,
|
||
cursorLine);
|
||
|
||
//
|
||
// Address Cursor End Register in CRT Controller Registers
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR,
|
||
IND_CURSOR_END);
|
||
|
||
//
|
||
// Set Cursor End Register. Preserve the high three bits of this
|
||
// register.
|
||
//
|
||
|
||
cursorLine =
|
||
(CursorAttributes->Width < (USHORT)(HwDeviceExtension->FontPelRows - 1)) ?
|
||
CursorAttributes->Width : (HwDeviceExtension->FontPelRows - 1);
|
||
|
||
cursorLine &= 0x1f;
|
||
|
||
cursorLine |= VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR) & 0xE0;
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress + CRTC_DATA_PORT_COLOR,
|
||
cursorLine);
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaSetCursorAttributes()
|
||
|
||
BOOLEAN
|
||
VgaIsPresent(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine returns TRUE if a VGA is present. Determining whether a VGA
|
||
is present is a two-step process. First, this routine walks bits through
|
||
the Bit Mask register, to establish that there are readable indexed
|
||
registers (EGAs normally don't have readable registers, and other adapters
|
||
are unlikely to have indexed registers). This test is done first because
|
||
it's a non-destructive EGA rejection test (correctly rejects EGAs, but
|
||
doesn't potentially mess up the screen or the accessibility of display
|
||
memory). Normally, this would be an adequate test, but some EGAs have
|
||
readable registers, so next, we check for the existence of the Chain4 bit
|
||
in the Memory Mode register; this bit doesn't exist in EGAs. It's
|
||
conceivable that there are EGAs with readable registers and a register bit
|
||
where Chain4 is stored, although I don't know of any; if a better test yet
|
||
is needed, memory could be written to in Chain4 mode, and then examined
|
||
plane by plane in non-Chain4 mode to make sure the Chain4 bit did what it's
|
||
supposed to do. However, the current test should be adequate to eliminate
|
||
just about all EGAs, and 100% of everything else.
|
||
|
||
If this function fails to find a VGA, it attempts to undo any damage it
|
||
may have inadvertently done while testing. The underlying assumption for
|
||
the damage control is that if there's any non-VGA adapter at the tested
|
||
ports, it's an EGA or an enhanced EGA, because: a) I don't know of any
|
||
other adapters that use 3C4/5 or 3CE/F, and b), if there are other
|
||
adapters, I certainly don't know how to restore their original states. So
|
||
all error recovery is oriented toward putting an EGA back in a writable
|
||
state, so that error messages are visible. The EGA's state on entry is
|
||
assumed to be text mode, so the Memory Mode register is restored to the
|
||
default state for text mode.
|
||
|
||
If a VGA is found, the VGA is returned to its original state after
|
||
testing is finished.
|
||
|
||
Arguments:
|
||
|
||
None.
|
||
|
||
Return Value:
|
||
|
||
TRUE if a VGA is present, FALSE if not.
|
||
|
||
--*/
|
||
|
||
{
|
||
UCHAR originalGCAddr;
|
||
UCHAR originalSCAddr;
|
||
UCHAR originalBitMask;
|
||
UCHAR originalReadMap;
|
||
UCHAR originalMemoryMode;
|
||
UCHAR testMask;
|
||
BOOLEAN returnStatus;
|
||
|
||
//
|
||
// Remember the original state of the Graphics Controller Address register.
|
||
//
|
||
|
||
originalGCAddr = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT);
|
||
|
||
//
|
||
// Write the Read Map register with a known state so we can verify
|
||
// that it isn't changed after we fool with the Bit Mask. This ensures
|
||
// that we're dealing with indexed registers, since both the Read Map and
|
||
// the Bit Mask are addressed at GRAPH_DATA_PORT.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_READ_MAP);
|
||
|
||
//
|
||
// If we can't read back the Graphics Address register setting we just
|
||
// performed, it's not readable and this isn't a VGA.
|
||
//
|
||
|
||
if ((VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT) & GRAPH_ADDR_MASK) != IND_READ_MAP) {
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
//
|
||
// Set the Read Map register to a known state.
|
||
//
|
||
|
||
originalReadMap = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, READ_MAP_TEST_SETTING);
|
||
|
||
if (VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT) != READ_MAP_TEST_SETTING) {
|
||
|
||
//
|
||
// The Read Map setting we just performed can't be read back; not a
|
||
// VGA. Restore the default Read Map state.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, READ_MAP_DEFAULT);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
//
|
||
// Remember the original setting of the Bit Mask register.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_BIT_MASK);
|
||
if ((VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT) & GRAPH_ADDR_MASK) != IND_BIT_MASK) {
|
||
|
||
//
|
||
// The Graphics Address register setting we just made can't be read
|
||
// back; not a VGA. Restore the default Read Map state.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_READ_MAP);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, READ_MAP_DEFAULT);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
originalBitMask = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT);
|
||
|
||
//
|
||
// Set up the initial test mask we'll write to and read from the Bit Mask.
|
||
//
|
||
|
||
testMask = 0xBB;
|
||
|
||
do {
|
||
|
||
//
|
||
// Write the test mask to the Bit Mask.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, testMask);
|
||
|
||
//
|
||
// Make sure the Bit Mask remembered the value.
|
||
//
|
||
|
||
if (VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT) != testMask) {
|
||
|
||
//
|
||
// The Bit Mask is not properly writable and readable; not a VGA.
|
||
// Restore the Bit Mask and Read Map to their default states.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, BIT_MASK_DEFAULT);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_READ_MAP);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, READ_MAP_DEFAULT);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
//
|
||
// Cycle the mask for next time.
|
||
//
|
||
|
||
testMask >>= 1;
|
||
|
||
} while (testMask != 0);
|
||
|
||
//
|
||
// There's something readable at GRAPH_DATA_PORT; now switch back and
|
||
// make sure that the Read Map register hasn't changed, to verify that
|
||
// we're dealing with indexed registers.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_READ_MAP);
|
||
if (VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT) != READ_MAP_TEST_SETTING) {
|
||
|
||
//
|
||
// The Read Map is not properly writable and readable; not a VGA.
|
||
// Restore the Bit Mask and Read Map to their default states, in case
|
||
// this is an EGA, so subsequent writes to the screen aren't garbled.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, READ_MAP_DEFAULT);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_BIT_MASK);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, BIT_MASK_DEFAULT);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
//
|
||
// We've pretty surely verified the existence of the Bit Mask register.
|
||
// Put the Graphics Controller back to the original state.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, originalReadMap);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_BIT_MASK);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, originalBitMask);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, originalGCAddr);
|
||
|
||
//
|
||
// Now, check for the existence of the Chain4 bit.
|
||
//
|
||
|
||
//
|
||
// Remember the original states of the Sequencer Address and Memory Mode
|
||
// registers.
|
||
//
|
||
|
||
originalSCAddr = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT, IND_MEMORY_MODE);
|
||
if ((VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT) & SEQ_ADDR_MASK) != IND_MEMORY_MODE) {
|
||
|
||
//
|
||
// Couldn't read back the Sequencer Address register setting we just
|
||
// performed.
|
||
//
|
||
|
||
return FALSE;
|
||
}
|
||
originalMemoryMode = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT);
|
||
|
||
//
|
||
// Toggle the Chain4 bit and read back the result. This must be done during
|
||
// sync reset, since we're changing the chaining state.
|
||
//
|
||
|
||
//
|
||
// Begin sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT)(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(IND_SYNC_RESET + (START_SYNC_RESET_VALUE << 8)));
|
||
|
||
//
|
||
// Toggle the Chain4 bit.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT, IND_MEMORY_MODE);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT, (UCHAR)(originalMemoryMode ^ CHAIN4_MASK));
|
||
|
||
if (VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT) != (UCHAR) (originalMemoryMode ^ CHAIN4_MASK)) {
|
||
|
||
//
|
||
// Chain4 bit not there; not a VGA.
|
||
// Set text mode default for Memory Mode register.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT, MEMORY_MODE_TEXT_DEFAULT);
|
||
//
|
||
// End sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(IND_SYNC_RESET + (END_SYNC_RESET_VALUE << 8)));
|
||
|
||
returnStatus = FALSE;
|
||
|
||
} else {
|
||
|
||
//
|
||
// It's a VGA.
|
||
//
|
||
|
||
//
|
||
// Restore the original Memory Mode setting.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT, originalMemoryMode);
|
||
|
||
//
|
||
// End sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT)(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT)(IND_SYNC_RESET + (END_SYNC_RESET_VALUE << 8)));
|
||
|
||
//
|
||
// Restore the original Sequencer Address setting.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT, originalSCAddr);
|
||
|
||
returnStatus = TRUE;
|
||
}
|
||
|
||
return returnStatus;
|
||
|
||
} // VgaIsPresent()
|
||
|
||
VP_STATUS
|
||
VgaSetPaletteReg(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_PALETTE_DATA PaletteBuffer,
|
||
ULONG PaletteBufferSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine sets a specified portion of the EGA (not DAC) palette
|
||
registers.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
PaletteBuffer - Pointer to the structure containing the palette data.
|
||
|
||
PaletteBufferSize - Length of the input buffer supplied by the user.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - information returned successfully
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - input buffer not large enough for input data.
|
||
|
||
ERROR_INVALID_PARAMETER - invalid palette size.
|
||
|
||
--*/
|
||
|
||
{
|
||
USHORT i;
|
||
|
||
//
|
||
// Check if the size of the data in the input buffer is large enough.
|
||
//
|
||
|
||
if ((PaletteBufferSize) < (sizeof(VIDEO_PALETTE_DATA)) ||
|
||
(PaletteBufferSize < (sizeof(VIDEO_PALETTE_DATA) +
|
||
(sizeof(USHORT) * (PaletteBuffer->NumEntries -1)) ))) {
|
||
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Check to see if the parameters are valid.
|
||
//
|
||
|
||
if ( (PaletteBuffer->FirstEntry > VIDEO_MAX_COLOR_REGISTER ) ||
|
||
(PaletteBuffer->NumEntries == 0) ||
|
||
(PaletteBuffer->FirstEntry + PaletteBuffer->NumEntries >
|
||
VIDEO_MAX_PALETTE_REGISTER + 1 ) ) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Reset ATC to index mode
|
||
//
|
||
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_INITIALIZE_PORT_COLOR);
|
||
|
||
//
|
||
// Blast out our palette values.
|
||
//
|
||
|
||
for (i = 0; i < PaletteBuffer->NumEntries; i++) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress + ATT_ADDRESS_PORT,
|
||
(UCHAR)(i+PaletteBuffer->FirstEntry));
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_DATA_WRITE_PORT,
|
||
(UCHAR)PaletteBuffer->Colors[i]);
|
||
}
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress + ATT_ADDRESS_PORT,
|
||
VIDEO_ENABLE);
|
||
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaSetPaletteReg()
|
||
|
||
|
||
VP_STATUS
|
||
VgaSetColorLookup(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_CLUT ClutBuffer,
|
||
ULONG ClutBufferSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine sets a specified portion of the DAC color lookup table
|
||
settings.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
ClutBufferSize - Length of the input buffer supplied by the user.
|
||
|
||
ClutBuffer - Pointer to the structure containing the color lookup table.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - information returned successfully
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - input buffer not large enough for input data.
|
||
|
||
ERROR_INVALID_PARAMETER - invalid clut size.
|
||
|
||
--*/
|
||
|
||
{
|
||
USHORT i;
|
||
BOOLEAN PaletteIsSet = FALSE;
|
||
|
||
//
|
||
// Check if the size of the data in the input buffer is large enough.
|
||
//
|
||
|
||
if ( (ClutBufferSize < sizeof(VIDEO_CLUT) - sizeof(ULONG)) ||
|
||
(ClutBufferSize < sizeof(VIDEO_CLUT) +
|
||
(sizeof(ULONG) * (ClutBuffer->NumEntries - 1)) ) ) {
|
||
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Check to see if the parameters are valid.
|
||
//
|
||
|
||
if ( (ClutBuffer->NumEntries == 0) ||
|
||
(ClutBuffer->FirstEntry > VIDEO_MAX_COLOR_REGISTER) ||
|
||
(ClutBuffer->FirstEntry + ClutBuffer->NumEntries >
|
||
VIDEO_MAX_COLOR_REGISTER + 1) ) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
if (IS_LINEAR_MODE(HwDeviceExtension->CurrentMode)) {
|
||
|
||
INT10_BIOS_ARGUMENTS BiosArguments;
|
||
PVIDEO_PORT_INT10_INTERFACE pInt10 = &HwDeviceExtension->Int10;
|
||
PPALETTE_ENTRY Palette = VideoPortAllocatePool(HwDeviceExtension,
|
||
VpPagedPool,
|
||
ClutBuffer->NumEntries *
|
||
sizeof(PALETTE_ENTRY),
|
||
' agV');
|
||
|
||
if (Palette) {
|
||
|
||
for (i=0; i<ClutBuffer->NumEntries; i++) {
|
||
Palette[i].Blue = ClutBuffer->LookupTable[i].RgbArray.Blue;
|
||
Palette[i].Green = ClutBuffer->LookupTable[i].RgbArray.Green;
|
||
Palette[i].Red = ClutBuffer->LookupTable[i].RgbArray.Red;
|
||
Palette[i].Alignment = 0;
|
||
}
|
||
|
||
pInt10->Int10WriteMemory(pInt10->Context,
|
||
HwDeviceExtension->VdmSeg,
|
||
HwDeviceExtension->VdmOff,
|
||
Palette,
|
||
sizeof(PALETTE_ENTRY) * ClutBuffer->NumEntries);
|
||
|
||
BiosArguments.Eax = 0x4f09;
|
||
BiosArguments.Ebx = 0x0000;
|
||
BiosArguments.Ecx = ClutBuffer->NumEntries;
|
||
BiosArguments.Edx = ClutBuffer->FirstEntry;
|
||
BiosArguments.Edi = HwDeviceExtension->VdmOff;
|
||
BiosArguments.SegEs = HwDeviceExtension->VdmSeg;
|
||
|
||
pInt10->Int10CallBios(pInt10->Context, &BiosArguments);
|
||
|
||
if ((BiosArguments.Eax & 0xffff) == VESA_STATUS_SUCCESS) {
|
||
PaletteIsSet = TRUE;
|
||
}
|
||
|
||
VideoPortFreePool(HwDeviceExtension, Palette);
|
||
|
||
} else {
|
||
|
||
//
|
||
// in this case we'll try to set palette by programming vga registers
|
||
//
|
||
|
||
}
|
||
|
||
}
|
||
|
||
if(!PaletteIsSet && !(HwDeviceExtension->CurrentMode->NonVgaHardware)) {
|
||
|
||
//
|
||
// Set CLUT registers directly on the hardware
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT, (UCHAR) ClutBuffer->FirstEntry);
|
||
|
||
//
|
||
// Now write the data entries, relying on auto-increment.
|
||
//
|
||
|
||
for (i = 0; i < ClutBuffer->NumEntries; i++) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT,
|
||
ClutBuffer->LookupTable[i].RgbArray.Red);
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT,
|
||
ClutBuffer->LookupTable[i].RgbArray.Green);
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT,
|
||
ClutBuffer->LookupTable[i].RgbArray.Blue);
|
||
|
||
}
|
||
|
||
PaletteIsSet = TRUE;
|
||
|
||
}
|
||
|
||
if(PaletteIsSet) {
|
||
|
||
return NO_ERROR;
|
||
|
||
} else {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
}
|
||
|
||
|
||
} // end VgaSetColorLookup()
|
||
|
||
VP_STATUS
|
||
VgaRestoreHardwareState(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_HARDWARE_STATE HardwareState,
|
||
ULONG HardwareStateSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Restores all registers and memory of the VGA.
|
||
|
||
Note: HardwareState points to the actual buffer from which the state
|
||
is to be restored. This buffer will always be big enough (we specified
|
||
the required size at DriverEntry).
|
||
|
||
Note: The offset in the hardware state header from which each general
|
||
register is restored is the offset of the write address of that register
|
||
from the base I/O address of the VGA.
|
||
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
HardwareState - Pointer to a structure from which the saved state is to be
|
||
restored (actually only info about and a pointer to the actual save
|
||
buffer).
|
||
|
||
HardwareStateSize - Length of the input buffer supplied by the user.
|
||
(Actually only the size of the HardwareState structure, not the
|
||
buffer it points to from which the state is actually restored. The
|
||
pointed-to buffer is assumed to be big enough.)
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - restore performed successfully
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - input buffer not large enough to provide data
|
||
|
||
--*/
|
||
|
||
{
|
||
PVIDEO_HARDWARE_STATE_HEADER hardwareStateHeader;
|
||
ULONG i;
|
||
UCHAR dummy;
|
||
PUCHAR pScreen;
|
||
PUCHAR pucLatch;
|
||
PULONG pulBuffer;
|
||
PUCHAR port;
|
||
PUCHAR portValue;
|
||
PUCHAR portValueDAC;
|
||
ULONG bIsColor;
|
||
|
||
//
|
||
// Check if the size of the data in the input buffer is large enough.
|
||
//
|
||
|
||
if ((HardwareStateSize < sizeof(VIDEO_HARDWARE_STATE)) ||
|
||
(HardwareState->StateLength < VGA_TOTAL_STATE_SIZE)) {
|
||
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Point to the buffer where the restore data is actually stored.
|
||
//
|
||
|
||
hardwareStateHeader = HardwareState->StateHeader;
|
||
|
||
//
|
||
// Make sure the offset are in the structure ...
|
||
//
|
||
|
||
if ((hardwareStateHeader->BasicSequencerOffset + VGA_NUM_SEQUENCER_PORTS >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->BasicCrtContOffset + VGA_NUM_CRTC_PORTS >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->BasicGraphContOffset + VGA_NUM_GRAPH_CONT_PORTS >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->BasicAttribContOffset + VGA_NUM_ATTRIB_CONT_PORTS >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->BasicDacOffset + (3 * VGA_NUM_DAC_ENTRIES) >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->BasicLatchesOffset + 4 >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->ExtendedSequencerOffset + EXT_NUM_SEQUENCER_PORTS >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->ExtendedCrtContOffset + EXT_NUM_CRTC_PORTS >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->ExtendedGraphContOffset + EXT_NUM_GRAPH_CONT_PORTS >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->ExtendedAttribContOffset + EXT_NUM_ATTRIB_CONT_PORTS >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->ExtendedDacOffset + (4 * EXT_NUM_DAC_ENTRIES) >
|
||
HardwareState->StateLength) ||
|
||
|
||
//
|
||
// Only check the validator state offset if there is unemulated data.
|
||
//
|
||
|
||
((hardwareStateHeader->VGAStateFlags & VIDEO_STATE_UNEMULATED_VGA_STATE) &&
|
||
(hardwareStateHeader->ExtendedValidatorStateOffset + VGA_VALIDATOR_AREA_SIZE >
|
||
HardwareState->StateLength)) ||
|
||
|
||
(hardwareStateHeader->ExtendedMiscDataOffset + VGA_MISC_DATA_AREA_OFFSET >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->Plane1Offset + hardwareStateHeader->PlaneLength >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->Plane2Offset + hardwareStateHeader->PlaneLength >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->Plane3Offset + hardwareStateHeader->PlaneLength >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->Plane4Offset + hardwareStateHeader->PlaneLength >
|
||
HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->DIBOffset +
|
||
hardwareStateHeader->DIBBitsPerPixel / 8 *
|
||
hardwareStateHeader->DIBXResolution *
|
||
hardwareStateHeader->DIBYResolution > HardwareState->StateLength) ||
|
||
|
||
(hardwareStateHeader->DIBXlatOffset + hardwareStateHeader->DIBXlatLength >
|
||
HardwareState->StateLength)) {
|
||
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Turn off the screen to avoid flickering. The screen will turn back on
|
||
// when we restore the DAC state at the end of this routine.
|
||
//
|
||
|
||
//
|
||
// Set DAC register 0 to display black.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT, 0);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, 0);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, 0);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, 0);
|
||
|
||
//
|
||
// Set the DAC mask register to force DAC register 0 to display all the
|
||
// time (this is the register we just set to display black). From now on,
|
||
// nothing but black will show up on the screen.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_PIXEL_MASK_PORT, 0);
|
||
|
||
|
||
//
|
||
// Restore the latches and the contents of display memory.
|
||
//
|
||
// Set up the VGA's hardware to allow us to copy to each plane in turn.
|
||
//
|
||
// Begin sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET + (START_SYNC_RESET_VALUE << 8)));
|
||
|
||
//
|
||
// Turn off Chain mode and map display memory at A0000 for 64K.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_GRAPH_MISC);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, (UCHAR) ((VideoPortReadPortUchar(
|
||
HwDeviceExtension->IOAddress + GRAPH_DATA_PORT) & 0xF1) | 0x04));
|
||
|
||
//
|
||
// Turn off Chain4 mode and odd/even.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT, IND_MEMORY_MODE);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT,
|
||
(UCHAR) ((VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT) & 0xF3) | 0x04));
|
||
|
||
//
|
||
// End sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT), (USHORT) (IND_SYNC_RESET +
|
||
(END_SYNC_RESET_VALUE << 8)));
|
||
|
||
//
|
||
// Set the write mode to 0, the read mode to 0, and turn off odd/even.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_GRAPH_MODE);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT,
|
||
(UCHAR) ((VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT) & 0xE4) | 0x00));
|
||
|
||
//
|
||
// Set the Bit Mask to 0xFF to allow all CPU bits through.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT), (USHORT) (IND_BIT_MASK + (0xFF << 8)));
|
||
|
||
//
|
||
// Set the Data Rotation and Logical Function fields to 0 to allow CPU
|
||
// data through unmodified.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT)(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT), (USHORT) (IND_DATA_ROTATE + (0 << 8)));
|
||
|
||
//
|
||
// Set Set/Reset Enable to 0 to select CPU data for all planes.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT), (USHORT) (IND_SET_RESET_ENABLE + (0 << 8)));
|
||
|
||
//
|
||
// Point the Sequencer Index to the Map Mask register.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT, IND_MAP_MASK);
|
||
|
||
//
|
||
// Restore the latches.
|
||
//
|
||
// Point to the saved data for the first latch.
|
||
//
|
||
|
||
pucLatch = ((PUCHAR) (hardwareStateHeader)) +
|
||
hardwareStateHeader->BasicLatchesOffset;
|
||
|
||
//
|
||
// Point to first byte of display memory.
|
||
//
|
||
|
||
pScreen = (PUCHAR) HwDeviceExtension->VideoMemoryAddress;
|
||
|
||
//
|
||
// Write the contents to be restored to each of the four latches in turn.
|
||
//
|
||
|
||
for (i = 0; i < 4; i++) {
|
||
|
||
//
|
||
// Set the Map Mask to select the plane we want to restore next.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT, (UCHAR)(1<<i));
|
||
|
||
//
|
||
// Write this plane's latch.
|
||
//
|
||
|
||
VideoPortWriteRegisterUchar(pScreen, *pucLatch++);
|
||
|
||
}
|
||
|
||
//
|
||
// Read the latched data into the latches, and the latches are set.
|
||
//
|
||
|
||
dummy = VideoPortReadRegisterUchar(pScreen);
|
||
|
||
|
||
//
|
||
// Point to the offset of the saved data for the first plane.
|
||
//
|
||
|
||
pulBuffer = &(hardwareStateHeader->Plane1Offset);
|
||
|
||
//
|
||
// Restore each of the four planes in turn.
|
||
//
|
||
|
||
for (i = 0; i < 4; i++) {
|
||
|
||
//
|
||
// Set the Map Mask to select the plane we want to restore next.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT, (UCHAR)(1<<i));
|
||
|
||
//
|
||
// Restore this plane from the buffer.
|
||
//
|
||
|
||
VideoPortMoveMemory((PUCHAR) HwDeviceExtension->VideoMemoryAddress,
|
||
((PUCHAR) (hardwareStateHeader)) + *pulBuffer,
|
||
hardwareStateHeader->PlaneLength);
|
||
|
||
pulBuffer++;
|
||
|
||
}
|
||
|
||
//
|
||
// If we have some unemulated data, put it back into the buffer
|
||
//
|
||
|
||
if (hardwareStateHeader->VGAStateFlags & VIDEO_STATE_UNEMULATED_VGA_STATE) {
|
||
|
||
if (!hardwareStateHeader->ExtendedValidatorStateOffset) {
|
||
|
||
ASSERT(FALSE);
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
//
|
||
// Get the right offset in the struct and save all the data associated
|
||
// with the trapped validator data.
|
||
//
|
||
|
||
VideoPortMoveMemory(&(HwDeviceExtension->TrappedValidatorCount),
|
||
((PUCHAR) (hardwareStateHeader)) +
|
||
hardwareStateHeader->ExtendedValidatorStateOffset,
|
||
VGA_VALIDATOR_AREA_SIZE);
|
||
|
||
//
|
||
// Check to see if this is an appropriate access range.
|
||
// We are trapping - so we must have the trapping access range enabled.
|
||
//
|
||
|
||
if (((HwDeviceExtension->CurrentVdmAccessRange != FullVgaValidatorAccessRange) ||
|
||
(HwDeviceExtension->CurrentNumVdmAccessRanges != NUM_FULL_VGA_VALIDATOR_ACCESS_RANGE)) &&
|
||
((HwDeviceExtension->CurrentVdmAccessRange != MinimalVgaValidatorAccessRange) ||
|
||
(HwDeviceExtension->CurrentNumVdmAccessRanges != NUM_MINIMAL_VGA_VALIDATOR_ACCESS_RANGE))) {
|
||
|
||
ASSERT (FALSE);
|
||
return ERROR_INVALID_PARAMETER;
|
||
|
||
}
|
||
|
||
VideoPortSetTrappedEmulatorPorts(HwDeviceExtension,
|
||
HwDeviceExtension->CurrentNumVdmAccessRanges,
|
||
HwDeviceExtension->CurrentVdmAccessRange);
|
||
|
||
}
|
||
|
||
//
|
||
// Set the critical registers (clock and timing states) during sync reset.
|
||
//
|
||
// Begin sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT), (USHORT) (IND_SYNC_RESET +
|
||
(START_SYNC_RESET_VALUE << 8)));
|
||
|
||
//
|
||
// Restore the Miscellaneous Output register.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
MISC_OUTPUT_REG_WRITE_PORT,
|
||
(UCHAR) (hardwareStateHeader->PortValue[MISC_OUTPUT_REG_WRITE_PORT] & 0xF7));
|
||
|
||
//
|
||
// Restore all Sequencer registers except the Sync Reset register, which
|
||
// is always not in reset (except when we send out a batched sync reset
|
||
// register set, but that can't be interrupted, so we know we're never in
|
||
// sync reset at save/restore time).
|
||
//
|
||
|
||
portValue = ((PUCHAR) hardwareStateHeader) +
|
||
hardwareStateHeader->BasicSequencerOffset + 1;
|
||
|
||
for (i = 1; i < VGA_NUM_SEQUENCER_PORTS; i++) {
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT), (USHORT) (i + ((*portValue++) << 8)) );
|
||
|
||
}
|
||
|
||
//
|
||
// Restore the Graphics Controller Miscellaneous register, which contains
|
||
// the Chain bit.
|
||
//
|
||
|
||
portValue = ((PUCHAR) hardwareStateHeader) +
|
||
hardwareStateHeader->BasicGraphContOffset + IND_GRAPH_MISC;
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT), (USHORT)(IND_GRAPH_MISC + (*portValue << 8)));
|
||
|
||
//
|
||
// End sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT), (USHORT) (IND_SYNC_RESET +
|
||
(END_SYNC_RESET_VALUE << 8)));
|
||
|
||
//
|
||
// Figure out if color/mono switchable registers are at 3BX or 3DX.
|
||
// At the same time, save the state of the Miscellaneous Output register
|
||
// which is read from 3CC but written at 3C2.
|
||
//
|
||
|
||
if (hardwareStateHeader->PortValue[MISC_OUTPUT_REG_WRITE_PORT] & 0x01) {
|
||
bIsColor = TRUE;
|
||
} else {
|
||
bIsColor = FALSE;
|
||
}
|
||
|
||
|
||
//
|
||
// Restore the CRT Controller indexed registers.
|
||
//
|
||
// Unlock CRTC registers 0-7.
|
||
//
|
||
|
||
portValue = (PUCHAR) hardwareStateHeader +
|
||
hardwareStateHeader->BasicCrtContOffset;
|
||
|
||
if (bIsColor) {
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR), (USHORT) (IND_CRTC_PROTECT +
|
||
(((*(portValue + IND_CRTC_PROTECT)) & 0x7F) << 8)));
|
||
|
||
} else {
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_MONO), (USHORT) (IND_CRTC_PROTECT +
|
||
(((*(portValue + IND_CRTC_PROTECT)) & 0x7F) << 8)));
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Now restore the CRTC registers.
|
||
//
|
||
|
||
for (i = 0; i < VGA_NUM_CRTC_PORTS; i++) {
|
||
|
||
if (bIsColor) {
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR),
|
||
(USHORT) (i + ((*portValue++) << 8)));
|
||
|
||
} else {
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_MONO),
|
||
(USHORT) (i + ((*portValue++) << 8)));
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Restore the Graphics Controller indexed registers.
|
||
//
|
||
|
||
portValue = (PUCHAR) hardwareStateHeader +
|
||
hardwareStateHeader->BasicGraphContOffset;
|
||
|
||
for (i = 0; i < VGA_NUM_GRAPH_CONT_PORTS; i++) {
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT), (USHORT) (i + ((*portValue++) << 8)));
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Restore the Attribute Controller indexed registers.
|
||
//
|
||
|
||
portValue = (PUCHAR) hardwareStateHeader +
|
||
hardwareStateHeader->BasicAttribContOffset;
|
||
|
||
//
|
||
// Reset the AC index/data toggle, then blast out all the register
|
||
// settings.
|
||
//
|
||
|
||
if (bIsColor) {
|
||
dummy = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
INPUT_STATUS_1_COLOR);
|
||
} else {
|
||
dummy = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
INPUT_STATUS_1_MONO);
|
||
}
|
||
|
||
for (i = 0; i < VGA_NUM_ATTRIB_CONT_PORTS; i++) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_ADDRESS_PORT, (UCHAR)i);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_DATA_WRITE_PORT, *portValue++);
|
||
|
||
}
|
||
|
||
//
|
||
// Restore DAC registers 1 through 255. We'll do register 0, the DAC Mask,
|
||
// and the index registers later.
|
||
// Set the DAC address port Index, then write out the DAC Data registers.
|
||
// Each three reads get Red, Green, and Blue components for that register.
|
||
//
|
||
// Write them one at a time due to problems on local bus machines.
|
||
//
|
||
|
||
portValueDAC = (PUCHAR) hardwareStateHeader +
|
||
hardwareStateHeader->BasicDacOffset + 3;
|
||
|
||
for (i = 1; i < VGA_NUM_DAC_ENTRIES; i++) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT, (UCHAR)i);
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, *portValueDAC++);
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, *portValueDAC++);
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, *portValueDAC++);
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Extended registers are not supported in this driver.
|
||
//
|
||
|
||
|
||
//
|
||
// Restore the Feature Control register.
|
||
//
|
||
|
||
if (bIsColor) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
FEAT_CTRL_WRITE_PORT_COLOR,
|
||
hardwareStateHeader->PortValue[FEAT_CTRL_WRITE_PORT_COLOR]);
|
||
|
||
} else {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
FEAT_CTRL_WRITE_PORT_MONO,
|
||
hardwareStateHeader->PortValue[FEAT_CTRL_WRITE_PORT_MONO]);
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Restore the Sequencer Index.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT,
|
||
hardwareStateHeader->PortValue[SEQ_ADDRESS_PORT]);
|
||
|
||
//
|
||
// Restore the CRT Controller Index.
|
||
//
|
||
|
||
if (bIsColor) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR,
|
||
hardwareStateHeader->PortValue[CRTC_ADDRESS_PORT_COLOR]);
|
||
|
||
} else {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_MONO,
|
||
hardwareStateHeader->PortValue[CRTC_ADDRESS_PORT_MONO]);
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Restore the Graphics Controller Index.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT,
|
||
hardwareStateHeader->PortValue[GRAPH_ADDRESS_PORT]);
|
||
|
||
|
||
//
|
||
// Restore the Attribute Controller Index and index/data toggle state.
|
||
//
|
||
|
||
if (bIsColor) {
|
||
port = HwDeviceExtension->IOAddress + INPUT_STATUS_1_COLOR;
|
||
} else {
|
||
port = HwDeviceExtension->IOAddress + INPUT_STATUS_1_MONO;
|
||
}
|
||
|
||
VideoPortReadPortUchar(port); // reset the toggle to Index state
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_ADDRESS_PORT, // restore the AC Index
|
||
hardwareStateHeader->PortValue[ATT_ADDRESS_PORT]);
|
||
|
||
//
|
||
// If the toggle should be in Data state, we're all set. If it should be in
|
||
// Index state, reset it to that condition.
|
||
//
|
||
|
||
if (hardwareStateHeader->AttribIndexDataState == 0) {
|
||
|
||
//
|
||
// Reset the toggle to Index state.
|
||
//
|
||
|
||
VideoPortReadPortUchar(port);
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Restore DAC register 0 and the DAC Mask, to unblank the screen.
|
||
//
|
||
|
||
portValueDAC = (PUCHAR) hardwareStateHeader +
|
||
hardwareStateHeader->BasicDacOffset;
|
||
|
||
//
|
||
// Restore the DAC Mask register.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_PIXEL_MASK_PORT,
|
||
hardwareStateHeader->PortValue[DAC_PIXEL_MASK_PORT]);
|
||
|
||
//
|
||
// Restore DAC register 0.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT, 0);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, *portValueDAC++);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, *portValueDAC++);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, *portValueDAC++);
|
||
|
||
|
||
//
|
||
// Restore the read/write state and the current index of the DAC.
|
||
//
|
||
// See whether the Read or Write Index was written to most recently.
|
||
// (The upper nibble stored at DAC_STATE_PORT is the # of reads/writes
|
||
// for the current index.)
|
||
//
|
||
|
||
if ((hardwareStateHeader->PortValue[DAC_STATE_PORT] & 0x0F) == 3) {
|
||
|
||
//
|
||
// The DAC Read Index was written to last. Restore the DAC by setting
|
||
// up to read from the saved index - 1, because the way the Read
|
||
// Index works is that it autoincrements after reading, so you actually
|
||
// end up reading the data for the index you read at the DAC Write
|
||
// Mask register - 1.
|
||
//
|
||
// Set the Read Index to the index we read, minus 1, accounting for
|
||
// wrap from 255 back to 0. The DAC hardware immediately reads this
|
||
// register into a temporary buffer, then adds 1 to the index.
|
||
//
|
||
|
||
if (hardwareStateHeader->PortValue[DAC_ADDRESS_WRITE_PORT] == 0) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_READ_PORT, 255);
|
||
|
||
} else {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_READ_PORT, (UCHAR)
|
||
(hardwareStateHeader->PortValue[DAC_ADDRESS_WRITE_PORT] -
|
||
1));
|
||
|
||
}
|
||
|
||
//
|
||
// Now read the hardware however many times are required to get to
|
||
// the partial read state we saved.
|
||
//
|
||
|
||
for (i = hardwareStateHeader->PortValue[DAC_STATE_PORT] >> 4;
|
||
i > 0; i--) {
|
||
|
||
dummy = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT);
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
//
|
||
// The DAC Write Index was written to last. Set the Write Index to the
|
||
// index value we read out of the DAC. Then, if a partial write
|
||
// (partway through an RGB triplet) was in place, write the partial
|
||
// values, which we obtained by writing them to the current DAC
|
||
// register. This DAC register will be wrong until the write is
|
||
// completed, but at least the values will be right once the write is
|
||
// finished, and most importantly we won't have messed up the sequence
|
||
// of RGB writes (which can be as long as 768 in a row).
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT,
|
||
hardwareStateHeader->PortValue[DAC_ADDRESS_WRITE_PORT]);
|
||
|
||
//
|
||
// Now write to the hardware however many times are required to get to
|
||
// the partial write state we saved (if any).
|
||
//
|
||
// Point to the saved value for the DAC register that was in the
|
||
// process of being written to; we wrote the partial value out, so now
|
||
// we can restore it.
|
||
//
|
||
|
||
portValueDAC = (PUCHAR) hardwareStateHeader +
|
||
hardwareStateHeader->BasicDacOffset +
|
||
(hardwareStateHeader->PortValue[DAC_ADDRESS_WRITE_PORT] * 3);
|
||
|
||
for (i = hardwareStateHeader->PortValue[DAC_STATE_PORT] >> 4;
|
||
i > 0; i--) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, *portValueDAC++);
|
||
|
||
}
|
||
|
||
}
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaRestoreHardwareState()
|
||
|
||
VP_STATUS
|
||
VgaSaveHardwareState(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_HARDWARE_STATE HardwareState,
|
||
ULONG HardwareStateSize,
|
||
PULONG OutputSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Saves all registers and memory of the VGA.
|
||
|
||
Note: HardwareState points to the actual buffer in which the state
|
||
is saved. This buffer will always be big enough (we specified
|
||
the required size at DriverEntry).
|
||
|
||
Note: This routine leaves registers in any state it cares to, except
|
||
that it will not mess with any of the CRT or Sequencer parameters that
|
||
might make the monitor unhappy. It leaves the screen blanked by setting
|
||
the DAC Mask and DAC register 0 to all zero values. The next video
|
||
operation we expect after this is a mode set to take us back to Win32.
|
||
|
||
Note: The offset in the hardware state header in which each general
|
||
register is saved is the offset of the write address of that register from
|
||
the base I/O address of the VGA.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
HardwareState - Pointer to a structure in which the saved state will be
|
||
returned (actually only info about and a pointer to the actual save
|
||
buffer).
|
||
|
||
HardwareStateSize - Length of the output buffer supplied by the user.
|
||
(Actually only the size of the HardwareState structure, not the
|
||
buffer it points to where the state is actually saved. The pointed-
|
||
to buffer is assumed to be big enough.)
|
||
|
||
OutputSize - Pointer to a buffer in which to return the actual size of
|
||
the data returned in the buffer.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - information returned successfully
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - output buffer not large enough to return
|
||
any useful data
|
||
|
||
--*/
|
||
|
||
{
|
||
PVIDEO_HARDWARE_STATE_HEADER hardwareStateHeader;
|
||
PUCHAR pScreen;
|
||
PUCHAR portValue;
|
||
PUCHAR portValueDAC;
|
||
PUCHAR bufferPointer;
|
||
ULONG i;
|
||
UCHAR dummy, originalACIndex, originalACData;
|
||
UCHAR ucCRTC03;
|
||
ULONG bIsColor;
|
||
|
||
|
||
//
|
||
// See if the buffer is big enough to hold the hardware state structure.
|
||
// (This is only the HardwareState structure itself, not the buffer it
|
||
// points to.)
|
||
//
|
||
|
||
if (HardwareStateSize < sizeof(VIDEO_HARDWARE_STATE) ) {
|
||
|
||
*OutputSize = 0; // nothing returned
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Amount of data we're going to return in the output buffer.
|
||
// (The VIDEO_HARDWARE_STATE in the output buffer points to the actual
|
||
// buffer in which the state is stored, which is assumed to be large
|
||
// enough.)
|
||
//
|
||
|
||
*OutputSize = sizeof(VIDEO_HARDWARE_STATE);
|
||
|
||
//
|
||
// Indicate the size of the full state save info.
|
||
//
|
||
|
||
HardwareState->StateLength = VGA_TOTAL_STATE_SIZE;
|
||
|
||
//
|
||
// hardwareStateHeader is a structure of offsets at the start of the
|
||
// actual save area that indicates the locations in which various VGA
|
||
// register and memory components are saved.
|
||
//
|
||
|
||
hardwareStateHeader = HardwareState->StateHeader;
|
||
|
||
//
|
||
// Zero out the structure.
|
||
//
|
||
|
||
VideoPortZeroMemory(hardwareStateHeader, sizeof(VIDEO_HARDWARE_STATE_HEADER));
|
||
|
||
//
|
||
// Set the Length field, which is basically a version ID.
|
||
//
|
||
|
||
hardwareStateHeader->Length = sizeof(VIDEO_HARDWARE_STATE_HEADER);
|
||
|
||
//
|
||
// Set the basic register offsets properly.
|
||
//
|
||
|
||
hardwareStateHeader->BasicSequencerOffset = VGA_BASIC_SEQUENCER_OFFSET;
|
||
hardwareStateHeader->BasicCrtContOffset = VGA_BASIC_CRTC_OFFSET;
|
||
hardwareStateHeader->BasicGraphContOffset = VGA_BASIC_GRAPH_CONT_OFFSET;
|
||
hardwareStateHeader->BasicAttribContOffset = VGA_BASIC_ATTRIB_CONT_OFFSET;
|
||
hardwareStateHeader->BasicDacOffset = VGA_BASIC_DAC_OFFSET;
|
||
hardwareStateHeader->BasicLatchesOffset = VGA_BASIC_LATCHES_OFFSET;
|
||
|
||
//
|
||
// Set the entended register offsets properly.
|
||
//
|
||
|
||
hardwareStateHeader->ExtendedSequencerOffset = VGA_EXT_SEQUENCER_OFFSET;
|
||
hardwareStateHeader->ExtendedCrtContOffset = VGA_EXT_CRTC_OFFSET;
|
||
hardwareStateHeader->ExtendedGraphContOffset = VGA_EXT_GRAPH_CONT_OFFSET;
|
||
hardwareStateHeader->ExtendedAttribContOffset = VGA_EXT_ATTRIB_CONT_OFFSET;
|
||
hardwareStateHeader->ExtendedDacOffset = VGA_EXT_DAC_OFFSET;
|
||
|
||
//
|
||
// Figure out if color/mono switchable registers are at 3BX or 3DX.
|
||
// At the same time, save the state of the Miscellaneous Output register
|
||
// which is read from 3CC but written at 3C2.
|
||
//
|
||
|
||
if ((hardwareStateHeader->PortValue[MISC_OUTPUT_REG_WRITE_PORT] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
MISC_OUTPUT_REG_READ_PORT))
|
||
& 0x01) {
|
||
bIsColor = TRUE;
|
||
} else {
|
||
bIsColor = FALSE;
|
||
}
|
||
|
||
//
|
||
// Force the video subsystem enable state to enabled.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
VIDEO_SUBSYSTEM_ENABLE_PORT, 1);
|
||
|
||
//
|
||
// Save the DAC state first, so we can set the DAC to blank the screen
|
||
// so nothing after this shows up at all.
|
||
//
|
||
// Save the DAC Mask register.
|
||
//
|
||
|
||
hardwareStateHeader->PortValue[DAC_PIXEL_MASK_PORT] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_PIXEL_MASK_PORT);
|
||
|
||
//
|
||
// Save the DAC Index register. Note that there is actually only one DAC
|
||
// Index register, which functions as either the Read Index or the Write
|
||
// Index as needed.
|
||
//
|
||
|
||
hardwareStateHeader->PortValue[DAC_ADDRESS_WRITE_PORT] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT);
|
||
|
||
//
|
||
// Save the DAC read/write state. We determine if the DAC has been written
|
||
// to or read from at the current index 0, 1, or 2 times (the application
|
||
// is in the middle of reading or writing a DAC register triplet if the
|
||
// count is 1 or 2), and save enough info so we can restore things
|
||
// properly. The only hole is if the application writes to the Write Index,
|
||
// then reads from instead of writes to the Data register, or vice-versa,
|
||
// or if they do a partial read write, then never finish it.
|
||
// This is fairly ridiculous behavior, however, and anyway there's nothing
|
||
// we can do about it.
|
||
//
|
||
|
||
hardwareStateHeader->PortValue[DAC_STATE_PORT] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_STATE_PORT);
|
||
|
||
if (hardwareStateHeader->PortValue[DAC_STATE_PORT] == 3) {
|
||
|
||
//
|
||
// The DAC Read Index was written to last. Figure out how many reads
|
||
// have been done from the current index. We'll restart this on restore
|
||
// by setting the Read Index to the current index - 1 (the read index
|
||
// is one greater than the index being read), then doing the proper
|
||
// number of reads.
|
||
//
|
||
// Read the Data register once, and see if the index changes.
|
||
//
|
||
|
||
dummy = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT);
|
||
|
||
if (VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT) !=
|
||
hardwareStateHeader->PortValue[DAC_ADDRESS_WRITE_PORT]) {
|
||
|
||
//
|
||
// The DAC Index changed, so two reads had already been done from
|
||
// the current index. Store the count "2" in the upper nibble of
|
||
// the read/write state field.
|
||
//
|
||
|
||
hardwareStateHeader->PortValue[DAC_STATE_PORT] |= 0x20;
|
||
|
||
} else {
|
||
|
||
//
|
||
// Read the Data register again, and see if the index changes.
|
||
//
|
||
|
||
dummy = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT);
|
||
|
||
if (VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT) !=
|
||
hardwareStateHeader->PortValue[DAC_ADDRESS_WRITE_PORT]) {
|
||
|
||
//
|
||
// The DAC Index changed, so one read had already been done
|
||
// from the current index. Store the count "1" in the upper
|
||
// nibble of the read/write state field.
|
||
//
|
||
|
||
hardwareStateHeader->PortValue[DAC_STATE_PORT] |= 0x10;
|
||
}
|
||
|
||
//
|
||
// If neither 2 nor 1 reads had been done from the current index,
|
||
// then 0 reads were done, and we're all set, since the upper
|
||
// nibble of the read/write state field is already 0.
|
||
//
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
//
|
||
// The DAC Write Index was written to last. Figure out how many writes
|
||
// have been done to the current index. We'll restart this on restore
|
||
// by setting the Write Index to the proper index, then doing the
|
||
// proper number of writes. When we do the DAC register save, we'll
|
||
// read out the value that gets written (if there was a partial write
|
||
// in progress), so we can restore the proper data later. This will
|
||
// cause this current DAC location to be briefly wrong in the 1- and
|
||
// 2-bytes-written case (until the app finishes the write), but that's
|
||
// better than having the wrong DAC values written for good.
|
||
//
|
||
// Write the Data register once, and see if the index changes.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, 0);
|
||
|
||
if (VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT) !=
|
||
hardwareStateHeader->PortValue[DAC_ADDRESS_WRITE_PORT]) {
|
||
|
||
//
|
||
// The DAC Index changed, so two writes had already been done to
|
||
// the current index. Store the count "2" in the upper nibble of
|
||
// the read/write state field.
|
||
//
|
||
|
||
hardwareStateHeader->PortValue[DAC_STATE_PORT] |= 0x20;
|
||
|
||
} else {
|
||
|
||
//
|
||
// Write the Data register again, and see if the index changes.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, 0);
|
||
|
||
if (VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT) !=
|
||
hardwareStateHeader->PortValue[DAC_ADDRESS_WRITE_PORT]) {
|
||
|
||
//
|
||
// The DAC Index changed, so one write had already been done
|
||
// to the current index. Store the count "1" in the upper
|
||
// nibble of the read/write state field.
|
||
//
|
||
|
||
hardwareStateHeader->PortValue[DAC_STATE_PORT] |= 0x10;
|
||
}
|
||
|
||
//
|
||
// If neither 2 nor 1 writes had been done to the current index,
|
||
// then 0 writes were done, and we're all set.
|
||
//
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Now, read out the 256 18-bit DAC palette registers (256 RGB triplets),
|
||
// and blank the screen.
|
||
//
|
||
|
||
portValueDAC = (PUCHAR) hardwareStateHeader + VGA_BASIC_DAC_OFFSET;
|
||
|
||
//
|
||
// Read out DAC register 0, so we can set it to black.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_READ_PORT, 0);
|
||
*portValueDAC++ = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT);
|
||
*portValueDAC++ = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT);
|
||
*portValueDAC++ = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT);
|
||
|
||
//
|
||
// Set DAC register 0 to display black.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_WRITE_PORT, 0);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, 0);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, 0);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT, 0);
|
||
|
||
//
|
||
// Set the DAC mask register to force DAC register 0 to display all the
|
||
// time (this is the register we just set to display black). From now on,
|
||
// nothing but black will show up on the screen.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_PIXEL_MASK_PORT, 0);
|
||
|
||
//
|
||
// Read out the Attribute Controller Index state, and deduce the Index/Data
|
||
// toggle state at the same time.
|
||
//
|
||
// Save the state of the Attribute Controller, both Index and Data,
|
||
// so we can test in which state the toggle currently is.
|
||
//
|
||
|
||
originalACIndex = hardwareStateHeader->PortValue[ATT_ADDRESS_PORT] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_ADDRESS_PORT);
|
||
originalACData = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_DATA_READ_PORT);
|
||
|
||
//
|
||
// Sequencer Index.
|
||
//
|
||
|
||
hardwareStateHeader->PortValue[SEQ_ADDRESS_PORT] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT);
|
||
|
||
//
|
||
// Begin sync reset, just in case this is an SVGA and the currently
|
||
// indexed Attribute Controller register controls clocking stuff (a
|
||
// normal VGA won't require this).
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET + (START_SYNC_RESET_VALUE << 8)));
|
||
|
||
//
|
||
// Now, write a different Index setting to the Attribute Controller, and
|
||
// see if the Index changes.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_ADDRESS_PORT, (UCHAR) (originalACIndex ^ 0x10));
|
||
|
||
if (VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_ADDRESS_PORT) == originalACIndex) {
|
||
|
||
//
|
||
// The Index didn't change, so the toggle was in the Data state.
|
||
//
|
||
|
||
hardwareStateHeader->AttribIndexDataState = 1;
|
||
|
||
//
|
||
// Restore the original Data state; we just corrupted it, and we need
|
||
// to read it out later; also, it may glitch the screen if not
|
||
// corrected. The toggle is already in the Index state.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_ADDRESS_PORT, originalACIndex);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_DATA_WRITE_PORT, originalACData);
|
||
|
||
} else {
|
||
|
||
//
|
||
// The Index did change, so the toggle was in the Index state.
|
||
// No need to restore anything, because the Data register didn't
|
||
// change, and we've already read out the Index register.
|
||
//
|
||
|
||
hardwareStateHeader->AttribIndexDataState = 0;
|
||
|
||
}
|
||
|
||
//
|
||
// End sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET + (END_SYNC_RESET_VALUE << 8)));
|
||
|
||
|
||
|
||
//
|
||
// Save the rest of the DAC registers.
|
||
// Set the DAC address port Index, then read out the DAC Data registers.
|
||
// Each three reads get Red, Green, and Blue components for that register.
|
||
//
|
||
// Read them one at a time due to problems on local bus machines.
|
||
//
|
||
|
||
for (i = 1; i < VGA_NUM_DAC_ENTRIES; i++) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_ADDRESS_READ_PORT, (UCHAR)i);
|
||
|
||
*portValueDAC++ = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT);
|
||
|
||
*portValueDAC++ = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT);
|
||
|
||
*portValueDAC++ = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_DATA_REG_PORT);
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// The Feature Control register is read from 3CA but written at 3BA/3DA.
|
||
//
|
||
|
||
if (bIsColor) {
|
||
|
||
hardwareStateHeader->PortValue[FEAT_CTRL_WRITE_PORT_COLOR] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
FEAT_CTRL_READ_PORT);
|
||
|
||
} else {
|
||
|
||
hardwareStateHeader->PortValue[FEAT_CTRL_WRITE_PORT_MONO] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
FEAT_CTRL_READ_PORT);
|
||
|
||
}
|
||
|
||
|
||
|
||
//
|
||
// CRT Controller Index.
|
||
//
|
||
|
||
if (bIsColor) {
|
||
|
||
hardwareStateHeader->PortValue[CRTC_ADDRESS_PORT_COLOR] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR);
|
||
|
||
} else {
|
||
|
||
hardwareStateHeader->PortValue[CRTC_ADDRESS_PORT_MONO] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_MONO);
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Graphics Controller Index.
|
||
//
|
||
|
||
hardwareStateHeader->PortValue[GRAPH_ADDRESS_PORT] =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT);
|
||
|
||
|
||
//
|
||
// Sequencer indexed registers.
|
||
//
|
||
|
||
portValue = ((PUCHAR) hardwareStateHeader) + VGA_BASIC_SEQUENCER_OFFSET;
|
||
|
||
for (i = 0; i < VGA_NUM_SEQUENCER_PORTS; i++) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT, (UCHAR)i);
|
||
*portValue++ = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT);
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// CRT Controller indexed registers.
|
||
//
|
||
|
||
//
|
||
// Remember the state of CRTC register 3, then force bit 7
|
||
// to 1 so we will read back the Vertical Retrace start and
|
||
// end registers rather than the light pen info.
|
||
//
|
||
|
||
if (bIsColor) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR, 3);
|
||
ucCRTC03 = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR, (UCHAR) (ucCRTC03 | 0x80));
|
||
} else {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_MONO, 3);
|
||
ucCRTC03 = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_MONO);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_MONO, (UCHAR) (ucCRTC03 | 0x80));
|
||
}
|
||
|
||
portValue = (PUCHAR) hardwareStateHeader + VGA_BASIC_CRTC_OFFSET;
|
||
|
||
for (i = 0; i < VGA_NUM_CRTC_PORTS; i++) {
|
||
|
||
if (bIsColor) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_COLOR, (UCHAR)i);
|
||
*portValue++ =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_COLOR);
|
||
} else {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_ADDRESS_PORT_MONO, (UCHAR)i);
|
||
*portValue++ =
|
||
VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
CRTC_DATA_PORT_MONO);
|
||
}
|
||
|
||
}
|
||
|
||
portValue = (PUCHAR) hardwareStateHeader + VGA_BASIC_CRTC_OFFSET;
|
||
portValue[3] = ucCRTC03;
|
||
|
||
|
||
//
|
||
// Graphics Controller indexed registers.
|
||
//
|
||
|
||
portValue = (PUCHAR) hardwareStateHeader + VGA_BASIC_GRAPH_CONT_OFFSET;
|
||
|
||
for (i = 0; i < VGA_NUM_GRAPH_CONT_PORTS; i++) {
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, (UCHAR)i);
|
||
*portValue++ = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT);
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// Attribute Controller indexed registers.
|
||
//
|
||
|
||
portValue = (PUCHAR) hardwareStateHeader + VGA_BASIC_ATTRIB_CONT_OFFSET;
|
||
|
||
//
|
||
// For each indexed AC register, reset the flip-flop for reading the
|
||
// attribute register, then write the desired index to the AC Index,
|
||
// then read the value of the indexed register from the AC Data register.
|
||
//
|
||
|
||
for (i = 0; i < VGA_NUM_ATTRIB_CONT_PORTS; i++) {
|
||
|
||
if (bIsColor) {
|
||
dummy = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
INPUT_STATUS_1_COLOR);
|
||
} else {
|
||
dummy = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
INPUT_STATUS_1_MONO);
|
||
}
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_ADDRESS_PORT, (UCHAR)i);
|
||
*portValue++ = VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
ATT_DATA_READ_PORT);
|
||
|
||
}
|
||
|
||
//
|
||
// Save the latches. This destroys one byte of display memory in each
|
||
// plane, which is unfortunate but unavoidable. Chips that provide
|
||
// a way to read back the latches can avoid this problem.
|
||
//
|
||
// Set up the VGA's hardware so we can write the latches, then read them
|
||
// back.
|
||
//
|
||
|
||
//
|
||
// Begin sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET + (START_SYNC_RESET_VALUE << 8)));
|
||
|
||
//
|
||
// Set the Miscellaneous register to make sure we can access video RAM.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
MISC_OUTPUT_REG_WRITE_PORT, (UCHAR)(
|
||
hardwareStateHeader->PortValue[MISC_OUTPUT_REG_WRITE_PORT] |
|
||
0x02));
|
||
|
||
//
|
||
// Turn off Chain mode and map display memory at A0000 for 64K.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_GRAPH_MISC);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT,
|
||
(UCHAR) ((VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT) & 0xF1) | 0x04));
|
||
|
||
//
|
||
// Turn off Chain4 mode and odd/even.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT, IND_MEMORY_MODE);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT,
|
||
(UCHAR) ((VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
SEQ_DATA_PORT) & 0xF3) | 0x04));
|
||
|
||
//
|
||
// End sync reset.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET + (END_SYNC_RESET_VALUE << 8)));
|
||
|
||
//
|
||
// Set the Map Mask to write to all planes.
|
||
//
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (HwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT), (USHORT) (IND_MAP_MASK + (0x0F << 8)));
|
||
|
||
//
|
||
// Set the write mode to 0, the read mode to 0, and turn off odd/even.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_GRAPH_MODE);
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT,
|
||
(UCHAR) ((VideoPortReadPortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT) & 0xE4) | 0x01));
|
||
|
||
//
|
||
// Point to the last byte of display memory.
|
||
//
|
||
|
||
pScreen = (PUCHAR) HwDeviceExtension->VideoMemoryAddress +
|
||
VGA_PLANE_SIZE - 1;
|
||
|
||
//
|
||
// Write the latches to the last byte of display memory.
|
||
//
|
||
|
||
VideoPortWriteRegisterUchar(pScreen, 0);
|
||
|
||
//
|
||
// Cycle through the four planes, reading the latch data from each plane.
|
||
//
|
||
|
||
//
|
||
// Point the Graphics Controller Index to the Read Map register.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_READ_MAP);
|
||
|
||
portValue = (PUCHAR) hardwareStateHeader + VGA_BASIC_LATCHES_OFFSET;
|
||
|
||
for (i=0; i<4; i++) {
|
||
|
||
//
|
||
// Set the Read Map for the current plane.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, (UCHAR)i);
|
||
|
||
//
|
||
// Read the latched data we've written to memory.
|
||
//
|
||
|
||
*portValue++ = VideoPortReadRegisterUchar(pScreen);
|
||
|
||
}
|
||
|
||
//
|
||
// Set the VDM flags
|
||
// We are a standard VGA, and then check if we have unemulated state.
|
||
//
|
||
|
||
hardwareStateHeader->VGAStateFlags = 0;
|
||
|
||
if (HwDeviceExtension->TrappedValidatorCount) {
|
||
|
||
hardwareStateHeader->VGAStateFlags |= VIDEO_STATE_UNEMULATED_VGA_STATE;
|
||
|
||
//
|
||
// Save the VDM Emulator data
|
||
// No need to save the state of the sequencer port register for our
|
||
// emulated data since it may change when we come back. It will be
|
||
// recomputed.
|
||
//
|
||
|
||
hardwareStateHeader->ExtendedValidatorStateOffset = VGA_VALIDATOR_OFFSET;
|
||
|
||
VideoPortMoveMemory(((PUCHAR) (hardwareStateHeader)) +
|
||
hardwareStateHeader->ExtendedValidatorStateOffset,
|
||
&(HwDeviceExtension->TrappedValidatorCount),
|
||
VGA_VALIDATOR_AREA_SIZE);
|
||
|
||
} else {
|
||
|
||
hardwareStateHeader->ExtendedValidatorStateOffset = 0;
|
||
|
||
}
|
||
|
||
//
|
||
// Set the size of each plane.
|
||
//
|
||
|
||
hardwareStateHeader->PlaneLength = VGA_PLANE_SIZE;
|
||
|
||
//
|
||
// Store all the offsets for the planes in the structure.
|
||
//
|
||
|
||
hardwareStateHeader->Plane1Offset = VGA_PLANE_0_OFFSET;
|
||
hardwareStateHeader->Plane2Offset = VGA_PLANE_1_OFFSET;
|
||
hardwareStateHeader->Plane3Offset = VGA_PLANE_2_OFFSET;
|
||
hardwareStateHeader->Plane4Offset = VGA_PLANE_3_OFFSET;
|
||
|
||
//
|
||
// Now copy the contents of video VRAM into the buffer.
|
||
//
|
||
// The VGA hardware is already set up so that video memory is readable;
|
||
// we already turned off Chain mode, mapped in at A0000, turned off Chain4,
|
||
// turned off odd/even, and set read mode 0 when we saved the latches.
|
||
//
|
||
// Point the Graphics Controller Index to the Read Map register.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_ADDRESS_PORT, IND_READ_MAP);
|
||
|
||
//
|
||
// Point to the save area for the first plane.
|
||
//
|
||
|
||
bufferPointer = ((PUCHAR) (hardwareStateHeader)) +
|
||
hardwareStateHeader->Plane1Offset;
|
||
|
||
//
|
||
// Save the four planes consecutively.
|
||
//
|
||
|
||
for (i = 0; i < 4; i++) {
|
||
|
||
//
|
||
// Set the Read Map to select the plane we want to save next.
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
GRAPH_DATA_PORT, (UCHAR)i);
|
||
|
||
//
|
||
// Copy this plane into the buffer.
|
||
//
|
||
|
||
VideoPortMoveMemory(bufferPointer,
|
||
(PUCHAR) HwDeviceExtension->VideoMemoryAddress,
|
||
VGA_PLANE_SIZE);
|
||
//
|
||
// Point to the next plane's save area.
|
||
//
|
||
|
||
bufferPointer += VGA_PLANE_SIZE;
|
||
}
|
||
|
||
//
|
||
// Reenable video output
|
||
//
|
||
|
||
VideoPortWritePortUchar(HwDeviceExtension->IOAddress +
|
||
DAC_PIXEL_MASK_PORT, 0xff);
|
||
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaSaveHardwareState()
|
||
|
||
VP_STATUS
|
||
VgaGetBankSelectCode(
|
||
PHW_DEVICE_EXTENSION HwDeviceExtension,
|
||
PVIDEO_BANK_SELECT BankSelect,
|
||
ULONG BankSelectSize,
|
||
PULONG OutputSize
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Returns information needed in order for caller to implement bank
|
||
management.
|
||
|
||
Arguments:
|
||
|
||
HwDeviceExtension - Pointer to the miniport driver's device extension.
|
||
|
||
BankSelect - Pointer to a VIDEO_BANK_SELECT structure in which the bank
|
||
select data will be returned (output buffer).
|
||
|
||
BankSelectSize - Length of the output buffer supplied by the user.
|
||
|
||
OutputSize - Pointer to a variable in which to return the actual size of
|
||
the data returned in the output buffer.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR - information returned successfully
|
||
|
||
ERROR_MORE_DATA - output buffer not large enough to hold all info (but
|
||
Size is returned, so caller can tell how large a buffer to allocate)
|
||
|
||
ERROR_INSUFFICIENT_BUFFER - output buffer not large enough to return
|
||
any useful data
|
||
|
||
--*/
|
||
|
||
{
|
||
ULONG codeSize = (ULONG)(((ULONG_PTR)&BankSwitchEnd) - ((ULONG_PTR)&BankSwitchStart));
|
||
PUCHAR pCode = (PUCHAR)BankSelect + sizeof(VIDEO_BANK_SELECT);
|
||
|
||
//
|
||
// check if a mode has been set
|
||
//
|
||
|
||
if (HwDeviceExtension->CurrentMode == NULL) {
|
||
|
||
return ERROR_INVALID_FUNCTION;
|
||
|
||
}
|
||
|
||
//
|
||
// The minimum passed buffer size is a VIDEO_BANK_SELECT
|
||
// structure, so that we can return the required size; we can't do
|
||
// anything if we don't have at least that much buffer.
|
||
//
|
||
|
||
if (BankSelectSize < sizeof(VIDEO_BANK_SELECT)) {
|
||
|
||
return ERROR_INSUFFICIENT_BUFFER;
|
||
|
||
}
|
||
|
||
//
|
||
// Size of banking info.
|
||
//
|
||
|
||
BankSelect->Length = sizeof(VIDEO_BANK_SELECT);
|
||
BankSelect->Size = sizeof(VIDEO_BANK_SELECT) + codeSize;
|
||
|
||
//
|
||
// There's room enough for everything, so fill in required fields in
|
||
// VIDEO_BANK_SELECT.
|
||
//
|
||
// That's pretty easy in this case, since there's no banking; only
|
||
// the banking type, the bitmap width, and the bitmap size need to be
|
||
// filled in. We'll provide dummy bank switch code, too, that just
|
||
// returns, because it shouldn't ever be called.
|
||
//
|
||
|
||
BankSelect->BankingFlags = 0;
|
||
BankSelect->BankingType = VideoBanked1RW;
|
||
BankSelect->PlanarHCBankingType = VideoBanked1RW;
|
||
BankSelect->BitmapWidthInBytes = HwDeviceExtension->CurrentMode->wbytes;
|
||
BankSelect->BitmapSize = HwDeviceExtension->CurrentMode->sbytes;
|
||
|
||
BankSelect->Granularity = HwDeviceExtension->CurrentMode->Granularity;
|
||
if(! BankSelect->Granularity )
|
||
BankSelect->Granularity = 0x10000;
|
||
BankSelect->PlanarHCGranularity = BankSelect->Granularity >> 2;
|
||
|
||
//
|
||
// If the buffer isn't big enough to hold all info, just return
|
||
// ERROR_MORE_DATA; Size is already set.
|
||
//
|
||
|
||
if (BankSelectSize < BankSelect->Size ) {
|
||
|
||
//
|
||
// We're returning only the VIDEO_BANK_SELECT structure.
|
||
//
|
||
|
||
*OutputSize = sizeof(VIDEO_BANK_SELECT);
|
||
return ERROR_MORE_DATA;
|
||
}
|
||
|
||
//
|
||
// Set the bank switch code's location in the returned buffer.
|
||
//
|
||
|
||
BankSelect->CodeOffset = sizeof(VIDEO_BANK_SELECT);
|
||
BankSelect->PlanarHCBankCodeOffset = sizeof(VIDEO_BANK_SELECT);
|
||
BankSelect->PlanarHCEnableCodeOffset = sizeof(VIDEO_BANK_SELECT);
|
||
BankSelect->PlanarHCDisableCodeOffset = sizeof(VIDEO_BANK_SELECT);
|
||
|
||
//
|
||
// Copy the code (just a RET; this code should never be called, since
|
||
// there's no banking in any mode supported by this miniport, and we want
|
||
// to flag such an incorrect call unmistakably) into the output buffer.
|
||
//
|
||
|
||
VideoPortMoveMemory(pCode,
|
||
&BankSwitchStart,
|
||
codeSize);
|
||
|
||
//
|
||
// Number of bytes we're returning is the full banking info size.
|
||
//
|
||
|
||
*OutputSize = BankSelect->Size;
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaGetBankSelectCode()
|
||
|
||
VP_STATUS
|
||
VgaValidatorUcharEntry(
|
||
ULONG_PTR Context,
|
||
ULONG Port,
|
||
UCHAR AccessMode,
|
||
PUCHAR Data
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Entry point into the validator for byte I/O operations.
|
||
|
||
The entry point will be called whenever a byte operation was performed
|
||
by a DOS application on one of the specified Video ports. The kernel
|
||
emulator will forward these requests.
|
||
|
||
Arguments:
|
||
|
||
Context - Context value that is passed to each call made to the validator
|
||
function. This is the value the miniport driver specified in the
|
||
MiniportConfigInfo->EmulatorAccessEntriesContext.
|
||
|
||
Port - Port on which the operation is to be performed.
|
||
|
||
AccessMode - Determines if it is a read or write operation.
|
||
|
||
Data - Pointer to a variable containing the data to be written or a
|
||
variable into which the read data should be stored.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
PHW_DEVICE_EXTENSION hwDeviceExtension = (PHW_DEVICE_EXTENSION) Context;
|
||
ULONG endEmulation;
|
||
UCHAR temp;
|
||
|
||
Port -= VGA_BASE_IO_PORT;
|
||
|
||
if (hwDeviceExtension->TrappedValidatorCount) {
|
||
|
||
//
|
||
// If we are processing a WRITE instruction, then store it in the
|
||
// playback buffer. If the buffer is full, then play it back right
|
||
// away, end sync reset and reinitialize the buffer with a sync
|
||
// reset instruction.
|
||
//
|
||
// If we have a READ, we must flush the buffer (which has the side
|
||
// effect of starting SyncReset), perform the read operation, stop
|
||
// sync reset, and put back a sync reset instruction in the buffer
|
||
// so we can go on appropriately
|
||
//
|
||
|
||
if (AccessMode & EMULATOR_WRITE_ACCESS) {
|
||
|
||
//
|
||
// Make sure Bit 3 of the Miscellaneous register is always 0.
|
||
// If it is 1 it could select a non-existent clock, and kill the
|
||
// system
|
||
//
|
||
|
||
if (Port == MISC_OUTPUT_REG_WRITE_PORT) {
|
||
|
||
*Data &= 0xF7;
|
||
|
||
}
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Port = Port;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].AccessType = VGA_VALIDATOR_UCHAR_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Data = *Data;
|
||
|
||
hwDeviceExtension->TrappedValidatorCount++;
|
||
|
||
//
|
||
// Check to see if this instruction was ending sync reset.
|
||
// If it did, we must flush the buffer and reset the trapped
|
||
// IO ports to the minimal set.
|
||
//
|
||
|
||
if ( (Port == SEQ_DATA_PORT) &&
|
||
((*Data & END_SYNC_RESET_VALUE) == END_SYNC_RESET_VALUE) &&
|
||
(hwDeviceExtension->SequencerAddressValue == IND_SYNC_RESET)) {
|
||
|
||
endEmulation = 1;
|
||
|
||
} else {
|
||
|
||
//
|
||
// If we are accessing the seq address port, keep track of the
|
||
// data value
|
||
//
|
||
|
||
if (Port == SEQ_ADDRESS_PORT) {
|
||
|
||
hwDeviceExtension->SequencerAddressValue = *Data;
|
||
|
||
}
|
||
|
||
//
|
||
// If the buffer is not full, then just return right away.
|
||
//
|
||
|
||
if (hwDeviceExtension->TrappedValidatorCount <
|
||
VGA_MAX_VALIDATOR_DATA - 1) {
|
||
|
||
return NO_ERROR;
|
||
|
||
}
|
||
|
||
endEmulation = 0;
|
||
}
|
||
}
|
||
|
||
//
|
||
// We are either in a READ path or a WRITE path that caused a
|
||
// a full buffer. So flush the buffer either way.
|
||
//
|
||
// To do this put an END_SYNC_RESET at the end since we want to make
|
||
// the buffer is ended sync reset ended.
|
||
//
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Port = SEQ_ADDRESS_PORT;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].AccessType = VGA_VALIDATOR_USHORT_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Data = (USHORT) (IND_SYNC_RESET +
|
||
(END_SYNC_RESET_VALUE << 8));
|
||
|
||
hwDeviceExtension->TrappedValidatorCount++;
|
||
|
||
VideoPortSynchronizeExecution(hwDeviceExtension,
|
||
VpHighPriority,
|
||
(PMINIPORT_SYNCHRONIZE_ROUTINE)
|
||
VgaPlaybackValidatorData,
|
||
hwDeviceExtension);
|
||
|
||
//
|
||
// Write back the real value of the sequencer address port.
|
||
//
|
||
|
||
VideoPortWritePortUchar(hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT,
|
||
(UCHAR) hwDeviceExtension->SequencerAddressValue);
|
||
|
||
//
|
||
// If we are in a READ path, read the data
|
||
//
|
||
|
||
if (AccessMode & EMULATOR_READ_ACCESS) {
|
||
|
||
*Data = VideoPortReadPortUchar(hwDeviceExtension->IOAddress + Port);
|
||
|
||
endEmulation = 0;
|
||
|
||
}
|
||
|
||
//
|
||
// If we are ending emulation, reset trapping to the minimal amount
|
||
// and exit.
|
||
//
|
||
|
||
if (endEmulation) {
|
||
|
||
VideoPortSetTrappedEmulatorPorts(hwDeviceExtension,
|
||
NUM_MINIMAL_VGA_VALIDATOR_ACCESS_RANGE,
|
||
MinimalVgaValidatorAccessRange);
|
||
|
||
return NO_ERROR;
|
||
|
||
}
|
||
|
||
//
|
||
// For both cases, put back a START_SYNC_RESET in the buffer.
|
||
//
|
||
|
||
hwDeviceExtension->TrappedValidatorCount = 1;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].Port = SEQ_ADDRESS_PORT;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].AccessType =
|
||
VGA_VALIDATOR_USHORT_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].Data =
|
||
(ULONG) (IND_SYNC_RESET + (START_SYNC_RESET_VALUE << 8));
|
||
|
||
} else {
|
||
|
||
//
|
||
// Nothing trapped.
|
||
// Lets check is the IO is trying to do something that would require
|
||
// us to stop trapping
|
||
//
|
||
|
||
if (AccessMode & EMULATOR_WRITE_ACCESS) {
|
||
|
||
//
|
||
// Make sure Bit 3 of the Miscelaneous register is always 0.
|
||
// If it is 1 it could select a non-existant clock, and kill the
|
||
// system
|
||
//
|
||
|
||
if (Port == MISC_OUTPUT_REG_WRITE_PORT) {
|
||
|
||
temp = VideoPortReadPortUchar(hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT);
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET +
|
||
(START_SYNC_RESET_VALUE << 8)));
|
||
|
||
VideoPortWritePortUchar(hwDeviceExtension->IOAddress + Port,
|
||
(UCHAR) (*Data & 0xF7) );
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET +
|
||
(END_SYNC_RESET_VALUE << 8)));
|
||
|
||
VideoPortWritePortUchar(hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT,
|
||
temp);
|
||
|
||
return NO_ERROR;
|
||
|
||
}
|
||
|
||
//
|
||
// If we get an access to the sequencer register, start trapping.
|
||
//
|
||
|
||
if ( (Port == SEQ_DATA_PORT) &&
|
||
((*Data & END_SYNC_RESET_VALUE) != END_SYNC_RESET_VALUE) &&
|
||
(VideoPortReadPortUchar(hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT) == IND_SYNC_RESET)) {
|
||
|
||
VideoPortSetTrappedEmulatorPorts(hwDeviceExtension,
|
||
NUM_FULL_VGA_VALIDATOR_ACCESS_RANGE,
|
||
FullVgaValidatorAccessRange);
|
||
|
||
hwDeviceExtension->TrappedValidatorCount = 1;
|
||
hwDeviceExtension->TrappedValidatorData[0].Port = Port;
|
||
hwDeviceExtension->TrappedValidatorData[0].AccessType =
|
||
VGA_VALIDATOR_UCHAR_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].Data = *Data;
|
||
|
||
//
|
||
// Start keeping track of the state of the sequencer port.
|
||
//
|
||
|
||
hwDeviceExtension->SequencerAddressValue = IND_SYNC_RESET;
|
||
|
||
} else {
|
||
|
||
VideoPortWritePortUchar(hwDeviceExtension->IOAddress + Port,
|
||
*Data);
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
*Data = VideoPortReadPortUchar(hwDeviceExtension->IOAddress + Port);
|
||
|
||
}
|
||
}
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaValidatorUcharEntry()
|
||
|
||
VP_STATUS
|
||
VgaValidatorUshortEntry(
|
||
ULONG_PTR Context,
|
||
ULONG Port,
|
||
UCHAR AccessMode,
|
||
PUSHORT Data
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Entry point into the validator for word I/O operations.
|
||
|
||
The entry point will be called whenever a byte operation was performed
|
||
by a DOS application on one of the specified Video ports. The kernel
|
||
emulator will forward these requests.
|
||
|
||
Arguments:
|
||
|
||
Context - Context value that is passed to each call made to the validator
|
||
function. This is the value the miniport driver specified in the
|
||
MiniportConfigInfo->EmulatorAccessEntriesContext.
|
||
|
||
Port - Port on which the operation is to be performed.
|
||
|
||
AccessMode - Determines if it is a read or write operation.
|
||
|
||
Data - Pointer to a variable containing the data to be written or a
|
||
variable into which the read data should be stored.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
PHW_DEVICE_EXTENSION hwDeviceExtension = (PHW_DEVICE_EXTENSION) Context;
|
||
ULONG endEmulation;
|
||
UCHAR temp;
|
||
|
||
Port -= VGA_BASE_IO_PORT;
|
||
|
||
if (hwDeviceExtension->TrappedValidatorCount) {
|
||
|
||
//
|
||
// If we are processing a WRITE instruction, then store it in the
|
||
// playback buffer. If the buffer is full, then play it back right
|
||
// away, end sync reset and reinitialize the buffer with a sync
|
||
// reset instruction.
|
||
//
|
||
// If we have a READ, we must flush the buffer (which has the side
|
||
// effect of starting SyncReset), perform the read operation, stop
|
||
// sync reset, and put back a sync reset instruction in the buffer
|
||
// so we can go on appropriately
|
||
//
|
||
|
||
if (AccessMode & EMULATOR_WRITE_ACCESS) {
|
||
|
||
//
|
||
// Make sure Bit 3 of the Miscellaneous register is always 0.
|
||
// If it is 1 it could select a non-existent clock, and kill the
|
||
// system
|
||
//
|
||
|
||
if (Port == MISC_OUTPUT_REG_WRITE_PORT) {
|
||
|
||
*Data &= 0xFFF7;
|
||
|
||
}
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Port = Port;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].AccessType = VGA_VALIDATOR_USHORT_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Data = *Data;
|
||
|
||
hwDeviceExtension->TrappedValidatorCount++;
|
||
|
||
//
|
||
// Check to see if this instruction was ending sync reset.
|
||
// If it did, we must flush the buffer and reset the trapped
|
||
// IO ports to the minimal set.
|
||
//
|
||
|
||
if (Port == SEQ_ADDRESS_PORT) {
|
||
|
||
//
|
||
// If we are accessing the seq address port, keep track of its
|
||
// value
|
||
//
|
||
|
||
hwDeviceExtension->SequencerAddressValue = (*Data & 0xFF);
|
||
|
||
}
|
||
|
||
if ((Port == SEQ_ADDRESS_PORT) &&
|
||
( ((*Data >> 8) & END_SYNC_RESET_VALUE) ==
|
||
END_SYNC_RESET_VALUE) &&
|
||
(hwDeviceExtension->SequencerAddressValue == IND_SYNC_RESET)) {
|
||
|
||
endEmulation = 1;
|
||
|
||
} else {
|
||
|
||
//
|
||
// If the buffer is not full, then just return right away.
|
||
//
|
||
|
||
if (hwDeviceExtension->TrappedValidatorCount <
|
||
VGA_MAX_VALIDATOR_DATA - 1) {
|
||
|
||
return NO_ERROR;
|
||
|
||
}
|
||
|
||
endEmulation = 0;
|
||
}
|
||
}
|
||
|
||
//
|
||
// We are either in a READ path or a WRITE path that caused a
|
||
// a full buffer. So flush the buffer either way.
|
||
//
|
||
// To do this put an END_SYNC_RESET at the end since we want to make
|
||
// the buffer is ended sync reset ended.
|
||
//
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Port = SEQ_ADDRESS_PORT;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].AccessType = VGA_VALIDATOR_USHORT_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Data = (USHORT) (IND_SYNC_RESET +
|
||
(END_SYNC_RESET_VALUE << 8));
|
||
|
||
hwDeviceExtension->TrappedValidatorCount++;
|
||
|
||
VideoPortSynchronizeExecution(hwDeviceExtension,
|
||
VpHighPriority,
|
||
(PMINIPORT_SYNCHRONIZE_ROUTINE)
|
||
VgaPlaybackValidatorData,
|
||
hwDeviceExtension);
|
||
|
||
//
|
||
// Write back the real value of the sequencer address port.
|
||
//
|
||
|
||
VideoPortWritePortUchar((PUCHAR) (hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(UCHAR) hwDeviceExtension->SequencerAddressValue);
|
||
|
||
//
|
||
// If we are in a READ path, read the data
|
||
//
|
||
|
||
if (AccessMode & EMULATOR_READ_ACCESS) {
|
||
|
||
*Data = VideoPortReadPortUshort((PUSHORT)(hwDeviceExtension->IOAddress
|
||
+ Port));
|
||
|
||
endEmulation = 0;
|
||
|
||
}
|
||
|
||
//
|
||
// If we are ending emulation, reset trapping to the minimal amount
|
||
// and exit.
|
||
//
|
||
|
||
if (endEmulation) {
|
||
|
||
VideoPortSetTrappedEmulatorPorts(hwDeviceExtension,
|
||
NUM_MINIMAL_VGA_VALIDATOR_ACCESS_RANGE,
|
||
MinimalVgaValidatorAccessRange);
|
||
|
||
return NO_ERROR;
|
||
|
||
}
|
||
|
||
//
|
||
// For both cases, put back a START_SYNC_RESET in the buffer.
|
||
//
|
||
|
||
hwDeviceExtension->TrappedValidatorCount = 1;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].Port = SEQ_ADDRESS_PORT;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].AccessType =
|
||
VGA_VALIDATOR_USHORT_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].Data =
|
||
(ULONG) (IND_SYNC_RESET + (START_SYNC_RESET_VALUE << 8));
|
||
|
||
} else {
|
||
|
||
//
|
||
// Nothing trapped.
|
||
// Lets check is the IO is trying to do something that would require
|
||
// us to stop trapping
|
||
//
|
||
|
||
if (AccessMode & EMULATOR_WRITE_ACCESS) {
|
||
|
||
//
|
||
// Make sure Bit 3 of the Miscelaneous register is always 0.
|
||
// If it is 1 it could select a non-existant clock, and kill the
|
||
// system
|
||
//
|
||
|
||
if (Port == MISC_OUTPUT_REG_WRITE_PORT) {
|
||
|
||
temp = VideoPortReadPortUchar(hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT);
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET +
|
||
(START_SYNC_RESET_VALUE << 8)));
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (hwDeviceExtension->IOAddress +
|
||
(ULONG)Port),
|
||
(USHORT) (*Data & 0xFFF7) );
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET +
|
||
(END_SYNC_RESET_VALUE << 8)));
|
||
|
||
VideoPortWritePortUchar(hwDeviceExtension->IOAddress + SEQ_ADDRESS_PORT,
|
||
temp);
|
||
|
||
return NO_ERROR;
|
||
|
||
}
|
||
|
||
if ( (Port == SEQ_ADDRESS_PORT) &&
|
||
(((*Data>> 8) & END_SYNC_RESET_VALUE) != END_SYNC_RESET_VALUE) &&
|
||
((*Data & 0xFF) == IND_SYNC_RESET)) {
|
||
|
||
VideoPortSetTrappedEmulatorPorts(hwDeviceExtension,
|
||
NUM_FULL_VGA_VALIDATOR_ACCESS_RANGE,
|
||
FullVgaValidatorAccessRange);
|
||
|
||
hwDeviceExtension->TrappedValidatorCount = 1;
|
||
hwDeviceExtension->TrappedValidatorData[0].Port = Port;
|
||
hwDeviceExtension->TrappedValidatorData[0].AccessType =
|
||
VGA_VALIDATOR_USHORT_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].Data = *Data;
|
||
|
||
//
|
||
// Start keeping track of the state of the sequencer port.
|
||
//
|
||
|
||
hwDeviceExtension->SequencerAddressValue = IND_SYNC_RESET;
|
||
|
||
} else {
|
||
|
||
VideoPortWritePortUshort((PUSHORT)(hwDeviceExtension->IOAddress +
|
||
Port),
|
||
*Data);
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
*Data = VideoPortReadPortUshort((PUSHORT)(hwDeviceExtension->IOAddress +
|
||
Port));
|
||
|
||
}
|
||
}
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaValidatorUshortEntry()
|
||
|
||
VP_STATUS
|
||
VgaValidatorUlongEntry(
|
||
ULONG_PTR Context,
|
||
ULONG Port,
|
||
UCHAR AccessMode,
|
||
PULONG Data
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Entry point into the validator for dword I/O operations.
|
||
|
||
The entry point will be called whenever a byte operation was performed
|
||
by a DOS application on one of the specified Video ports. The kernel
|
||
emulator will forward these requests.
|
||
|
||
Arguments:
|
||
|
||
Context - Context value that is passed to each call made to the validator
|
||
function. This is the value the miniport driver specified in the
|
||
MiniportConfigInfo->EmulatorAccessEntriesContext.
|
||
|
||
Port - Port on which the operation is to be performed.
|
||
|
||
AccessMode - Determines if it is a read or write operation.
|
||
|
||
Data - Pointer to a variable containing the data to be written or a
|
||
variable into which the read data should be stored.
|
||
|
||
Return Value:
|
||
|
||
NO_ERROR.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
PHW_DEVICE_EXTENSION hwDeviceExtension = (PHW_DEVICE_EXTENSION) Context;
|
||
ULONG endEmulation;
|
||
UCHAR temp;
|
||
|
||
Port -= VGA_BASE_IO_PORT;
|
||
|
||
if (hwDeviceExtension->TrappedValidatorCount) {
|
||
|
||
//
|
||
// If we are processing a WRITE instruction, then store it in the
|
||
// playback buffer. If the buffer is full, then play it back right
|
||
// away, end sync reset and reinitialize the buffer with a sync
|
||
// reset instruction.
|
||
//
|
||
// If we have a READ, we must flush the buffer (which has the side
|
||
// effect of starting SyncReset), perform the read operation, stop
|
||
// sync reset, and put back a sync reset instruction in the buffer
|
||
// so we can go on appropriately
|
||
//
|
||
|
||
if (AccessMode & EMULATOR_WRITE_ACCESS) {
|
||
|
||
//
|
||
// Make sure Bit 3 of the Miscellaneous register is always 0.
|
||
// If it is 1 it could select a non-existent clock, and kill the
|
||
// system
|
||
//
|
||
|
||
if (Port == MISC_OUTPUT_REG_WRITE_PORT) {
|
||
|
||
*Data &= 0xFFFFFFF7;
|
||
|
||
}
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Port = Port;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].AccessType = VGA_VALIDATOR_ULONG_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Data = *Data;
|
||
|
||
hwDeviceExtension->TrappedValidatorCount++;
|
||
|
||
//
|
||
// Check to see if this instruction was ending sync reset.
|
||
// If it did, we must flush the buffer and reset the trapped
|
||
// IO ports to the minimal set.
|
||
//
|
||
|
||
if (Port == SEQ_ADDRESS_PORT) {
|
||
|
||
//
|
||
// If we are accessing the seq address port, keep track of its
|
||
// value
|
||
//
|
||
|
||
hwDeviceExtension->SequencerAddressValue = (*Data & 0xFF);
|
||
|
||
}
|
||
|
||
if ((Port == SEQ_ADDRESS_PORT) &&
|
||
( ((*Data >> 8) & END_SYNC_RESET_VALUE) ==
|
||
END_SYNC_RESET_VALUE) &&
|
||
(hwDeviceExtension->SequencerAddressValue == IND_SYNC_RESET)) {
|
||
|
||
endEmulation = 1;
|
||
|
||
} else {
|
||
|
||
//
|
||
// If the buffer is not full, then just return right away.
|
||
//
|
||
|
||
if (hwDeviceExtension->TrappedValidatorCount <
|
||
VGA_MAX_VALIDATOR_DATA - 1) {
|
||
|
||
return NO_ERROR;
|
||
|
||
}
|
||
|
||
endEmulation = 0;
|
||
}
|
||
}
|
||
|
||
//
|
||
// We are either in a READ path or a WRITE path that caused a
|
||
// a full buffer. So flush the buffer either way.
|
||
//
|
||
// To do this put an END_SYNC_RESET at the end since we want to make
|
||
// the buffer is ended sync reset ended.
|
||
//
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Port = SEQ_ADDRESS_PORT;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].AccessType = VGA_VALIDATOR_USHORT_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[hwDeviceExtension->
|
||
TrappedValidatorCount].Data = (USHORT) (IND_SYNC_RESET +
|
||
(END_SYNC_RESET_VALUE << 8));
|
||
|
||
hwDeviceExtension->TrappedValidatorCount++;
|
||
|
||
VideoPortSynchronizeExecution(hwDeviceExtension,
|
||
VpHighPriority,
|
||
(PMINIPORT_SYNCHRONIZE_ROUTINE)
|
||
VgaPlaybackValidatorData,
|
||
hwDeviceExtension);
|
||
|
||
//
|
||
// Write back the real value of the sequencer address port.
|
||
//
|
||
|
||
VideoPortWritePortUchar(hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT,
|
||
(UCHAR) hwDeviceExtension->SequencerAddressValue);
|
||
|
||
//
|
||
// If we are in a READ path, read the data
|
||
//
|
||
|
||
if (AccessMode & EMULATOR_READ_ACCESS) {
|
||
|
||
*Data = VideoPortReadPortUlong((PULONG) (hwDeviceExtension->IOAddress +
|
||
Port));
|
||
|
||
endEmulation = 0;
|
||
|
||
}
|
||
|
||
//
|
||
// If we are ending emulation, reset trapping to the minimal amount
|
||
// and exit.
|
||
//
|
||
|
||
if (endEmulation) {
|
||
|
||
VideoPortSetTrappedEmulatorPorts(hwDeviceExtension,
|
||
NUM_MINIMAL_VGA_VALIDATOR_ACCESS_RANGE,
|
||
MinimalVgaValidatorAccessRange);
|
||
|
||
return NO_ERROR;
|
||
|
||
}
|
||
|
||
//
|
||
// For both cases, put back a START_SYNC_RESET in the buffer.
|
||
//
|
||
|
||
hwDeviceExtension->TrappedValidatorCount = 1;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].Port = SEQ_ADDRESS_PORT;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].AccessType =
|
||
VGA_VALIDATOR_USHORT_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].Data =
|
||
(ULONG) (IND_SYNC_RESET + (START_SYNC_RESET_VALUE << 8));
|
||
|
||
} else {
|
||
|
||
//
|
||
// Nothing trapped.
|
||
// Lets check is the IO is trying to do something that would require
|
||
// us to stop trapping
|
||
//
|
||
|
||
if (AccessMode & EMULATOR_WRITE_ACCESS) {
|
||
|
||
//
|
||
// Make sure Bit 3 of the Miscelaneous register is always 0.
|
||
// If it is 1 it could select a non-existant clock, and kill the
|
||
// system
|
||
//
|
||
|
||
if (Port == MISC_OUTPUT_REG_WRITE_PORT) {
|
||
|
||
temp = VideoPortReadPortUchar(hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT);
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET +
|
||
(START_SYNC_RESET_VALUE << 8)));
|
||
|
||
VideoPortWritePortUlong((PULONG) (hwDeviceExtension->IOAddress +
|
||
Port),
|
||
(ULONG) (*Data & 0xFFFFFFF7) );
|
||
|
||
VideoPortWritePortUshort((PUSHORT) (hwDeviceExtension->IOAddress +
|
||
SEQ_ADDRESS_PORT),
|
||
(USHORT) (IND_SYNC_RESET +
|
||
(END_SYNC_RESET_VALUE << 8)));
|
||
|
||
VideoPortWritePortUchar(hwDeviceExtension->IOAddress + SEQ_ADDRESS_PORT,
|
||
temp);
|
||
|
||
return NO_ERROR;
|
||
|
||
}
|
||
|
||
if ( (Port == SEQ_ADDRESS_PORT) &&
|
||
(((*Data>> 8) & END_SYNC_RESET_VALUE) != END_SYNC_RESET_VALUE) &&
|
||
((*Data & 0xFF) == IND_SYNC_RESET)) {
|
||
|
||
VideoPortSetTrappedEmulatorPorts(hwDeviceExtension,
|
||
NUM_FULL_VGA_VALIDATOR_ACCESS_RANGE,
|
||
FullVgaValidatorAccessRange);
|
||
|
||
hwDeviceExtension->TrappedValidatorCount = 1;
|
||
hwDeviceExtension->TrappedValidatorData[0].Port = Port;
|
||
hwDeviceExtension->TrappedValidatorData[0].AccessType =
|
||
VGA_VALIDATOR_ULONG_ACCESS;
|
||
|
||
hwDeviceExtension->TrappedValidatorData[0].Data = *Data;
|
||
|
||
//
|
||
// Start keeping track of the state of the sequencer port.
|
||
//
|
||
|
||
hwDeviceExtension->SequencerAddressValue = IND_SYNC_RESET;
|
||
|
||
} else {
|
||
|
||
VideoPortWritePortUlong((PULONG) (hwDeviceExtension->IOAddress +
|
||
Port),
|
||
*Data);
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
*Data = VideoPortReadPortUlong((PULONG) (hwDeviceExtension->IOAddress +
|
||
Port));
|
||
|
||
}
|
||
}
|
||
|
||
return NO_ERROR;
|
||
|
||
} // end VgaValidatorUlongEntry()
|
||
|
||
|
||
BOOLEAN
|
||
VgaPlaybackValidatorData(
|
||
PVOID Context
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Performs all the DOS apps IO port accesses that were trapped by the
|
||
validator. Only IO accesses that can be processed are WRITEs
|
||
|
||
The number of outstanding IO access in deviceExtension is set to
|
||
zero as a side effect.
|
||
|
||
This function must be called via a call to VideoPortSynchronizeRoutine.
|
||
|
||
Arguments:
|
||
|
||
Context - Context parameter passed to the synchronized routine.
|
||
Must be a pointer to the miniport driver's device extension.
|
||
|
||
Return Value:
|
||
|
||
TRUE.
|
||
|
||
--*/
|
||
|
||
{
|
||
PHW_DEVICE_EXTENSION hwDeviceExtension = Context;
|
||
ULONG_PTR ioBaseAddress = (ULONG_PTR) hwDeviceExtension->IOAddress;
|
||
ULONG i;
|
||
PVGA_VALIDATOR_DATA validatorData = hwDeviceExtension->TrappedValidatorData;
|
||
|
||
//
|
||
// Loop through the array of data and do instructions one by one.
|
||
//
|
||
|
||
for (i = 0; i < hwDeviceExtension->TrappedValidatorCount;
|
||
i++, validatorData++) {
|
||
|
||
//
|
||
// Calculate base address first
|
||
//
|
||
|
||
ioBaseAddress = (ULONG_PTR)hwDeviceExtension->IOAddress +
|
||
validatorData->Port;
|
||
|
||
|
||
//
|
||
// This is a write operation. We will automatically stop when the
|
||
// buffer is empty.
|
||
//
|
||
|
||
switch (validatorData->AccessType) {
|
||
|
||
case VGA_VALIDATOR_UCHAR_ACCESS :
|
||
|
||
VideoPortWritePortUchar((PUCHAR)ioBaseAddress,
|
||
(UCHAR) validatorData->Data);
|
||
|
||
break;
|
||
|
||
case VGA_VALIDATOR_USHORT_ACCESS :
|
||
|
||
VideoPortWritePortUshort((PUSHORT)ioBaseAddress,
|
||
(USHORT) validatorData->Data);
|
||
|
||
break;
|
||
|
||
case VGA_VALIDATOR_ULONG_ACCESS :
|
||
|
||
VideoPortWritePortUlong((PULONG)ioBaseAddress,
|
||
(ULONG) validatorData->Data);
|
||
|
||
break;
|
||
|
||
default:
|
||
|
||
VideoDebugPrint((0, "InvalidValidatorAccessType\n" ));
|
||
|
||
}
|
||
}
|
||
|
||
hwDeviceExtension->TrappedValidatorCount = 0;
|
||
|
||
return TRUE;
|
||
|
||
} // end VgaPlaybackValidatorData()
|
||
|
||
VP_STATUS
|
||
VgaSetBankPosition(
|
||
PHW_DEVICE_EXTENSION hwDeviceExtension,
|
||
PBANK_POSITION BankPosition
|
||
)
|
||
|
||
{
|
||
PVIDEO_PORT_INT10_INTERFACE Int10 = &hwDeviceExtension->Int10;
|
||
INT10_BIOS_ARGUMENTS BiosArguments;
|
||
|
||
ASSERT(Int10 != NULL);
|
||
|
||
BiosArguments.Eax = 0x4f05;
|
||
BiosArguments.Ebx = 0;
|
||
BiosArguments.Edx = BankPosition->WriteBankPosition;
|
||
Int10->Int10CallBios(Int10->Context, &BiosArguments);
|
||
|
||
BiosArguments.Eax = 0x4f05;
|
||
BiosArguments.Ebx = 1;
|
||
BiosArguments.Edx = BankPosition->ReadBankPosition;
|
||
Int10->Int10CallBios(Int10->Context, &BiosArguments);
|
||
|
||
return NO_ERROR;
|
||
}
|