windows-nt/Source/XPSP1/NT/drivers/video/ms/w32/disp/enable.c
2020-09-26 16:20:57 +08:00

1751 lines
56 KiB
C

/******************************Module*Header*******************************\
* Module Name: enable.c
*
* This module contains the functions that enable and disable the
* driver, the pdev, and the surface.
*
* Copyright (c) 1992-1995 Microsoft Corporation
\**************************************************************************/
#include "precomp.h"
BOOL bGetChipIDandRev(HANDLE hDriver, PPDEV ppdev);
BYTE* gpjBase;
BYTE* gpjPorts;
BYTE* gpjMmu0;
/******************************Public*Structure****************************\
* GDIINFO ggdiDefault
*
* This contains the default GDIINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for an 8bpp palette device.
* Some fields are overwritten for different colour depths.
\**************************************************************************/
GDIINFO ggdiDefault = {
GDI_DRIVER_VERSION, // ulVersion
DT_RASDISPLAY, // ulTechnology
0, // ulHorzSize (filled in later)
0, // ulVertSize (filled in later)
0, // ulHorzRes (filled in later)
0, // ulVertRes (filled in later)
0, // cBitsPixel (filled in later)
0, // cPlanes (filled in later)
20, // ulNumColors (palette managed)
0, // flRaster (DDI reserved field)
0, // ulLogPixelsX (filled in later)
0, // ulLogPixelsY (filled in later)
TC_RA_ABLE /* | TC_SCROLLBLT */,
// flTextCaps --
// Setting TC_SCROLLBLT tells console to scroll
// by repainting the entire window. Otherwise,
// scrolls are done by calling the driver to
// do screen to screen copies.
0, // ulDACRed (filled in later)
0, // ulDACGreen (filled in later)
0, // ulDACBlue (filled in later)
0x0024, // ulAspectX
0x0024, // ulAspectY
0x0033, // ulAspectXY (one-to-one aspect ratio)
1, // xStyleStep
1, // yStyleSte;
3, // denStyleStep -- Styles have a one-to-one aspect
// ratio, and every 'dot' is 3 pixels long
{ 0, 0 }, // ptlPhysOffset
{ 0, 0 }, // szlPhysSize
256, // ulNumPalReg
// These fields are for halftone initialization. The actual values are
// a bit magic, but seem to work well on our display.
{ // ciDevice
{ 6700, 3300, 0 }, // Red
{ 2100, 7100, 0 }, // Green
{ 1400, 800, 0 }, // Blue
{ 1750, 3950, 0 }, // Cyan
{ 4050, 2050, 0 }, // Magenta
{ 4400, 5200, 0 }, // Yellow
{ 3127, 3290, 0 }, // AlignmentWhite
20000, // RedGamma
20000, // GreenGamma
20000, // BlueGamma
0, 0, 0, 0, 0, 0 // No dye correction for raster displays
},
0, // ulDevicePelsDPI (for printers only)
PRIMARY_ORDER_CBA, // ulPrimaryOrder
HT_PATSIZE_4x4_M, // ulHTPatternSize
HT_FORMAT_8BPP, // ulHTOutputFormat
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
0, // ulVRefresh
0, // ulBltAlignment
0, // ulPanningHorzRes
0, // ulPanningVertRes
};
/******************************Public*Structure****************************\
* DEVINFO gdevinfoDefault
*
* This contains the default DEVINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for an 8bpp palette device.
* Some fields are overwritten for different colour depths.
\**************************************************************************/
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\
VARIABLE_PITCH | FF_DONTCARE,L"System"}
#define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"}
#define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
FIXED_PITCH | FF_DONTCARE, L"Courier"}
DEVINFO gdevinfoDefault = {
(GCAPS_OPAQUERECT
| GCAPS_DITHERONREALIZE
| GCAPS_PALMANAGED
| GCAPS_MONO_DITHER
| GCAPS_COLOR_DITHER
| GCAPS_DIRECTDRAW
| GCAPS_ASYNCMOVE
),
// NOTE: Only enable ASYNCMOVE if your code
// and hardware can handle DrvMovePointer
// calls at any time, even while another
// thread is in the middle of a drawing
// call such as DrvBitBlt.
// flGraphicsFlags
SYSTM_LOGFONT, // lfDefaultFont
HELVE_LOGFONT, // lfAnsiVarFont
COURI_LOGFONT, // lfAnsiFixFont
0, // cFonts
BMF_8BPP, // iDitherFormat
8, // cxDither
8, // cyDither
0 // hpalDefault (filled in later)
};
/******************************Public*Structure****************************\
* DFVFN gadrvfn[]
*
* Build the driver function table gadrvfn with function index/address
* pairs. This table tells GDI which DDI calls we support, and their
* location (GDI does an indirect call through this table to call us).
*
* Why haven't we implemented DrvSaveScreenBits? To save code.
*
* When the driver doesn't hook DrvSaveScreenBits, USER simulates on-
* the-fly by creating a temporary device-format-bitmap, and explicitly
* calling DrvCopyBits to save/restore the bits. Since we already hook
* DrvCreateDeviceBitmap, we'll end up using off-screen memory to store
* the bits anyway (which would have been the main reason for implementing
* DrvSaveScreenBits). So we may as well save some working set.
\**************************************************************************/
DRVFN gadrvfn[] = {
{ INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV },
{ INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV },
{ INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV },
{ INDEX_DrvEnableSurface, (PFN) DrvEnableSurface },
{ INDEX_DrvDisableSurface, (PFN) DrvDisableSurface },
{ INDEX_DrvAssertMode, (PFN) DrvAssertMode },
{ INDEX_DrvCopyBits, (PFN) DrvCopyBits },
{ INDEX_DrvBitBlt, (PFN) DrvBitBlt },
{ INDEX_DrvTextOut, (PFN) DrvTextOut },
{ INDEX_DrvGetModes, (PFN) DrvGetModes },
{ INDEX_DrvStrokePath, (PFN) DrvStrokePath },
{ INDEX_DrvSetPalette, (PFN) DrvSetPalette },
{ INDEX_DrvDitherColor, (PFN) DrvDitherColor },
#if !DRIVER_PUNT_ALL
{ INDEX_DrvStretchBlt, (PFN) DrvStretchBlt },
{ INDEX_DrvMovePointer, (PFN) DrvMovePointer },
{ INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape },
{ INDEX_DrvPaint, (PFN) DrvPaint },
{ INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush },
{ INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap },
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap },
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo },
{ INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw },
{ INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw },
#endif
};
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
/******************************Public*Routine******************************\
* BOOL DrvEnableDriver
*
* Enables the driver by retrieving the drivers function table and version.
*
\**************************************************************************/
BOOL DrvEnableDriver(
ULONG iEngineVersion,
ULONG cj,
DRVENABLEDATA* pded)
{
// Engine Version is passed down so future drivers can support previous
// engine versions. A next generation driver can support both the old
// and new engine conventions if told what version of engine it is
// working with. For the first version the driver does nothing with it.
DISPDBG((100, "DrvEnableDriver"));
// Fill in as much as we can.
if (cj >= sizeof(DRVENABLEDATA))
pded->pdrvfn = gadrvfn;
if (cj >= (sizeof(ULONG) * 2))
pded->c = gcdrvfn;
// DDI version this driver was targeted for is passed back to engine.
// Future graphic's engine may break calls down to old driver format.
if (cj >= sizeof(ULONG))
pded->iDriverVersion = DDI_DRIVER_VERSION_NT4;
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID DrvDisableDriver
*
* Tells the driver it is being disabled. Release any resources allocated in
* DrvEnableDriver.
*
\**************************************************************************/
VOID DrvDisableDriver(VOID)
{
return;
}
/******************************Public*Routine******************************\
* DHPDEV DrvEnablePDEV
*
* Initializes a bunch of fields for GDI, based on the mode we've been asked
* to do. This is the first thing called after DrvEnableDriver, when GDI
* wants to get some information about us.
*
* (This function mostly returns back information; DrvEnableSurface is used
* for initializing the hardware and driver components.)
*
\**************************************************************************/
DHPDEV DrvEnablePDEV(
DEVMODEW* pdm, // Contains data pertaining to requested mode
PWSTR pwszLogAddr, // Logical address
ULONG cPat, // Count of standard patterns
HSURF* phsurfPatterns, // Buffer for standard patterns
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
DEVINFO* pdi, // Device information
HDEV hdev, // HDEV, used for callbacks
PWSTR pwszDeviceName, // Device name
HANDLE hDriver) // Kernel driver handle
{
PDEV* ppdev;
// Future versions of NT had better supply 'devcaps' and 'devinfo'
// structures that are the same size or larger than the current
// structures:
DISPDBG((100, "DrvEnablePDEV"));
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO)))
{
DISPDBG((0, "DrvEnablePDEV - Buffer size too small"));
goto ReturnFailure0;
}
// Allocate a physical device structure. Note that we definitely
// rely on the zero initialization:
ppdev = (PDEV*) EngAllocMem(0, sizeof(PDEV), ALLOC_TAG);
if (ppdev == NULL)
{
DISPDBG((0, "DrvEnablePDEV - Failed EngAllocMem"));
goto ReturnFailure0;
}
memset(ppdev, 0, sizeof(PDEV));
ppdev->hDriver = hDriver;
if (!bGetChipIDandRev(hDriver, ppdev))
{
//
// This puppy wasn't recognized as a W32
//
goto ReturnFailure1;
}
// Get the current screen mode information. Set up device caps and
// devinfo:
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm))
{
goto ReturnFailure1;
}
// Initialize palette information.
if (!bInitializePalette(ppdev, pdi))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette"));
goto ReturnFailure1;
}
return((DHPDEV) ppdev);
ReturnFailure1:
DrvDisablePDEV((DHPDEV) ppdev);
ReturnFailure0:
DISPDBG((0, "Failed DrvEnablePDEV"));
return(0);
}
/******************************Public*Routine******************************\
* DrvDisablePDEV
*
* Release the resources allocated in DrvEnablePDEV. If a surface has been
* enabled DrvDisableSurface will have already been called.
*
* Note that this function will be called when previewing modes in the
* Display Applet, but not at system shutdown. If you need to reset the
* hardware at shutdown, you can do it in the miniport by providing a
* 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure.
*
* Note: In an error, we may call this before DrvEnablePDEV is done.
*
\**************************************************************************/
VOID DrvDisablePDEV(
DHPDEV dhpdev)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
vUninitializePalette(ppdev);
EngFreeMem(ppdev);
}
/******************************Public*Routine******************************\
* VOID DrvCompletePDEV
*
* Store the HPDEV, the engines handle for this PDEV, in the DHPDEV.
*
\**************************************************************************/
VOID DrvCompletePDEV(
DHPDEV dhpdev,
HDEV hdev)
{
((PDEV*) dhpdev)->hdevEng = hdev;
}
/******************************Public*Routine******************************\
* HSURF DrvEnableSurface
*
* Creates the drawing surface, initializes the hardware, and initializes
* driver components. This function is called after DrvEnablePDEV, and
* performs the final device initialization.
*
\**************************************************************************/
HSURF DrvEnableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
HSURF hsurf;
SIZEL sizl;
DSURF* pdsurf;
VOID* pvTmpBuffer;
ppdev = (PDEV*) dhpdev;
/////////////////////////////////////////////////////////////////////
// First, enable all the subcomponents.
//
// Note that the order in which these 'Enable' functions are called
// may be significant in low off-screen memory conditions, because
// the off-screen heap manager may fail some of the later
// allocations...
if (!bEnableHardware(ppdev))
goto ReturnFailure;
if (!bEnableBanking(ppdev))
goto ReturnFailure;
if (!bEnableOffscreenHeap(ppdev))
goto ReturnFailure;
if (!bEnablePointer(ppdev))
goto ReturnFailure;
if (!bEnableText(ppdev))
goto ReturnFailure;
if (!bEnableBrushCache(ppdev))
goto ReturnFailure;
if (!bEnablePalette(ppdev))
goto ReturnFailure;
if (!bEnableDirectDraw(ppdev))
goto ReturnFailure;
/////////////////////////////////////////////////////////////////////
// Now create our private surface structure.
//
// Whenever we get a call to draw directly to the screen, we'll get
// passed a pointer to a SURFOBJ whose 'dhpdev' field will point
// to our PDEV structure, and whose 'dhsurf' field will point to the
// following DSURF structure.
//
// Every device bitmap we create in DrvCreateDeviceBitmap will also
// have its own unique DSURF structure allocated (but will share the
// same PDEV). To make our code more polymorphic for handling drawing
// to either the screen or an off-screen bitmap, we have the same
// structure for both.
pdsurf = EngAllocMem(FL_ZERO_MEMORY, sizeof(DSURF), ALLOC_TAG);
if (pdsurf == NULL)
{
DISPDBG((0, "DrvEnableSurface - Failed pdsurf EngAllocMem"));
goto ReturnFailure;
}
ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up
pdsurf->poh = ppdev->pohScreen; // The screen is a surface, too
pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB
pdsurf->sizl.cx = ppdev->cxScreen;
pdsurf->sizl.cy = ppdev->cyScreen;
pdsurf->ppdev = ppdev;
pdsurf->cBlt = 0;
pdsurf->iUniq = 0;
/////////////////////////////////////////////////////////////////////
// Next, have GDI create the actual SURFOBJ.
//
// Our drawing surface is going to be 'device-managed', meaning that
// GDI cannot draw on the framebuffer bits directly, and as such we
// create the surface via EngCreateDeviceSurface. By doing this, we ensure
// that GDI will only ever access the bitmaps bits via the Drv calls
// that we've HOOKed.
//
// If we could map the entire framebuffer linearly into main memory
// (i.e., we didn't have to go through a 64k aperture), it would be
// beneficial to create the surface via EngCreateBitmap, giving GDI a
// pointer to the framebuffer bits. When we pass a call on to GDI
// where it can't directly read/write to the surface bits because the
// surface is device managed, it has to create a temporary bitmap and
// call our DrvCopyBits routine to get/set a copy of the affected bits.
// For example, the OpenGL component prefers to be able to write on the
// framebuffer bits directly.
sizl.cx = ppdev->cxScreen;
sizl.cy = ppdev->cyScreen;
if (ppdev->bAutoBanking)
{
HSURF hsurfFrameBuf;
// Engine-managed surface:
hsurfFrameBuf = (HSURF) EngCreateBitmap(sizl,
ppdev->lDelta,
ppdev->iBitmapFormat,
BMF_TOPDOWN,
ppdev->pjScreen);
if (hsurfFrameBuf == 0)
{
DISPDBG((0, "DrvEnableSurface - Failed EngCreateBitmap"));
goto ReturnFailure;
}
if (!EngAssociateSurface(hsurfFrameBuf, ppdev->hdevEng, 0))
{
DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface 1"));
goto ReturnFailure;
}
ppdev->psoFrameBuffer = EngLockSurface(hsurfFrameBuf);
if (ppdev->psoFrameBuffer == NULL)
{
DISPDBG((0, "DrvEnableSurface - Couldn't lock our surface"));
goto ReturnFailure;
}
}
hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat);
if (hsurf == 0)
{
DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface"));
goto ReturnFailure;
}
ppdev->hsurfScreen = hsurf; // Remember it for clean-up
ppdev->bEnabled = TRUE; // We'll soon be in graphics mode
/////////////////////////////////////////////////////////////////////
// Now associate the surface and the PDEV.
//
// We have to associate the surface we just created with our physical
// device so that GDI can get information related to the PDEV when
// it's drawing to the surface (such as, for example, the length of
// styles on the device when simulating styled lines).
//
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks))
{
DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface 2"));
goto ReturnFailure;
}
// Create our generic temporary buffer, which may be used by any
// component.
pvTmpBuffer = EngAllocMem(0, TMP_BUFFER_SIZE, ALLOC_TAG);
if (pvTmpBuffer == NULL)
{
DISPDBG((0, "DrvEnableSurface - Failed VirtualAlloc"));
goto ReturnFailure;
}
ppdev->pvTmpBuffer = pvTmpBuffer;
DISPDBG((5, "Passed DrvEnableSurface"));
return(hsurf);
ReturnFailure:
DrvDisableSurface((DHPDEV) ppdev);
DISPDBG((0, "Failed DrvEnableSurface"));
return(0);
}
/******************************Public*Routine******************************\
* VOID DrvDisableSurface
*
* Free resources allocated by DrvEnableSurface. Release the surface.
*
* Note that this function will be called when previewing modes in the
* Display Applet, but not at system shutdown. If you need to reset the
* hardware at shutdown, you can do it in the miniport by providing a
* 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure.
*
* Note: In an error case, we may call this before DrvEnableSurface is
* completely done.
*
\**************************************************************************/
VOID DrvDisableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
// Note: In an error case, some of the following relies on the
// fact that the PDEV is zero-initialized, so fields like
// 'hsurfScreen' will be zero unless the surface has been
// sucessfully initialized, and makes the assumption that
// EngDeleteSurface can take '0' as a parameter.
if (ppdev->bAutoBanking)
{
EngUnlockSurface(ppdev->psoFrameBuffer);
}
vDisableDirectDraw(ppdev);
vDisablePalette(ppdev);
vDisableBrushCache(ppdev);
vDisableText(ppdev);
vDisablePointer(ppdev);
vDisableOffscreenHeap(ppdev);
vDisableBanking(ppdev);
vDisableHardware(ppdev);
EngDeleteSurface(ppdev->hsurfScreen);
if (ppdev->pvTmpBuffer)
{
EngFreeMem(ppdev->pvTmpBuffer);
}
if (ppdev->pdsurfScreen)
{
EngFreeMem(ppdev->pdsurfScreen);
}
}
/******************************Public*Routine******************************\
* VOID DrvAssertMode
*
* This asks the device to reset itself to the mode of the pdev passed in.
*
\**************************************************************************/
BOOL DrvAssertMode(
DHPDEV dhpdev,
BOOL bEnable)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
if (!bEnable)
{
//////////////////////////////////////////////////////////////
// Disable - Switch to full-screen mode
vAssertModeDirectDraw(ppdev, FALSE);
vAssertModePalette(ppdev, FALSE);
vAssertModeBrushCache(ppdev, FALSE);
vAssertModeText(ppdev, FALSE);
vAssertModePointer(ppdev, FALSE);
if (bAssertModeOffscreenHeap(ppdev, FALSE))
{
vAssertModeBanking(ppdev, FALSE);
if (bAssertModeHardware(ppdev, FALSE))
{
ppdev->bEnabled = FALSE;
return(TRUE);
}
//////////////////////////////////////////////////////////
// We failed to switch to full-screen. So undo everything:
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
} // return code with TRUE
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
}
else
{
//////////////////////////////////////////////////////////////
// Enable - Switch back to graphics mode
// We have to enable every subcomponent in the reverse order
// in which it was disabled:
if (bAssertModeHardware(ppdev, TRUE))
{
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
// return code with TRUE
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
ppdev->bEnabled = TRUE;
return(TRUE);
}
}
return(FALSE);
}
/******************************Public*Routine******************************\
* ULONG DrvGetModes
*
* Returns the list of available modes for the device.
*
\**************************************************************************/
ULONG DrvGetModes(
HANDLE hDriver,
ULONG cjSize,
DEVMODEW* pdm)
{
DWORD cModes;
DWORD cbOutputSize;
PVIDEO_MODE_INFORMATION pVideoModeInformation;
PVIDEO_MODE_INFORMATION pVideoTemp;
DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
DWORD cbModeSize;
if (!bGetChipIDandRev(hDriver, NULL))
{
//
// This puppy wasn't recognized as a W32
//
return(0);
}
cModes = getAvailableModes(hDriver,
(PVIDEO_MODE_INFORMATION *) &pVideoModeInformation,
&cbModeSize);
if (cModes == 0)
{
DISPDBG((0, "DrvGetModes failed to get mode information"));
return(0);
}
if (pdm == NULL)
{
cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
else
{
//
// Now copy the information for the supported modes back into the
// output buffer
//
cbOutputSize = 0;
pVideoTemp = pVideoModeInformation;
do
{
if (pVideoTemp->Length != 0)
{
if (cOutputModes == 0)
{
break;
}
//
// Zero the entire structure to start off with.
//
memset(pdm, 0, sizeof(DEVMODEW));
//
// Set the name of the device to the name of the DLL.
//
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
pdm->dmSpecVersion = DM_SPECVERSION;
pdm->dmDriverVersion = DM_SPECVERSION;
pdm->dmSize = sizeof(DEVMODEW);
pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes *
pVideoTemp->BitsPerPlane;
pdm->dmPelsWidth = pVideoTemp->VisScreenWidth;
pdm->dmPelsHeight = pVideoTemp->VisScreenHeight;
pdm->dmDisplayFrequency = pVideoTemp->Frequency;
pdm->dmDisplayFlags = 0;
pdm->dmFields = DM_BITSPERPEL |
DM_PELSWIDTH |
DM_PELSHEIGHT |
DM_DISPLAYFREQUENCY |
DM_DISPLAYFLAGS ;
//
// Go to the next DEVMODE entry in the buffer.
//
cOutputModes--;
pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW) +
DRIVER_EXTRA_SIZE);
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
} while (--cModes);
}
EngFreeMem(pVideoModeInformation);
return(cbOutputSize);
}
/******************************Public*Routine******************************\
* BOOL bAssertModeHardware
*
* Sets the appropriate hardware state for graphics mode or full-screen.
*
\**************************************************************************/
BOOL bAssertModeHardware(
PDEV* ppdev,
BOOL bEnable)
{
DWORD ReturnedDataLength;
ULONG ulReturn;
VIDEO_MODE_INFORMATION VideoModeInfo;
LONG cjEndOfFrameBuffer;
LONG cjPointerOffset;
LONG lDelta;
ULONG ulMode;
if (bEnable)
{
// Call the miniport via an IOCTL to set the graphics mode.
ulMode = ppdev->ulMode;
if (ppdev->bAutoBanking)
{
ulMode |= VIDEO_MODE_MAP_MEM_LINEAR;
}
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_SET_CURRENT_MODE,
&ulMode, // input buffer
sizeof(DWORD),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "bAssertModeHardware - Failed VIDEO_SET_CURRENT_MODE"));
goto ReturnFalse;
}
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_QUERY_CURRENT_MODE,
NULL,
0,
&VideoModeInfo,
sizeof(VideoModeInfo),
&ReturnedDataLength))
{
DISPDBG((0, "bAssertModeHardware - failed VIDEO_QUERY_CURRENT_MODE"));
goto ReturnFalse;
}
#if DEBUG_HEAP
VideoModeInfo.VideoMemoryBitmapWidth = VideoModeInfo.VisScreenWidth;
VideoModeInfo.VideoMemoryBitmapHeight = VideoModeInfo.VisScreenHeight;
#endif
// The following variables are determined only after the initial
// modeset:
ppdev->lDelta = VideoModeInfo.ScreenStride;
ppdev->flCaps = VideoModeInfo.AttributeFlags;
ppdev->cxMemory = VideoModeInfo.VideoMemoryBitmapWidth;
ppdev->cyMemory = VideoModeInfo.VideoMemoryBitmapHeight;
DISPDBG((1,"ppdev->cxMemory = %d",ppdev->cxMemory));
DISPDBG((1,"ppdev->cyMemory = %d",ppdev->cyMemory));
#if DRIVER_PUNT_ALL
//
// Force SW cursor if PUNT_ALL
//
ppdev->flCaps |= CAPS_SW_POINTER;
#endif
if (ppdev->ulChipID != ET6000)
{
if ((ppdev->cBpp > 1) ||
(ppdev->cxScreen > 1024))
{
ppdev->flCaps |= CAPS_SW_POINTER;
}
}
if (ppdev->cxScreen < 512)
{
// The 320x240 and 320x200 modes can't use HW pointers
ppdev->flCaps |= CAPS_SW_POINTER;
}
// If we're using the hardware pointer, reserve the last 1k of
// the frame buffer to store the pointer shape:
if (!(ppdev->flCaps & (CAPS_SW_POINTER)))
{
// Byte offset from start of frame buffer to end:
cjEndOfFrameBuffer = ppdev->cyMemory * ppdev->lDelta;
// We'll reserve the end of off-screen memory for the hardware
// pointer shape.
cjPointerOffset = (cjEndOfFrameBuffer - SPRITE_BUFFER_SIZE);
// If we are using the ET6000 then we are going to round up to the
// next 1K boundary. This is necessary because of the requirements
// of the ET6000 sprite.
if (ppdev->ulChipID == ET6000)
{
cjPointerOffset += 1023;
cjPointerOffset &= 0xFFFFFC00;
}
// Figure out the coordinate where the pointer shape starts:
lDelta = ppdev->lDelta;
ppdev->cjPointerOffset = cjPointerOffset;
ppdev->yPointerShape = (cjPointerOffset / lDelta);
ppdev->xPointerShape = (cjPointerOffset % lDelta)
/ ppdev->cBpp;
if (ppdev->yPointerShape >= ppdev->cyScreen)
{
// There's enough room for the pointer shape at the
// bottom of off-screen memory; reserve its room by
// lying about how much off-screen memory there is:
ppdev->cyMemory = ppdev->yPointerShape;
}
else
{
// There's not enough room for the pointer shape in
// off-screen memory; we'll have to simulate:
ppdev->flCaps |= CAPS_SW_POINTER;
}
}
{
BYTE* pjBase = ppdev->pjBase;
LONG lDeltaScreen;
// Set the default state of the MMU Control Register so the ACL
// can start. This must be done on pre W32p chips.
if (ppdev->ulChipID != ET6000)
{
// Set a known state for all the MMU apertures, linear address,
// non-accelerated.
// Set MMU Aperture 2 so it will route its data to the ACL
CP_MMU_CTRL(ppdev, pjBase, 0x70 | MMU_APERTURE_2_ACL_BIT);
if (ppdev->ulChipID != W32P)
{
CP_STATE(ppdev, pjBase, 0x09);
CP_X_POS_W32(ppdev, pjBase, 0);
CP_Y_POS_W32(ppdev, pjBase, 0);
}
else
{
CP_X_POS_W32P(ppdev, pjBase, 0);
CP_Y_POS_W32P(ppdev, pjBase, 0);
}
}
// Set default values to the following registers.
// These values should not change. If they are changed, it is the
// responsiblity of the of the code that changed them to set them
// back to the values they are set to here.
CP_SRC_WRAP(ppdev, pjBase, NO_PATTERN_WRAP);
if (ppdev->ulChipID == ET6000)
{
CP_ACL_CONFIG(ppdev, pjBase, 0x06);
CP_ROUTING_CTRL(ppdev, pjBase, 0x33);
}
else
{
// Enable using wait-states to sync with the ACL QUEUE.
CP_SYNC_ENABLE(ppdev, pjBase, 0x01);
CP_ROUTING_CTRL(ppdev, pjBase, 0);
}
// Set the W32's source and destination offset registers.
lDeltaScreen = ppdev->cxMemory;
CP_SRC_Y_OFFSET(ppdev, pjBase, (lDeltaScreen - 1));
CP_DST_Y_OFFSET(ppdev, pjBase, (lDeltaScreen - 1));
// Set the default blit direction.
CP_XY_DIR(ppdev, pjBase, 0);
// The W32p overloads the Virtual Bus size register for use as the
// ACL pixel depth register.
// Set a default value for the ACL pixel depth to 1 byte.
// This should be benign on the W32 and W32i.
CP_BUS_SIZE(ppdev, pjBase, 0);
// If this is a W32p then we must set ASEN in the OperationStateReg
// the ACL can start.
if ((ppdev->ulChipID == W32P) || (ppdev->ulChipID == ET6000))
{
CP_STATE(ppdev, pjBase, 0x10);
}
//
// The following MUST be done for all pre-W32p chips. It must
// also be done for W32p rev A chips because the register still
// exists (though undocumented). The operation is harmless on
// later chips, so just do it.
//
CP_RELOAD_CTRL(ppdev, pjBase, 0);
//
// An outside source has told us that certain ET6000 cards will
// not correctly be reset during reboot if the ACL Transfer
// Disable Register is not cleared. The BIOS will normally clear
// this register during boot, but if the card gets hot, the
// register isn't always cleared. We will clear it here just
// to be sure.
//
if (ppdev->ulChipID == ET6000)
{
CP_XFER_DISABLE(ppdev, pjBase, 0);
}
}
// Do some paramater checking on the values that the miniport
// returned to us:
ASSERTDD(ppdev->cxMemory >= ppdev->cxScreen, "Invalid cxMemory");
ASSERTDD(ppdev->cyMemory >= ppdev->cyScreen, "Invalid cyMemory");
}
else
{
// Call the kernel driver to reset the device to a known state.
// NTVDM will take things from there:
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_RESET_DEVICE,
NULL,
0,
NULL,
0,
&ulReturn))
{
DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL"));
goto ReturnFalse;
}
}
DISPDBG((5, "Passed bAssertModeHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bAssertModeHardware"));
return(FALSE);
}
/******************************Public*Routine******************************\
* BOOL bEnableHardware
*
* Puts the hardware in the requested mode and initializes it.
*
* Note: Should be called before any access is done to the hardware from
* the display driver.
*
\**************************************************************************/
BOOL bEnableHardware(
PDEV* ppdev)
{
VIDEO_MEMORY VideoMemory;
VIDEO_MEMORY_INFORMATION VideoMemoryInfo;
DWORD ReturnedDataLength;
DWORD uRet;
VIDEO_PUBLIC_ACCESS_RANGES VideoAccessRange[3];
ULONG ulMode;
ulMode = ppdev->ulMode | VIDEO_MODE_MAP_MEM_LINEAR;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_SET_CURRENT_MODE,
&ulMode, // input buffer
sizeof(DWORD),
NULL,
0,
&ReturnedDataLength))
{
ulMode &= ~VIDEO_MODE_MAP_MEM_LINEAR;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_SET_CURRENT_MODE,
&ulMode, // input buffer
sizeof(DWORD),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "bEnableHardware - Failed VIDEO_SET_CURRENT_MODE"));
goto ReturnFalse;
}
}
ppdev->bAutoBanking = (ulMode & VIDEO_MODE_MAP_MEM_LINEAR) ?
TRUE : FALSE;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES,
NULL,
0,
(PVOID) &VideoAccessRange,
sizeof (VideoAccessRange),
&ReturnedDataLength) != NO_ERROR)
{
DISPDBG((0, "bEnableHardware - Error mapping access ranges."));
goto ReturnFalse;
}
ppdev->pjMmu0 = gpjMmu0 = VideoAccessRange[0].VirtualAddress;
ppdev->pjMmu1 = ppdev->pjMmu0 + 1 * 0x2000;
ppdev->pjMmu2 = ppdev->pjMmu0 + 2 * 0x2000;
ppdev->pjBase = gpjBase = VideoAccessRange[1].VirtualAddress;
ppdev->pjPorts = gpjPorts = VideoAccessRange[2].VirtualAddress;
// Get the linear memory address range.
VideoMemory.RequestedVirtualAddress = NULL;
uRet = EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MAP_VIDEO_MEMORY,
&VideoMemory, // input buffer
sizeof(VIDEO_MEMORY),
&VideoMemoryInfo, // output buffer
sizeof(VideoMemoryInfo),
&ReturnedDataLength);
if (uRet != NO_ERROR)
{
DISPDBG((0, "bEnableHardware - Error mapping video buffer"));
goto ReturnFalse;
}
DISPDBG((1, "FrameBufferBase(ie. pjScreen) %lx", VideoMemoryInfo.FrameBufferBase));
DISPDBG((1, "FrameBufferLength %lx", VideoMemoryInfo.FrameBufferLength));
// Record the Frame Buffer Linear Address.
ppdev->pjScreen = (BYTE*) VideoMemoryInfo.FrameBufferBase;
ppdev->cjBank = VideoMemoryInfo.FrameBufferLength;
//ppdev->bAutoBanking = (VideoMemoryInfo.VideoRamLength ==
// VideoMemoryInfo.FrameBufferLength)?
// TRUE:FALSE;
//
// We've done the mapping for IO ports and memory space, so let's get
// the pointer to the PCI config space. This is gotten from the CTRC
// registers 21,22, & 23 on the ET6000.
//
if (ppdev->ulChipID == ET6000)
{
char a, b, c;
OUTP(CRTC_INDEX, 0x23);
a = INP(CRTC_DATA);
OUTP(CRTC_INDEX, 0x22);
b = INP(CRTC_DATA);
OUTP(CRTC_INDEX, 0x21);
c = INP(CRTC_DATA);
ppdev->PCIConfigSpaceAddr =
((long) a << 24) | ((long) b << 16) | ((long) c << 8);
}
// Now we can set the mode and unlock the accelerator.
if (!bAssertModeHardware(ppdev, TRUE))
goto ReturnFalse;
// Can do memory-mapped IO:
if (ppdev->ulChipID == ET6000)
{
ppdev->pfnXfer1bpp = vET6000SlowXfer1bpp;
}
else
{
ppdev->pfnXfer1bpp = vSlowXfer1bpp;
}
ppdev->pfnFillPat = vPatternFillScr;
ppdev->pfnCopyBlt = vScrToScr;
ppdev->pfnFastPatRealize = vFastPatRealize;
/////////////////////////////////////////////////////////////
// Fill in pfns specific to color depth
if (ppdev->cBpp == 3)
{
ppdev->pfnFillSolid = vSolidFillScr24;
}
else
{
ppdev->pfnFillSolid = vSolidFillScr;
}
/////////////////////////////////////////////////////////////
// Fill in pfns specific to linear vs banked frame buffer
if (ppdev->bAutoBanking)
{
ppdev->pfnGetBits = vGetBitsLinear;
ppdev->pfnPutBits = vPutBitsLinear;
}
else
{
ppdev->pfnGetBits = vGetBits;
ppdev->pfnPutBits = vPutBits;
}
/////////////////////////////////////////////////////////////
// Fill in pfns specific to chip type
if (ppdev->ulChipID == W32P)
{
ppdev->pfnXferNative = vXferBlt8p;
}
else if (ppdev->ulChipID == ET6000)
{
ppdev->pfnXferNative = vXferET6000;
}
else
{
ppdev->pfnXferNative = vXferBlt8i;
}
#if DBG
{
DISPDBG((1, "cjBank: %lx, cxMemory: %li, cyMemory: %li, lDelta: %li, Flags: %lx",
ppdev->cjBank, ppdev->cxMemory, ppdev->cyMemory,
ppdev->lDelta, ppdev->flCaps));
if (ppdev->flCaps & CAPS_SW_POINTER)
{
DISPDBG((0, "Using software pointer"));
}
else
{
DISPDBG((0, "Using hardware pointer"));
}
DISPDBG((0, "%d bpp mode", ppdev->cBpp * 8));
if(ppdev->bAutoBanking)
{
DISPDBG((0, "Linear Mode"));
}
else
{
DISPDBG((0, "Banked Mode"));
}
}
#endif
DISPDBG((5, "Passed bEnableHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bEnableHardware"));
return(FALSE);
}
/******************************Public*Routine******************************\
* VOID vDisableHardware
*
* Undoes anything done in bEnableHardware.
*
* Note: In an error case, we may call this before bEnableHardware is
* completely done.
*
\**************************************************************************/
VOID vDisableHardware(
PDEV* ppdev)
{
DWORD ReturnedDataLength;
VIDEO_MEMORY VideoMemory[2];
VideoMemory[0].RequestedVirtualAddress = ppdev->pjScreen;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_UNMAP_VIDEO_MEMORY,
VideoMemory,
sizeof(VIDEO_MEMORY),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO"));
}
VideoMemory[0].RequestedVirtualAddress = ppdev->w32MmuInfo.pvMemoryBufferVirtualAddr;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES,
VideoMemory,
sizeof(VideoMemory),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS 1"));
}
VideoMemory[0].RequestedVirtualAddress = ppdev->w32MmuInfo.pvPortsVirtualAddr;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES,
VideoMemory,
sizeof(VideoMemory),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS 2"));
}
}
/******************************Public*Routine******************************\
* BOOL bInitializeModeFields
*
* Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and
* devinfo based on the requested mode.
*
\**************************************************************************/
BOOL bInitializeModeFields(
PDEV* ppdev,
GDIINFO* pgdi,
DEVINFO* pdi,
DEVMODEW* pdm)
{
ULONG cModes;
PVIDEO_MODE_INFORMATION pVideoBuffer;
PVIDEO_MODE_INFORMATION pVideoModeSelected;
PVIDEO_MODE_INFORMATION pVideoTemp;
BOOL bSelectDefault;
VIDEO_MODE_INFORMATION VideoModeInformation;
ULONG cbModeSize;
// Call the miniport to get mode information
cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize);
if (cModes == 0)
goto ReturnFalse;
// Now see if the requested mode has a match in that table.
pVideoModeSelected = NULL;
pVideoTemp = pVideoBuffer;
if ((pdm->dmPelsWidth == 0) &&
(pdm->dmPelsHeight == 0) &&
(pdm->dmBitsPerPel == 0) &&
(pdm->dmDisplayFrequency == 0))
{
DISPDBG((1, "Default mode requested"));
bSelectDefault = TRUE;
}
else
{
DISPDBG((1, "Requested mode..."));
DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth));
DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight));
DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel));
DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency));
bSelectDefault = FALSE;
}
while (cModes--)
{
if (pVideoTemp->Length != 0)
{
DISPDBG((2, " Checking against miniport mode:"));
DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth));
DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight));
DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes));
DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
if (bSelectDefault ||
((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) &&
(pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) &&
(pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) &&
(pVideoTemp->Frequency == pdm->dmDisplayFrequency)))
{
pVideoModeSelected = pVideoTemp;
DISPDBG((1, "...Found a mode match!"));
break;
}
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
}
// If no mode has been found, return an error
if (pVideoModeSelected == NULL)
{
DISPDBG((1, "...Couldn't find a mode match!"));
EngFreeMem(pVideoBuffer);
goto ReturnFalse;
}
// We have chosen the one we want. Save it in a stack buffer and
// get rid of allocated memory before we forget to free it.
VideoModeInformation = *pVideoModeSelected;
EngFreeMem(pVideoBuffer);
#if DEBUG_HEAP
VideoModeInformation.VisScreenWidth = 640;
VideoModeInformation.VisScreenHeight = 480;
#endif
// Set up screen information from the mini-port:
ppdev->ulMode = VideoModeInformation.ModeIndex;
ppdev->cxScreen = VideoModeInformation.VisScreenWidth;
ppdev->cyScreen = VideoModeInformation.VisScreenHeight;
DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride));
ppdev->flHooks = (HOOK_BITBLT
| HOOK_TEXTOUT
| HOOK_COPYBITS
| HOOK_STROKEPATH
#if !DRIVER_PUNT_ALL
| HOOK_PAINT
| HOOK_STRETCHBLT
#endif
);
// Fill in the GDIINFO data structure with the default 8bpp values:
*pgdi = ggdiDefault;
// Now overwrite the defaults with the relevant information returned
// from the kernel driver:
pgdi->ulHorzSize = VideoModeInformation.XMillimeter;
pgdi->ulVertSize = VideoModeInformation.YMillimeter;
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulVertRes = VideoModeInformation.VisScreenHeight;
pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight;
pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane;
pgdi->cPlanes = VideoModeInformation.NumberOfPlanes;
pgdi->ulVRefresh = VideoModeInformation.Frequency;
pgdi->ulDACRed = VideoModeInformation.NumberRedBits;
pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits;
pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
pgdi->ulLogPixelsX = pdm->dmLogPixels;
pgdi->ulLogPixelsY = pdm->dmLogPixels;
// Fill in the devinfo structure with the default 8bpp values:
*pdi = gdevinfoDefault;
if (VideoModeInformation.BitsPerPlane == 8)
{
ppdev->w32PatternWrap = PATTERN_WRAP_8x8;
ppdev->cPelSize = 0;
ppdev->cBpp = 1;
ppdev->iBitmapFormat = BMF_8BPP;
ppdev->ulWhite = 0xff;
}
else if ((VideoModeInformation.BitsPerPlane == 16) ||
(VideoModeInformation.BitsPerPlane == 15))
{
ppdev->w32PatternWrap = PATTERN_WRAP_16x8;
ppdev->cPelSize = 1;
ppdev->cBpp = 2;
ppdev->iBitmapFormat = BMF_16BPP;
ppdev->ulWhite = 0xffff;
ppdev->flRed = VideoModeInformation.RedMask;
ppdev->flGreen = VideoModeInformation.GreenMask;
ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_16BPP;
pdi->iDitherFormat = BMF_16BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
}
else
{
ASSERTDD(VideoModeInformation.BitsPerPlane == 24,
"This driver supports only 8, 16 and 24bpp");
ppdev->w32PatternWrap = PATTERN_WRAP_32x8;
ppdev->cPelSize = 2;
ppdev->cBpp = 3;
ppdev->iBitmapFormat = BMF_24BPP;
ppdev->ulWhite = 0xffffff;
ppdev->flRed = VideoModeInformation.RedMask;
ppdev->flGreen = VideoModeInformation.GreenMask;
ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_24BPP;
pdi->iDitherFormat = BMF_24BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
}
DISPDBG((5, "Passed bInitializeModeFields"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bInitializeModeFields"));
return(FALSE);
}
/******************************Public*Routine******************************\
* DWORD getAvailableModes
*
* Calls the miniport to get the list of modes supported by the kernel driver,
* and returns the list of modes supported by the diplay driver among those
*
* returns the number of entries in the videomode buffer.
* 0 means no modes are supported by the miniport or that an error occured.
*
* NOTE: the buffer must be freed up by the caller.
*
\**************************************************************************/
DWORD getAvailableModes(
HANDLE hDriver,
PVIDEO_MODE_INFORMATION* modeInformation,
DWORD* cbModeSize)
{
ULONG ulTemp;
VIDEO_NUM_MODES modes;
PVIDEO_MODE_INFORMATION pVideoTemp;
//
// Get the number of modes supported by the mini-port
//
if (EngDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES,
NULL,
0,
&modes,
sizeof(VIDEO_NUM_MODES),
&ulTemp))
{
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES"));
return(0);
}
*cbModeSize = modes.ModeInformationLength;
//
// Allocate the buffer for the mini-port to write the modes in.
//
*modeInformation = (PVIDEO_MODE_INFORMATION)
EngAllocMem(0, modes.NumModes *
modes.ModeInformationLength,
ALLOC_TAG);
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL)
{
DISPDBG((0, "getAvailableModes - Failed EngAllocMem"));
return 0;
}
//
// Ask the mini-port to fill in the available modes.
//
if (EngDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_AVAIL_MODES,
NULL,
0,
*modeInformation,
modes.NumModes * modes.ModeInformationLength,
&ulTemp))
{
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES"));
EngFreeMem(*modeInformation);
*modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
return(0);
}
//
// Now see which of these modes are supported by the display driver.
// As an internal mechanism, set the length to 0 for the modes we
// DO NOT support.
//
ulTemp = modes.NumModes;
pVideoTemp = *modeInformation;
//
// Mode is rejected if it is not one plane, or not graphics, or is not
// one of 8, 15, 16 or 24 bits per pel.
//
while (ulTemp--)
{
if ((pVideoTemp->NumberOfPlanes != 1 ) ||
!(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) ||
((pVideoTemp->BitsPerPlane != 8)
&& (pVideoTemp->BitsPerPlane != 15)
&& (pVideoTemp->BitsPerPlane != 16)
&& (pVideoTemp->BitsPerPlane != 24) // !!! will this work
))
{
DISPDBG((2, "Rejecting miniport mode:"));
DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth));
DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight));
DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes));
DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
pVideoTemp->Length = 0;
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + modes.ModeInformationLength);
}
return(modes.NumModes);
}
/******************************Public*Routine******************************\
* BOOL bGetChipIDandRev
*
* Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and
* devinfo based on the requested mode.
*
* If bRetInfo is TRUE then pChipIDandRev is filled in.
*
* Returns TRUE if chip is one of the W32 family, FALSE otherwise
*
\**************************************************************************/
BOOL bGetChipIDandRev(HANDLE hDriver, PPDEV ppdev)
{
BYTE jChipID;
BOOL bRet = TRUE;
VIDEO_COPROCESSOR_INFORMATION VideoCoprocessorInfo;
DWORD ReturnedDataLength;
//
// Get information about the video card.
//
if (EngDeviceIoControl(hDriver,
IOCTL_VIDEO_GET_VIDEO_CARD_INFO,
NULL,
0,
&VideoCoprocessorInfo,
sizeof(VIDEO_COPROCESSOR_INFORMATION),
&ReturnedDataLength))
{
RIP("bGetChipIDandRev - Couldn't get video card info");
bRet = FALSE;
goto ReturnStatus;
}
if (VideoCoprocessorInfo.ulChipID < W32)
{
bRet = FALSE;
goto ReturnStatus;
}
if (ppdev)
{
ppdev->ulChipID = VideoCoprocessorInfo.ulChipID;
ppdev->ulRevLevel = VideoCoprocessorInfo.ulRevLevel;
}
DISPDBG((1, "ulChipID = %d", VideoCoprocessorInfo.ulChipID));
DISPDBG((1, "ulRevLevel = %d", VideoCoprocessorInfo.ulRevLevel));
ReturnStatus:
return (bRet);
}