windows-nt/Source/XPSP1/NT/enduser/speech/sapi/include/sphelper.h
2020-09-26 16:20:57 +08:00

2754 lines
77 KiB
C++

/*******************************************************************************
* SPHelper.h *
*------------*
* Description:
* This is the header file for core helper functions implementation.
*-------------------------------------------------------------------------------
* Copyright (c) Microsoft Corporation. All rights reserved.
*******************************************************************************/
#ifndef SPHelper_h
#define SPHelper_h
#ifndef _INC_MALLOC
#include <malloc.h>
#endif
#ifndef _INC_CRTDBG
#include <crtdbg.h>
#endif
#ifndef __sapi_h__
#include <sapi.h>
#endif
#ifndef __sapiddk_h__
#include <sapiddk.h>
#endif
#ifndef SPError_h
#include <SPError.h>
#endif
#ifndef SPDebug_h
#include <SPDebug.h>
#endif
#ifndef _INC_LIMITS
#include <limits.h>
#endif
#ifndef _INC_MMSYSTEM
#include <mmsystem.h>
#endif
#ifndef __comcat_h__
#include <comcat.h>
#endif
#ifndef _INC_MMREG
#include <mmreg.h>
#endif
#ifndef __ATLBASE_H__
#include <atlbase.h>
#endif
//=== Constants ==============================================================
#define sp_countof(x) ((sizeof(x) / sizeof(*(x))))
/*** CSpDynamicString helper class
*
*/
class CSpDynamicString
{
public:
WCHAR * m_psz;
CSpDynamicString()
{
m_psz = NULL;
}
CSpDynamicString(ULONG cchReserve)
{
m_psz = (WCHAR *)::CoTaskMemAlloc(cchReserve * sizeof(WCHAR));
}
WCHAR * operator=(const CSpDynamicString& src)
{
if (m_psz != src.m_psz)
{
::CoTaskMemFree(m_psz);
m_psz = src.Copy();
}
return m_psz;
}
WCHAR * operator=(const WCHAR * pSrc)
{
Clear();
if (pSrc)
{
ULONG cbNeeded = (wcslen(pSrc) + 1) * sizeof(WCHAR);
m_psz = (WCHAR *)::CoTaskMemAlloc(cbNeeded);
SPDBG_ASSERT(m_psz);
if (m_psz)
{
memcpy(m_psz, pSrc, cbNeeded);
}
}
return m_psz;
}
WCHAR * operator=(const char * pSrc)
{
Clear();
if (pSrc)
{
ULONG cbNeeded = (lstrlenA(pSrc) + 1) * sizeof(WCHAR);
m_psz = (WCHAR *)::CoTaskMemAlloc(cbNeeded);
SPDBG_ASSERT(m_psz);
if (m_psz)
{
::MultiByteToWideChar(CP_ACP, 0, pSrc, -1, m_psz, cbNeeded/sizeof(WCHAR));
}
}
return m_psz;
}
WCHAR * operator=(REFGUID rguid)
{
Clear();
::StringFromCLSID(rguid, &m_psz);
return m_psz;
}
/*explicit*/ CSpDynamicString(const WCHAR * pSrc)
{
m_psz = NULL;
operator=(pSrc);
}
/*explicit*/ CSpDynamicString(const char * pSrc)
{
m_psz = NULL;
operator=(pSrc);
}
/*explicit*/ CSpDynamicString(const CSpDynamicString& src)
{
m_psz = src.Copy();
}
/*explicit*/ CSpDynamicString(REFGUID rguid)
{
::StringFromCLSID(rguid, &m_psz);
}
~CSpDynamicString()
{
::CoTaskMemFree(m_psz);
}
unsigned int Length() const
{
return (m_psz == NULL)? 0 : wcslen(m_psz);
}
operator WCHAR * () const
{
return m_psz;
}
//The assert on operator& usually indicates a bug. If this is really
//what is needed, however, take the address of the m_psz member explicitly.
WCHAR ** operator&()
{
SPDBG_ASSERT(m_psz == NULL);
return &m_psz;
}
WCHAR * Append(const WCHAR * pszSrc)
{
if (pszSrc)
{
ULONG lenSrc = wcslen(pszSrc);
if (lenSrc)
{
ULONG lenMe = Length();
WCHAR *pszNew = (WCHAR *)::CoTaskMemAlloc((lenMe + lenSrc + 1) * sizeof(WCHAR));
if (pszNew)
{
if (m_psz) // Could append to an empty string so check...
{
if (lenMe)
{
memcpy(pszNew, m_psz, lenMe * sizeof(WCHAR));
}
::CoTaskMemFree(m_psz);
}
memcpy(pszNew + lenMe, pszSrc, (lenSrc + 1) * sizeof(WCHAR));
m_psz = pszNew;
}
else
{
SPDBG_ASSERT(FALSE);
}
}
}
return m_psz;
}
WCHAR * Append(const WCHAR * pszSrc, const ULONG lenSrc)
{
if (pszSrc && lenSrc)
{
ULONG lenMe = Length();
WCHAR *pszNew = (WCHAR *)::CoTaskMemAlloc((lenMe + lenSrc + 1) * sizeof(WCHAR));
if (pszNew)
{
if (m_psz) // Could append to an empty string so check...
{
if (lenMe)
{
memcpy(pszNew, m_psz, lenMe * sizeof(WCHAR));
}
::CoTaskMemFree(m_psz);
}
memcpy(pszNew + lenMe, pszSrc, lenSrc * sizeof(WCHAR));
*(pszNew + lenMe + lenSrc) = L'\0';
m_psz = pszNew;
}
else
{
SPDBG_ASSERT(FALSE);
}
}
return m_psz;
}
WCHAR * Append2(const WCHAR * pszSrc1, const WCHAR * pszSrc2)
{
ULONG lenSrc1 = pszSrc1 ? wcslen(pszSrc1) : 0;
ULONG lenSrc2 = pszSrc2 ? wcslen(pszSrc2) : 0;
if (lenSrc1 || lenSrc2)
{
ULONG lenMe = Length();
WCHAR *pszNew = (WCHAR *)::CoTaskMemAlloc((lenMe + lenSrc1 + lenSrc2 + 1) * sizeof(WCHAR));
if (pszNew)
{
if (m_psz) // Could append to an empty string so check...
{
if (lenMe)
{
memcpy(pszNew, m_psz, lenMe * sizeof(WCHAR));
}
::CoTaskMemFree(m_psz);
}
// In both of these cases, we copy the trailing NULL so that we're sure it gets
// there (if lenSrc2 is 0 then we better copy it from pszSrc1).
if (lenSrc1)
{
memcpy(pszNew + lenMe, pszSrc1, (lenSrc1 + 1) * sizeof(WCHAR));
}
if (lenSrc2)
{
memcpy(pszNew + lenMe + lenSrc1, pszSrc2, (lenSrc2 + 1) * sizeof(WCHAR));
}
m_psz = pszNew;
}
else
{
SPDBG_ASSERT(FALSE);
}
}
return m_psz;
}
WCHAR * Copy() const
{
if (m_psz)
{
CSpDynamicString szNew(m_psz);
return szNew.Detach();
}
return NULL;
}
CHAR * CopyToChar() const
{
if (m_psz)
{
CHAR* psz;
ULONG cbNeeded = ::WideCharToMultiByte(CP_ACP, 0, m_psz, -1, NULL, NULL, NULL, NULL);
psz = (CHAR *)::CoTaskMemAlloc(cbNeeded);
SPDBG_ASSERT(psz);
if (psz)
{
::WideCharToMultiByte(CP_ACP, 0, m_psz, -1, psz, cbNeeded/sizeof(CHAR), NULL, NULL);
}
return psz;
}
return NULL;
}
void Attach(WCHAR * pszSrc)
{
SPDBG_ASSERT(m_psz == NULL);
m_psz = pszSrc;
}
WCHAR * Detach()
{
WCHAR * s = m_psz;
m_psz = NULL;
return s;
}
void Clear()
{
::CoTaskMemFree(m_psz);
m_psz = NULL;
}
bool operator!() const
{
return (m_psz == NULL);
}
HRESULT CopyToBSTR(BSTR * pbstr)
{
if (m_psz)
{
*pbstr = ::SysAllocString(m_psz);
if (*pbstr == NULL)
{
return E_OUTOFMEMORY;
}
}
else
{
*pbstr = NULL;
}
return S_OK;
}
void TrimToSize(ULONG ulNumChars)
{
if (m_psz && ulNumChars < Length())
{
m_psz[ulNumChars] = 0;
}
}
WCHAR * Compact()
{
if (m_psz)
{
ULONG cch = wcslen(m_psz);
m_psz = (WCHAR *)::CoTaskMemRealloc(m_psz, (cch + 1) * sizeof(WCHAR));
}
return m_psz;
}
WCHAR * ClearAndGrowTo(ULONG cch)
{
if (m_psz)
{
Clear();
}
m_psz = (WCHAR *)::CoTaskMemAlloc(cch * sizeof(WCHAR));
return m_psz;
}
WCHAR * LTrim()
{
if (m_psz)
{
WCHAR * pszRead = m_psz;
while (iswspace(*pszRead))
{
pszRead++;
}
if (pszRead != m_psz)
{
WCHAR * pszWrite = m_psz;
while (*pszRead)
{
*pszWrite++ = *pszRead++;
}
*pszWrite = '\0';
}
}
return m_psz;
}
WCHAR * RTrim()
{
if (m_psz)
{
WCHAR * pszTail = m_psz + wcslen(m_psz);
WCHAR * pszZeroTerm = pszTail;
while (pszZeroTerm > m_psz && iswspace(pszZeroTerm[-1]))
{
pszZeroTerm--;
}
if (pszZeroTerm != pszTail)
{
*pszZeroTerm = '\0';
}
}
return m_psz;
}
WCHAR * TrimBoth()
{
RTrim();
return LTrim();
}
};
//
// Simple inline function converts a ulong to a hex string.
//
inline void SpHexFromUlong(WCHAR * psz, ULONG ul)
{
const static WCHAR szHexChars[] = L"0123456789ABCDEF";
if (ul == 0)
{
psz[0] = L'0';
psz[1] = 0;
}
else
{
ULONG ulChars = 1;
psz[0] = 0;
while (ul)
{
memmove(psz + 1, psz, ulChars * sizeof(WCHAR));
psz[0] = szHexChars[ul % 16];
ul /= 16;
ulChars++;
}
}
}
//=== Token helpers
inline HRESULT SpGetTokenFromId(
const WCHAR * pszTokenId,
ISpObjectToken ** ppToken,
BOOL fCreateIfNotExist = FALSE)
{
SPDBG_FUNC("SpGetTokenFromId");
HRESULT hr;
CComPtr<ISpObjectToken> cpToken;
hr = cpToken.CoCreateInstance(CLSID_SpObjectToken);
if (SUCCEEDED(hr))
{
hr = cpToken->SetId(NULL, pszTokenId, fCreateIfNotExist);
}
if (SUCCEEDED(hr))
{
*ppToken = cpToken.Detach();
}
if (hr != SPERR_NOT_FOUND)
{
SPDBG_REPORT_ON_FAIL(hr);
}
return hr;
}
inline HRESULT SpGetCategoryFromId(
const WCHAR * pszCategoryId,
ISpObjectTokenCategory ** ppCategory,
BOOL fCreateIfNotExist = FALSE)
{
SPDBG_FUNC("SpGetCategoryFromId");
HRESULT hr;
CComPtr<ISpObjectTokenCategory> cpTokenCategory;
hr = cpTokenCategory.CoCreateInstance(CLSID_SpObjectTokenCategory);
if (SUCCEEDED(hr))
{
hr = cpTokenCategory->SetId(pszCategoryId, fCreateIfNotExist);
}
if (SUCCEEDED(hr))
{
*ppCategory = cpTokenCategory.Detach();
}
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
inline HRESULT SpGetDefaultTokenIdFromCategoryId(
const WCHAR * pszCategoryId,
WCHAR ** ppszTokenId)
{
SPDBG_FUNC("SpGetDefaultTokenFromCategoryId");
HRESULT hr;
CComPtr<ISpObjectTokenCategory> cpCategory;
hr = SpGetCategoryFromId(pszCategoryId, &cpCategory);
if (SUCCEEDED(hr))
{
hr = cpCategory->GetDefaultTokenId(ppszTokenId);
}
return hr;
}
inline HRESULT SpSetDefaultTokenIdForCategoryId(
const WCHAR * pszCategoryId,
const WCHAR * pszTokenId)
{
SPDBG_FUNC("SpSetDefaultTokenIdForCategoryId");
HRESULT hr;
CComPtr<ISpObjectTokenCategory> cpCategory;
hr = SpGetCategoryFromId(pszCategoryId, &cpCategory);
if (SUCCEEDED(hr))
{
hr = cpCategory->SetDefaultTokenId(pszTokenId);
}
return hr;
}
inline HRESULT SpGetDefaultTokenFromCategoryId(
const WCHAR * pszCategoryId,
ISpObjectToken ** ppToken,
BOOL fCreateCategoryIfNotExist = TRUE)
{
SPDBG_FUNC("SpGetDefaultTokenFromCategoryId");
HRESULT hr;
CComPtr<ISpObjectTokenCategory> cpCategory;
hr = SpGetCategoryFromId(pszCategoryId, &cpCategory, fCreateCategoryIfNotExist);
if (SUCCEEDED(hr))
{
WCHAR * pszTokenId;
hr = cpCategory->GetDefaultTokenId(&pszTokenId);
if (SUCCEEDED(hr))
{
hr = SpGetTokenFromId(pszTokenId, ppToken);
::CoTaskMemFree(pszTokenId);
}
}
return hr;
}
inline HRESULT SpSetDefaultTokenForCategoryId(
const WCHAR * pszCategoryId,
ISpObjectToken * pToken)
{
SPDBG_FUNC("SpSetDefaultTokenForCategoryId");
HRESULT hr;
WCHAR * pszTokenId;
hr = pToken->GetId(&pszTokenId);
if (SUCCEEDED(hr))
{
hr = SpSetDefaultTokenIdForCategoryId(pszCategoryId, pszTokenId);
::CoTaskMemFree(pszTokenId);
}
return hr;
}
inline HRESULT SpSetCommonTokenData(
ISpObjectToken * pToken,
const CLSID * pclsid,
const WCHAR * pszLangIndependentName,
LANGID langid,
const WCHAR * pszLangDependentName,
ISpDataKey ** ppDataKeyAttribs)
{
SPDBG_FUNC("SpSetCommonTokenData");
HRESULT hr = S_OK;
// Set the new token's CLSID (if specified)
if (SUCCEEDED(hr) && pclsid)
{
CSpDynamicString dstrClsid;
hr = StringFromCLSID(*pclsid, &dstrClsid);
if (SUCCEEDED(hr))
{
hr = pToken->SetStringValue(SPTOKENVALUE_CLSID, dstrClsid);
}
}
// Set the token's lang independent name
if (SUCCEEDED(hr) && pszLangIndependentName)
{
hr = pToken->SetStringValue(NULL, pszLangIndependentName);
}
// Set the token's lang dependent name
if (SUCCEEDED(hr) && pszLangDependentName)
{
USES_CONVERSION;
TCHAR szLangId[10];
wsprintf(szLangId, _T("%x"), langid);
hr = pToken->SetStringValue(T2W(szLangId), pszLangDependentName);
}
// Open the attributes key if requested
if (SUCCEEDED(hr) && ppDataKeyAttribs)
{
hr = pToken->CreateKey(L"Attributes", ppDataKeyAttribs);
}
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
inline HRESULT SpCreateNewToken(
const WCHAR * pszTokenId,
ISpObjectToken ** ppToken)
{
SPDBG_FUNC("SpCreateNewToken");
HRESULT hr;
// Forcefully create the token
hr = SpGetTokenFromId(pszTokenId, ppToken, TRUE);
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
inline HRESULT SpCreateNewToken(
const WCHAR * pszCategoryId,
const WCHAR * pszTokenKeyName,
ISpObjectToken ** ppToken)
{
SPDBG_FUNC("SpCreateNewToken");
HRESULT hr;
// Forcefully create the category
CComPtr<ISpObjectTokenCategory> cpCategory;
hr = SpGetCategoryFromId(pszCategoryId, &cpCategory, TRUE);
// Come up with a token key name if one wasn't specified
CSpDynamicString dstrTokenKeyName;
if (SUCCEEDED(hr))
{
if (pszTokenKeyName == NULL)
{
GUID guidTokenKeyName;
hr = CoCreateGuid(&guidTokenKeyName);
if (SUCCEEDED(hr))
{
hr = StringFromCLSID(guidTokenKeyName, &dstrTokenKeyName);
}
if (SUCCEEDED(hr))
{
pszTokenKeyName = dstrTokenKeyName;
}
}
}
// Build the token id
CSpDynamicString dstrTokenId;
if (SUCCEEDED(hr))
{
dstrTokenId = pszCategoryId;
dstrTokenId.Append2(L"\\Tokens\\", pszTokenKeyName);
}
// Forcefully create the token
if (SUCCEEDED(hr))
{
hr = SpGetTokenFromId(dstrTokenId, ppToken, TRUE);
}
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
inline HRESULT SpCreateNewTokenEx(
const WCHAR * pszCategoryId,
const WCHAR * pszTokenKeyName,
const CLSID * pclsid,
const WCHAR * pszLangIndependentName,
LANGID langid,
const WCHAR * pszLangDependentName,
ISpObjectToken ** ppToken,
ISpDataKey ** ppDataKeyAttribs)
{
SPDBG_FUNC("SpCreateNewTokenEx");
HRESULT hr;
// Create the new token
hr = SpCreateNewToken(pszCategoryId, pszTokenKeyName, ppToken);
// Now set the extra data
if (SUCCEEDED(hr))
{
hr = SpSetCommonTokenData(
*ppToken,
pclsid,
pszLangIndependentName,
langid,
pszLangDependentName,
ppDataKeyAttribs);
}
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
inline HRESULT SpCreateNewTokenEx(
const WCHAR * pszTokenId,
const CLSID * pclsid,
const WCHAR * pszLangIndependentName,
LANGID langid,
const WCHAR * pszLangDependentName,
ISpObjectToken ** ppToken,
ISpDataKey ** ppDataKeyAttribs)
{
SPDBG_FUNC("SpCreateNewTokenEx");
HRESULT hr;
// Create the new token
hr = SpCreateNewToken(pszTokenId, ppToken);
// Now set the extra data
if (SUCCEEDED(hr))
{
hr = SpSetCommonTokenData(
*ppToken,
pclsid,
pszLangIndependentName,
langid,
pszLangDependentName,
ppDataKeyAttribs);
}
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
inline HRESULT SpEnumTokens(
const WCHAR * pszCategoryId,
const WCHAR * pszReqAttribs,
const WCHAR * pszOptAttribs,
IEnumSpObjectTokens ** ppEnum)
{
SPDBG_FUNC("SpEnumTokens");
HRESULT hr = S_OK;
CComPtr<ISpObjectTokenCategory> cpCategory;
hr = SpGetCategoryFromId(pszCategoryId, &cpCategory);
if (SUCCEEDED(hr))
{
hr = cpCategory->EnumTokens(
pszReqAttribs,
pszOptAttribs,
ppEnum);
}
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
inline HRESULT SpFindBestToken(
const WCHAR * pszCategoryId,
const WCHAR * pszReqAttribs,
const WCHAR * pszOptAttribs,
ISpObjectToken **ppObjectToken)
{
SPDBG_FUNC("SpFindBestToken");
HRESULT hr = S_OK;
const WCHAR *pszVendorPreferred = L"VendorPreferred";
const ulLenVendorPreferred = wcslen(pszVendorPreferred);
// append VendorPreferred to the end of pszOptAttribs to force this preference
ULONG ulLen = pszOptAttribs ? wcslen(pszOptAttribs) + ulLenVendorPreferred + 1 : ulLenVendorPreferred;
WCHAR *pszOptAttribsVendorPref = (WCHAR*)_alloca((ulLen+1)*sizeof(WCHAR));
if (pszOptAttribsVendorPref)
{
if (pszOptAttribs)
{
wcscpy(pszOptAttribsVendorPref, pszOptAttribs);
wcscat(pszOptAttribsVendorPref, L";");
wcscat(pszOptAttribsVendorPref, pszVendorPreferred);
}
else
{
wcscpy(pszOptAttribsVendorPref, pszVendorPreferred);
}
}
else
{
hr = E_OUTOFMEMORY;
}
CComPtr<IEnumSpObjectTokens> cpEnum;
if (SUCCEEDED(hr))
{
hr = SpEnumTokens(pszCategoryId, pszReqAttribs, pszOptAttribsVendorPref, &cpEnum);
}
if (SUCCEEDED(hr))
{
hr = cpEnum->Next(1, ppObjectToken, NULL);
if (hr == S_FALSE)
{
*ppObjectToken = NULL;
hr = SPERR_NOT_FOUND;
}
}
if (hr != SPERR_NOT_FOUND)
{
SPDBG_REPORT_ON_FAIL(hr);
}
return hr;
}
template<class T>
HRESULT SpCreateObjectFromToken(ISpObjectToken * pToken, T ** ppObject,
IUnknown * pUnkOuter = NULL, DWORD dwClsCtxt = CLSCTX_ALL)
{
SPDBG_FUNC("SpCreateObjectFromToken");
HRESULT hr;
hr = pToken->CreateInstance(pUnkOuter, dwClsCtxt, __uuidof(T), (void **)ppObject);
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
template<class T>
HRESULT SpCreateObjectFromTokenId(const WCHAR * pszTokenId, T ** ppObject,
IUnknown * pUnkOuter = NULL, DWORD dwClsCtxt = CLSCTX_ALL)
{
SPDBG_FUNC("SpCreateObjectFromTokenId");
ISpObjectToken * pToken;
HRESULT hr = SpGetTokenFromId(pszTokenId, &pToken);
if (SUCCEEDED(hr))
{
hr = SpCreateObjectFromToken(pToken, ppObject, pUnkOuter, dwClsCtxt);
pToken->Release();
}
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
template<class T>
HRESULT SpCreateDefaultObjectFromCategoryId(const WCHAR * pszCategoryId, T ** ppObject,
IUnknown * pUnkOuter = NULL, DWORD dwClsCtxt = CLSCTX_ALL)
{
SPDBG_FUNC("SpCreateObjectFromTokenId");
ISpObjectToken * pToken;
HRESULT hr = SpGetDefaultTokenFromCategoryId(pszCategoryId, &pToken);
if (SUCCEEDED(hr))
{
hr = SpCreateObjectFromToken(pToken, ppObject, pUnkOuter, dwClsCtxt);
pToken->Release();
}
SPDBG_REPORT_ON_FAIL(hr);
return hr;
}
template<class T>
HRESULT SpCreateBestObject(
const WCHAR * pszCategoryId,
const WCHAR * pszReqAttribs,
const WCHAR * pszOptAttribs,
T ** ppObject,
IUnknown * pUnkOuter = NULL,
DWORD dwClsCtxt = CLSCTX_ALL)
{
SPDBG_FUNC("SpCreateBestObject");
HRESULT hr;
CComPtr<ISpObjectToken> cpToken;
hr = SpFindBestToken(pszCategoryId, pszReqAttribs, pszOptAttribs, &cpToken);
if (SUCCEEDED(hr))
{
hr = SpCreateObjectFromToken(cpToken, ppObject, pUnkOuter, dwClsCtxt);
}
if (hr != SPERR_NOT_FOUND)
{
SPDBG_REPORT_ON_FAIL(hr);
}
return hr;
}
inline HRESULT SpCreatePhoneConverter(
LANGID LangID,
const WCHAR * pszReqAttribs,
const WCHAR * pszOptAttribs,
ISpPhoneConverter ** ppPhoneConverter)
{
SPDBG_FUNC("SpCreatePhoneConverter");
HRESULT hr;
if (LangID == 0)
{
hr = E_INVALIDARG;
}
else
{
CSpDynamicString dstrReqAttribs;
if (pszReqAttribs)
{
dstrReqAttribs = pszReqAttribs;
dstrReqAttribs.Append(L";");
}
WCHAR szLang[MAX_PATH];
SpHexFromUlong(szLang, LangID);
WCHAR szLangCondition[MAX_PATH];
wcscpy(szLangCondition, L"Language=");
wcscat(szLangCondition, szLang);
dstrReqAttribs.Append(szLangCondition);
hr = SpCreateBestObject(SPCAT_PHONECONVERTERS, dstrReqAttribs, pszOptAttribs, ppPhoneConverter);
}
if (hr != SPERR_NOT_FOUND)
{
SPDBG_REPORT_ON_FAIL(hr);
}
return hr;
}
/****************************************************************************
* SpHrFromWin32 *
*---------------*
* Description:
* This inline function works around a basic problem with the macro
* HRESULT_FROM_WIN32. The macro forces the expresion in ( ) to be evaluated
* two times. By using this inline function, the expression will only be
* evaluated once.
*
* Returns:
* HRESULT of converted Win32 error code
*
*****************************************************************************/
inline HRESULT SpHrFromWin32(DWORD dwErr)
{
return HRESULT_FROM_WIN32(dwErr);
}
/****************************************************************************
* SpHrFromLastWin32Error *
*------------------------*
* Description:
* This simple inline function is used to return a converted HRESULT
* from the Win32 function ::GetLastError. Note that using HRESULT_FROM_WIN32
* will evaluate the error code twice so we don't want to use:
*
* HRESULT_FROM_WIN32(::GetLastError())
*
* since that will call GetLastError twice.
* On Win98 and WinMe ::GetLastError() returns 0 for some functions (see MSDN).
* We therefore check for that and return E_FAIL. This function should only be
* called in an error case since it will always return an error code!
*
* Returns:
* HRESULT for ::GetLastError()
*
*****************************************************************************/
inline HRESULT SpHrFromLastWin32Error()
{
DWORD dw = ::GetLastError();
return (dw == 0) ? E_FAIL : SpHrFromWin32(dw);
}
/****************************************************************************
* SpGetUserDefaultUILanguage *
*----------------------------*
* Description:
* Returns the default user interface language, using a method
* appropriate to the platform (Windows 9x, Windows NT, or Windows 2000)
*
* Returns:
* Default UI language
*
*****************************************************************************/
inline LANGID SpGetUserDefaultUILanguage(void)
{
HRESULT hr = S_OK;
LANGID wUILang = 0;
OSVERSIONINFO Osv ;
Osv.dwOSVersionInfoSize = sizeof(Osv) ;
if(!GetVersionEx(&Osv))
{
hr = SpHrFromLastWin32Error();
}
// Get the UI language by one of three methods, depending on the system
else if(Osv.dwPlatformId != VER_PLATFORM_WIN32_NT)
{
// Case 1: Running on Windows 9x. Get the system UI language from registry:
CHAR szData[32];
DWORD dwSize = sizeof(szData) ;
HKEY hKey;
long lRet = RegOpenKeyEx(
HKEY_USERS,
_T(".Default\\Control Panel\\desktop\\ResourceLocale"),
0,
KEY_READ,
&hKey);
#ifdef _WIN32_WCE_BUG_10655
if (lRet == ERROR_INVALID_PARAMETER)
{
lRet = ERROR_FILE_NOT_FOUND;
}
#endif // _WIN32_WCE_BUG_10655
hr = SpHrFromWin32(lRet);
if (SUCCEEDED(hr))
{
lRet = RegQueryValueEx(
hKey,
_T(""),
NULL,
NULL,
(BYTE *)szData,
&dwSize);
#ifdef _WIN32_WCE_BUG_10655
if(lRet == ERROR_INVALID_PARAMETER)
{
lRet = ERROR_FILE_NOT_FOUND;
}
#endif //_WIN32_WCE_BUG_10655
hr = SpHrFromWin32(lRet);
::RegCloseKey(hKey) ;
}
if (SUCCEEDED(hr))
{
// Convert string to number
wUILang = (LANGID) strtol(szData, NULL, 16) ;
}
}
else if (Osv.dwMajorVersion >= 5.0)
{
// Case 2: Running on Windows 2000 or later. Use GetUserDefaultUILanguage to find
// the user's prefered UI language
HMODULE hMKernel32 = ::LoadLibraryW(L"kernel32.dll") ;
if (hMKernel32 == NULL)
{
hr = SpHrFromLastWin32Error();
}
else
{
LANGID (WINAPI *pfnGetUserDefaultUILanguage) () =
(LANGID (WINAPI *)(void))
#ifdef _WIN32_WCE
GetProcAddress(hMKernel32, L"GetUserDefaultUILanguage") ;
#else
GetProcAddress(hMKernel32, "GetUserDefaultUILanguage") ;
#endif
if(NULL != pfnGetUserDefaultUILanguage)
{
wUILang = pfnGetUserDefaultUILanguage() ;
}
else
{ // GetProcAddress failed
hr = SpHrFromLastWin32Error();
}
::FreeLibrary(hMKernel32);
}
}
else {
// Case 3: Running on Windows NT 4.0 or earlier. Get UI language
// from locale of .default user in registry:
// HKEY_USERS\.DEFAULT\Control Panel\International\Locale
WCHAR szData[32] ;
DWORD dwSize = sizeof(szData) ;
HKEY hKey ;
LONG lRet = RegOpenKeyEx(HKEY_USERS,
_T(".DEFAULT\\Control Panel\\International"),
0,
KEY_READ,
&hKey);
#ifdef _WIN32_WCE_BUG_10655
if(lRet == ERROR_INVALID_PARAMETER)
{
lRet = ERROR_FILE_NOT_FOUND;
}
#endif //_WIN32_WCE_BUG_10655
hr = SpHrFromWin32(lRet);
if (SUCCEEDED(hr))
{
lRet = RegQueryValueEx(
hKey,
_T("Locale"),
NULL,
NULL,
(BYTE *)szData,
&dwSize);
#ifdef _WIN32_WCE_BUG_10655
if(lRet == ERROR_INVALID_PARAMETER)
{
lRet = ERROR_FILE_NOT_FOUND;
}
#endif //_WIN32_WCE_BUG_10655
hr = SpHrFromWin32(lRet);
::RegCloseKey(hKey);
}
if (SUCCEEDED(hr))
{
// Convert string to number
wUILang = (LANGID) wcstol(szData, NULL, 16) ;
if(0x0401 == wUILang || // Arabic
0x040d == wUILang || // Hebrew
0x041e == wUILang // Thai
)
{
// Special case these to the English UI.
// These versions of Windows NT 4.0 were enabled only, i.e., the
// UI was English. However, the registry setting
// HKEY_USERS\.DEFAULT\Control Panel\International\Locale was set
// to the respective locale for application compatibility.
wUILang = MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US) ;
}
}
}
return (wUILang ? wUILang : ::GetUserDefaultLangID()); // In failure case, try our best!
}
inline HRESULT SpGetDescription(ISpObjectToken * pObjToken, WCHAR ** ppszDescription, LANGID Language = SpGetUserDefaultUILanguage())
{
WCHAR szLangId[10];
SpHexFromUlong(szLangId, Language);
HRESULT hr = pObjToken->GetStringValue(szLangId, ppszDescription);
if (hr == SPERR_NOT_FOUND)
{
hr = pObjToken->GetStringValue(NULL, ppszDescription);
}
return hr;
}
inline HRESULT SpSetDescription(ISpObjectToken * pObjToken, const WCHAR * pszDescription, LANGID Language = SpGetUserDefaultUILanguage(), BOOL fSetLangIndependentId = TRUE)
{
WCHAR szLangId[10];
SpHexFromUlong(szLangId, Language);
HRESULT hr = pObjToken->SetStringValue(szLangId, pszDescription);
if (SUCCEEDED(hr) && fSetLangIndependentId)
{
hr = pObjToken->SetStringValue(NULL, pszDescription);
}
return hr;
}
/****************************************************************************
* SpConvertStreamFormatEnum *
*---------------------------*
* Description:
* This method converts the specified stream format into a wave format
* structure.
*
*****************************************************************************/
inline HRESULT SpConvertStreamFormatEnum(SPSTREAMFORMAT eFormat, GUID * pFormatId, WAVEFORMATEX ** ppCoMemWaveFormatEx)
{
HRESULT hr = S_OK;
if(pFormatId==NULL || ::IsBadWritePtr(pFormatId, sizeof(*pFormatId))
|| ppCoMemWaveFormatEx==NULL || ::IsBadWritePtr(ppCoMemWaveFormatEx, sizeof(*ppCoMemWaveFormatEx)))
{
return E_INVALIDARG;
}
const GUID * pFmtGuid = &GUID_NULL; // Assume failure case
if( eFormat >= SPSF_8kHz8BitMono && eFormat <= SPSF_48kHz16BitStereo )
{
WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc(sizeof(WAVEFORMATEX));
*ppCoMemWaveFormatEx = pwfex;
if (pwfex)
{
DWORD dwIndex = eFormat - SPSF_8kHz8BitMono;
BOOL bIsStereo = dwIndex & 0x1;
BOOL bIs16 = dwIndex & 0x2;
DWORD dwKHZ = (dwIndex & 0x3c) >> 2;
static const DWORD adwKHZ[] = { 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000 };
pwfex->wFormatTag = WAVE_FORMAT_PCM;
pwfex->nChannels = pwfex->nBlockAlign = (WORD)(bIsStereo ? 2 : 1);
pwfex->nSamplesPerSec = adwKHZ[dwKHZ];
pwfex->wBitsPerSample = 8;
if (bIs16)
{
pwfex->wBitsPerSample *= 2;
pwfex->nBlockAlign *= 2;
}
pwfex->nAvgBytesPerSec = pwfex->nSamplesPerSec * pwfex->nBlockAlign;
pwfex->cbSize = 0;
pFmtGuid = &SPDFID_WaveFormatEx;
}
else
{
hr = E_OUTOFMEMORY;
}
}
else if( eFormat == SPSF_TrueSpeech_8kHz1BitMono )
{
int NumBytes = sizeof( WAVEFORMATEX ) + 32;
WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( NumBytes );
*ppCoMemWaveFormatEx = pwfex;
if( pwfex )
{
memset( pwfex, 0, NumBytes );
pwfex->wFormatTag = WAVE_FORMAT_DSPGROUP_TRUESPEECH;
pwfex->nChannels = 1;
pwfex->nSamplesPerSec = 8000;
pwfex->nAvgBytesPerSec = 1067;
pwfex->nBlockAlign = 32;
pwfex->wBitsPerSample = 1;
pwfex->cbSize = 32;
BYTE* pExtra = ((BYTE*)pwfex) + sizeof( WAVEFORMATEX );
pExtra[0] = 1;
pExtra[2] = 0xF0;
pFmtGuid = &SPDFID_WaveFormatEx;
}
else
{
hr = E_OUTOFMEMORY;
}
}
else if( (eFormat >= SPSF_CCITT_ALaw_8kHzMono ) &&
(eFormat <= SPSF_CCITT_ALaw_44kHzStereo ) )
{
WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( sizeof(WAVEFORMATEX) );
*ppCoMemWaveFormatEx = pwfex;
if( pwfex )
{
memset( pwfex, 0, sizeof(WAVEFORMATEX) );
DWORD dwIndex = eFormat - SPSF_CCITT_ALaw_8kHzMono;
DWORD dwKHZ = dwIndex / 2;
static const DWORD adwKHZ[] = { 8000, 11025, 22050, 44100 };
BOOL bIsStereo = dwIndex & 0x1;
pwfex->wFormatTag = WAVE_FORMAT_ALAW;
pwfex->nChannels = pwfex->nBlockAlign = (WORD)(bIsStereo ? 2 : 1);
pwfex->nSamplesPerSec = adwKHZ[dwKHZ];
pwfex->wBitsPerSample = 8;
pwfex->nAvgBytesPerSec = pwfex->nSamplesPerSec * pwfex->nBlockAlign;
pwfex->cbSize = 0;
pFmtGuid = &SPDFID_WaveFormatEx;
}
else
{
hr = E_OUTOFMEMORY;
}
}
else if( (eFormat >= SPSF_CCITT_uLaw_8kHzMono ) &&
(eFormat <= SPSF_CCITT_uLaw_44kHzStereo ) )
{
WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( sizeof(WAVEFORMATEX) );
*ppCoMemWaveFormatEx = pwfex;
if( pwfex )
{
memset( pwfex, 0, sizeof(WAVEFORMATEX) );
DWORD dwIndex = eFormat - SPSF_CCITT_uLaw_8kHzMono;
DWORD dwKHZ = dwIndex / 2;
static const DWORD adwKHZ[] = { 8000, 11025, 22050, 44100 };
BOOL bIsStereo = dwIndex & 0x1;
pwfex->wFormatTag = WAVE_FORMAT_MULAW;
pwfex->nChannels = pwfex->nBlockAlign = (WORD)(bIsStereo ? 2 : 1);
pwfex->nSamplesPerSec = adwKHZ[dwKHZ];
pwfex->wBitsPerSample = 8;
pwfex->nAvgBytesPerSec = pwfex->nSamplesPerSec * pwfex->nBlockAlign;
pwfex->cbSize = 0;
pFmtGuid = &SPDFID_WaveFormatEx;
}
else
{
hr = E_OUTOFMEMORY;
}
}
else if( (eFormat >= SPSF_ADPCM_8kHzMono ) &&
(eFormat <= SPSF_ADPCM_44kHzStereo ) )
{
int NumBytes = sizeof( WAVEFORMATEX ) + 32;
WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( NumBytes );
*ppCoMemWaveFormatEx = pwfex;
if( pwfex )
{
//--- Some of these values seem odd. We used what the codec told us.
static const DWORD adwKHZ[] = { 8000, 11025, 22050, 44100 };
static const DWORD BytesPerSec[] = { 4096, 8192, 5644, 11289, 11155, 22311, 22179, 44359 };
static const DWORD BlockAlign[] = { 256, 256, 512, 1024 };
static const BYTE Extra811[32] =
{
0xF4, 0x01, 0x07, 0x00, 0x00, 0x01, 0x00, 0x00,
0x00, 0x02, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00,
0xC0, 0x00, 0x40, 0x00, 0xF0, 0x00, 0x00, 0x00,
0xCC, 0x01, 0x30, 0xFF, 0x88, 0x01, 0x18, 0xFF
};
static const BYTE Extra22[32] =
{
0xF4, 0x03, 0x07, 0x00, 0x00, 0x01, 0x00, 0x00,
0x00, 0x02, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00,
0xC0, 0x00, 0x40, 0x00, 0xF0, 0x00, 0x00, 0x00,
0xCC, 0x01, 0x30, 0xFF, 0x88, 0x01, 0x18, 0xFF
};
static const BYTE Extra44[32] =
{
0xF4, 0x07, 0x07, 0x00, 0x00, 0x01, 0x00, 0x00,
0x00, 0x02, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00,
0xC0, 0x00, 0x40, 0x00, 0xF0, 0x00, 0x00, 0x00,
0xCC, 0x01, 0x30, 0xFF, 0x88, 0x01, 0x18, 0xFF
};
static const BYTE* Extra[4] = { Extra811, Extra811, Extra22, Extra44 };
memset( pwfex, 0, NumBytes );
DWORD dwIndex = eFormat - SPSF_ADPCM_8kHzMono;
DWORD dwKHZ = dwIndex / 2;
BOOL bIsStereo = dwIndex & 0x1;
pwfex->wFormatTag = WAVE_FORMAT_ADPCM;
pwfex->nChannels = (WORD)(bIsStereo ? 2 : 1);
pwfex->nSamplesPerSec = adwKHZ[dwKHZ];
pwfex->nAvgBytesPerSec = BytesPerSec[dwIndex];
pwfex->nBlockAlign = (WORD)(BlockAlign[dwKHZ] * pwfex->nChannels);
pwfex->wBitsPerSample = 4;
pwfex->cbSize = 32;
BYTE* pExtra = ((BYTE*)pwfex) + sizeof( WAVEFORMATEX );
memcpy( pExtra, Extra[dwKHZ], 32 );
pFmtGuid = &SPDFID_WaveFormatEx;
}
else
{
hr = E_OUTOFMEMORY;
}
}
else if( (eFormat >= SPSF_GSM610_8kHzMono ) &&
(eFormat <= SPSF_GSM610_44kHzMono ) )
{
int NumBytes = sizeof( WAVEFORMATEX ) + 2;
WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( NumBytes );
*ppCoMemWaveFormatEx = pwfex;
if( pwfex )
{
//--- Some of these values seem odd. We used what the codec told us.
static const DWORD adwKHZ[] = { 8000, 11025, 22050, 44100 };
static const DWORD BytesPerSec[] = { 1625, 2239, 4478, 8957 };
memset( pwfex, 0, NumBytes );
DWORD dwIndex = eFormat - SPSF_GSM610_8kHzMono;
pwfex->wFormatTag = WAVE_FORMAT_GSM610;
pwfex->nChannels = 1;
pwfex->nSamplesPerSec = adwKHZ[dwIndex];
pwfex->nAvgBytesPerSec = BytesPerSec[dwIndex];
pwfex->nBlockAlign = 65;
pwfex->wBitsPerSample = 0;
pwfex->cbSize = 2;
BYTE* pExtra = ((BYTE*)pwfex) + sizeof( WAVEFORMATEX );
pExtra[0] = 0x40;
pExtra[1] = 0x01;
pFmtGuid = &SPDFID_WaveFormatEx;
}
else
{
hr = E_OUTOFMEMORY;
}
}
else
{
*ppCoMemWaveFormatEx = NULL;
switch (eFormat)
{
case SPSF_NoAssignedFormat:
break;
case SPSF_Text:
pFmtGuid = &SPDFID_Text;
break;
default:
hr = E_INVALIDARG;
break;
}
}
*pFormatId = *pFmtGuid;
return hr;
}
class CSpStreamFormat
{
public:
GUID m_guidFormatId;
WAVEFORMATEX * m_pCoMemWaveFormatEx;
static CoMemCopyWFEX(const WAVEFORMATEX * pSrc, WAVEFORMATEX ** ppCoMemWFEX)
{
ULONG cb = sizeof(WAVEFORMATEX) + pSrc->cbSize;
*ppCoMemWFEX = (WAVEFORMATEX *)::CoTaskMemAlloc(cb);
if (*ppCoMemWFEX)
{
memcpy(*ppCoMemWFEX, pSrc, cb);
return S_OK;
}
else
{
return E_OUTOFMEMORY;
}
}
CSpStreamFormat()
{
m_guidFormatId = GUID_NULL;
m_pCoMemWaveFormatEx = NULL;
}
CSpStreamFormat(SPSTREAMFORMAT eFormat, HRESULT * phr)
{
*phr = SpConvertStreamFormatEnum(eFormat, &m_guidFormatId, &m_pCoMemWaveFormatEx);
}
CSpStreamFormat(const WAVEFORMATEX * pWaveFormatEx, HRESULT * phr)
{
SPDBG_ASSERT(pWaveFormatEx);
*phr = CoMemCopyWFEX(pWaveFormatEx, &m_pCoMemWaveFormatEx);
m_guidFormatId = SUCCEEDED(*phr) ? SPDFID_WaveFormatEx : GUID_NULL;
}
~CSpStreamFormat()
{
::CoTaskMemFree(m_pCoMemWaveFormatEx);
}
void Clear()
{
::CoTaskMemFree(m_pCoMemWaveFormatEx);
m_pCoMemWaveFormatEx = NULL;
memset(&m_guidFormatId, 0, sizeof(m_guidFormatId));
}
const GUID & FormatId() const
{
return m_guidFormatId;
}
const WAVEFORMATEX * WaveFormatExPtr() const
{
return m_pCoMemWaveFormatEx;
}
HRESULT AssignFormat(SPSTREAMFORMAT eFormat)
{
::CoTaskMemFree(m_pCoMemWaveFormatEx);
return SpConvertStreamFormatEnum(eFormat, &m_guidFormatId, &m_pCoMemWaveFormatEx);
}
HRESULT AssignFormat(ISpStreamFormat * pStream)
{
::CoTaskMemFree(m_pCoMemWaveFormatEx);
m_pCoMemWaveFormatEx = NULL;
return pStream->GetFormat(&m_guidFormatId, &m_pCoMemWaveFormatEx);
}
HRESULT AssignFormat(const WAVEFORMATEX * pWaveFormatEx)
{
::CoTaskMemFree(m_pCoMemWaveFormatEx);
HRESULT hr = CoMemCopyWFEX(pWaveFormatEx, &m_pCoMemWaveFormatEx);
m_guidFormatId = SUCCEEDED(hr) ? SPDFID_WaveFormatEx : GUID_NULL;
return hr;
}
HRESULT AssignFormat(REFGUID rguidFormatId, const WAVEFORMATEX * pWaveFormatEx)
{
HRESULT hr = S_OK;
m_guidFormatId = rguidFormatId;
::CoTaskMemFree(m_pCoMemWaveFormatEx);
m_pCoMemWaveFormatEx = NULL;
if (rguidFormatId == SPDFID_WaveFormatEx)
{
if (::IsBadReadPtr(pWaveFormatEx, sizeof(*pWaveFormatEx)))
{
hr = E_INVALIDARG;
}
else
{
hr = CoMemCopyWFEX(pWaveFormatEx, &m_pCoMemWaveFormatEx);
}
if (FAILED(hr))
{
m_guidFormatId = GUID_NULL;
}
}
return hr;
}
BOOL IsEqual(REFGUID rguidFormatId, const WAVEFORMATEX * pwfex) const
{
if (rguidFormatId == m_guidFormatId)
{
if (m_pCoMemWaveFormatEx)
{
if (pwfex &&
pwfex->cbSize == m_pCoMemWaveFormatEx->cbSize &&
memcmp(m_pCoMemWaveFormatEx, pwfex, sizeof(WAVEFORMATEX) + pwfex->cbSize) == 0)
{
return TRUE;
}
}
else
{
return (pwfex == NULL);
}
}
return FALSE;
}
HRESULT ParamValidateAssignFormat(REFGUID rguidFormatId, const WAVEFORMATEX * pWaveFormatEx, BOOL fRequireWaveFormat = FALSE)
{
if ((pWaveFormatEx && (::IsBadReadPtr(pWaveFormatEx, sizeof(*pWaveFormatEx)) || rguidFormatId != SPDFID_WaveFormatEx)) ||
(fRequireWaveFormat && pWaveFormatEx == NULL))
{
return E_INVALIDARG;
}
return AssignFormat(rguidFormatId, pWaveFormatEx);
}
SPSTREAMFORMAT ComputeFormatEnum()
{
if (m_guidFormatId == GUID_NULL)
{
return SPSF_NoAssignedFormat;
}
if (m_guidFormatId == SPDFID_Text)
{
return SPSF_Text;
}
if (m_guidFormatId != SPDFID_WaveFormatEx)
{
return SPSF_NonStandardFormat;
}
//
// It is a WAVEFORMATEX. Now determine which type it is and convert.
//
DWORD dwIndex = 0;
switch (m_pCoMemWaveFormatEx->wFormatTag)
{
case WAVE_FORMAT_PCM:
{
switch (m_pCoMemWaveFormatEx->nChannels)
{
case 1:
break;
case 2:
dwIndex |= 1;
break;
default:
return SPSF_ExtendedAudioFormat;
}
switch (m_pCoMemWaveFormatEx->wBitsPerSample)
{
case 8:
break;
case 16:
dwIndex |= 2;
break;
default:
return SPSF_ExtendedAudioFormat;
}
switch (m_pCoMemWaveFormatEx->nSamplesPerSec)
{
case 48000:
dwIndex += 4; // Fall through
case 44100:
dwIndex += 4; // Fall through
case 32000:
dwIndex += 4; // Fall through
case 24000:
dwIndex += 4; // Fall through
case 22050:
dwIndex += 4; // Fall through
case 16000:
dwIndex += 4; // Fall through
case 12000:
dwIndex += 4; // Fall through
case 11025:
dwIndex += 4; // Fall through
case 8000:
break;
default:
return SPSF_ExtendedAudioFormat;
}
return static_cast<SPSTREAMFORMAT>(SPSF_8kHz8BitMono + dwIndex);
}
case WAVE_FORMAT_DSPGROUP_TRUESPEECH:
{
return SPSF_TrueSpeech_8kHz1BitMono;
}
case WAVE_FORMAT_ALAW: // fall through
case WAVE_FORMAT_MULAW:
case WAVE_FORMAT_ADPCM:
{
switch (m_pCoMemWaveFormatEx->nChannels)
{
case 1:
break;
case 2:
dwIndex |= 1;
break;
default:
return SPSF_ExtendedAudioFormat;
}
if(m_pCoMemWaveFormatEx->wFormatTag == WAVE_FORMAT_ADPCM)
{
if(m_pCoMemWaveFormatEx->wBitsPerSample != 4)
{
return SPSF_ExtendedAudioFormat;
}
}
else if(m_pCoMemWaveFormatEx->wBitsPerSample != 8)
{
return SPSF_ExtendedAudioFormat;
}
switch (m_pCoMemWaveFormatEx->nSamplesPerSec)
{
case 44100:
dwIndex += 2; // Fall through
case 22050:
dwIndex += 2; // Fall through
case 11025:
dwIndex += 2; // Fall through
case 8000:
break;
default:
return SPSF_ExtendedAudioFormat;
}
switch( m_pCoMemWaveFormatEx->wFormatTag )
{
case WAVE_FORMAT_ALAW:
return static_cast<SPSTREAMFORMAT>(SPSF_CCITT_ALaw_8kHzMono + dwIndex);
case WAVE_FORMAT_MULAW:
return static_cast<SPSTREAMFORMAT>(SPSF_CCITT_uLaw_8kHzMono + dwIndex);
case WAVE_FORMAT_ADPCM:
return static_cast<SPSTREAMFORMAT>(SPSF_ADPCM_8kHzMono + dwIndex);
}
}
case WAVE_FORMAT_GSM610:
{
if( m_pCoMemWaveFormatEx->nChannels != 1 )
{
return SPSF_ExtendedAudioFormat;
}
switch (m_pCoMemWaveFormatEx->nSamplesPerSec)
{
case 44100:
dwIndex = 3;
break;
case 22050:
dwIndex = 2;
break;
case 11025:
dwIndex = 1;
break;
case 8000:
dwIndex = 0;
break;
default:
return SPSF_ExtendedAudioFormat;
}
return static_cast<SPSTREAMFORMAT>(SPSF_GSM610_8kHzMono + dwIndex);
}
default:
return SPSF_ExtendedAudioFormat;
break;
}
}
void DetachTo(CSpStreamFormat & Other)
{
::CoTaskMemFree(Other.m_pCoMemWaveFormatEx);
Other.m_guidFormatId = m_guidFormatId;
Other.m_pCoMemWaveFormatEx = m_pCoMemWaveFormatEx;
m_pCoMemWaveFormatEx = NULL;
memset(&m_guidFormatId, 0, sizeof(m_guidFormatId));
}
void DetachTo(GUID * pFormatId, WAVEFORMATEX ** ppCoMemWaveFormatEx)
{
*pFormatId = m_guidFormatId;
*ppCoMemWaveFormatEx = m_pCoMemWaveFormatEx;
m_pCoMemWaveFormatEx = NULL;
memset(&m_guidFormatId, 0, sizeof(m_guidFormatId));
}
HRESULT CopyTo(GUID * pFormatId, WAVEFORMATEX ** ppCoMemWFEX) const
{
HRESULT hr = S_OK;
*pFormatId = m_guidFormatId;
if (m_pCoMemWaveFormatEx)
{
hr = CoMemCopyWFEX(m_pCoMemWaveFormatEx, ppCoMemWFEX);
if (FAILED(hr))
{
memset(pFormatId, 0, sizeof(*pFormatId));
}
}
else
{
*ppCoMemWFEX = NULL;
}
return hr;
}
HRESULT CopyTo(CSpStreamFormat & Other) const
{
::CoTaskMemFree(Other.m_pCoMemWaveFormatEx);
return CopyTo(&Other.m_guidFormatId, &Other.m_pCoMemWaveFormatEx);
}
HRESULT AssignFormat(const CSpStreamFormat & Src)
{
return Src.CopyTo(*this);
}
HRESULT ParamValidateCopyTo(GUID * pFormatId, WAVEFORMATEX ** ppCoMemWFEX) const
{
if (::IsBadWritePtr(pFormatId, sizeof(*pFormatId)) ||
::IsBadWritePtr(ppCoMemWFEX, sizeof(*ppCoMemWFEX)))
{
return E_POINTER;
}
return CopyTo(pFormatId, ppCoMemWFEX);
}
BOOL operator==(const CSpStreamFormat & Other) const
{
return IsEqual(Other.m_guidFormatId, Other.m_pCoMemWaveFormatEx);
}
BOOL operator!=(const CSpStreamFormat & Other) const
{
return !IsEqual(Other.m_guidFormatId, Other.m_pCoMemWaveFormatEx);
}
ULONG SerializeSize() const
{
ULONG cb = sizeof(ULONG) + sizeof(m_guidFormatId);
if (m_pCoMemWaveFormatEx)
{
cb += sizeof(WAVEFORMATEX) + m_pCoMemWaveFormatEx->cbSize + 3; // Add 3 to round up
cb -= cb % 4; // Round to DWORD
}
return cb;
}
ULONG Serialize(BYTE * pBuffer) const
{
ULONG cb = SerializeSize();
*((UNALIGNED ULONG *)pBuffer) = cb;
pBuffer += sizeof(ULONG);
*((UNALIGNED GUID *)pBuffer) = m_guidFormatId;
if (m_pCoMemWaveFormatEx)
{
pBuffer += sizeof(m_guidFormatId);
memcpy(pBuffer, m_pCoMemWaveFormatEx, sizeof(WAVEFORMATEX) + m_pCoMemWaveFormatEx->cbSize);
}
return cb;
}
HRESULT Deserialize(const BYTE * pBuffer, ULONG * pcbUsed)
{
HRESULT hr = S_OK;
::CoTaskMemFree(m_pCoMemWaveFormatEx);
m_pCoMemWaveFormatEx = NULL;
*pcbUsed = *((UNALIGNED ULONG *)pBuffer);
pBuffer += sizeof(ULONG);
// Misaligment exception is generated for SHx platform.
// Marking pointer as UNALIGNED does not help.
#ifndef _WIN32_WCE
m_guidFormatId = *((UNALIGNED GUID *)pBuffer);
#else
memcpy(&m_guidFormatId, pBuffer, sizeof(GUID));
#endif
if (*pcbUsed > sizeof(GUID) + sizeof(ULONG))
{
pBuffer += sizeof(m_guidFormatId);
hr = CoMemCopyWFEX((const WAVEFORMATEX *)pBuffer, &m_pCoMemWaveFormatEx);
if (FAILED(hr))
{
m_guidFormatId = GUID_NULL;
}
}
return hr;
}
};
// Return the default codepage given a LCID.
// Note some of the newer locales do not have associated Windows codepages. For these, we return UTF-8.
inline UINT SpCodePageFromLcid(LCID lcid)
{
char achCodePage[6];
return (0 != GetLocaleInfoA(lcid, LOCALE_IDEFAULTANSICODEPAGE, achCodePage, sizeof(achCodePage))) ? atoi(achCodePage) : 65001;
}
inline HRESULT SPBindToFile( LPCWSTR pFileName, SPFILEMODE eMode, ISpStream ** ppStream,
const GUID * pFormatId = NULL, const WAVEFORMATEX * pWaveFormatEx = NULL,
ULONGLONG ullEventInterest = SPFEI_ALL_EVENTS)
{
HRESULT hr = ::CoCreateInstance(CLSID_SpStream, NULL, CLSCTX_ALL, __uuidof(*ppStream), (void **)ppStream);
if (SUCCEEDED(hr))
{
hr = (*ppStream)->BindToFile(pFileName, eMode, pFormatId, pWaveFormatEx, ullEventInterest);
if (FAILED(hr))
{
(*ppStream)->Release();
*ppStream = NULL;
}
}
return hr;
} /* SPBindToFile */
#ifndef _UNICODE
inline HRESULT SPBindToFile( const TCHAR * pFileName, SPFILEMODE eMode, ISpStream** ppStream,
const GUID * pFormatId = NULL, const WAVEFORMATEX * pWaveFormatEx = NULL,
ULONGLONG ullEventInterest = SPFEI_ALL_EVENTS)
{
WCHAR szWcharFileName[MAX_PATH];
::MultiByteToWideChar(CP_ACP, 0, pFileName, -1, szWcharFileName, sp_countof(szWcharFileName));
return SPBindToFile(szWcharFileName, eMode, ppStream, pFormatId, pWaveFormatEx, ullEventInterest);
}
#endif
/****************************************************************************
* SpClearEvent *
*--------------*
* Description:
* Helper function that can be used by clients that do not use the CSpEvent
* class.
*
* Returns:
*
*****************************************************************************/
inline void SpClearEvent(SPEVENT * pe)
{
if( pe->elParamType != SPEI_UNDEFINED)
{
if( pe->elParamType == SPET_LPARAM_IS_POINTER ||
pe->elParamType == SPET_LPARAM_IS_STRING)
{
::CoTaskMemFree((void *)pe->lParam);
}
else if (pe->elParamType == SPET_LPARAM_IS_TOKEN ||
pe->elParamType == SPET_LPARAM_IS_OBJECT)
{
((IUnknown*)pe->lParam)->Release();
}
}
memset(pe, 0, sizeof(*pe));
}
/****************************************************************************
* SpInitEvent *
*-------------*
* Description:
*
* Returns:
*
*****************************************************************************/
inline void SpInitEvent(SPEVENT * pe)
{
memset(pe, 0, sizeof(*pe));
}
/****************************************************************************
* SpEventSerializeSize *
*----------------------*
* Description:
* Computes the required size of a buffer to serialize an event. The caller
* must specify which type of serialized event is desired -- either SPSERIALIZEDEVENT
* or SPSERIALIZEDEVENT64.
*
* Returns:
* Size in bytes required to seriailze the event.
*
****************************************************************************/
// WCE compiler does not work propertly with template
#ifndef _WIN32_WCE
template <class T>
inline ULONG SpEventSerializeSize(const SPEVENT * pEvent)
{
ULONG ulSize = sizeof(T);
#else
inline ULONG SpEventSerializeSize(const SPEVENT * pEvent, ULONG ulSize)
{
#endif //_WIN32_WCE
if( ( pEvent->elParamType == SPET_LPARAM_IS_POINTER ) && pEvent->lParam )
{
ulSize += ULONG(pEvent->wParam);
}
else if ((pEvent->elParamType == SPET_LPARAM_IS_STRING) && pEvent->lParam != NULL)
{
ulSize += (wcslen((WCHAR*)pEvent->lParam) + 1) * sizeof( WCHAR );
}
else if( pEvent->elParamType == SPET_LPARAM_IS_TOKEN )
{
CSpDynamicString dstrObjectId;
if( ((ISpObjectToken*)(pEvent->lParam))->GetId( &dstrObjectId ) == S_OK )
{
ulSize += (dstrObjectId.Length() + 1) * sizeof( WCHAR );
}
}
// Round up to nearest DWORD
ulSize += 3;
ulSize -= ulSize % 4;
return ulSize;
}
/****************************************************************************
* SpSerializedEventSize *
*-----------------------*
* Description:
* Returns the size, in bytes, used by a serialized event. The caller can
* pass a pointer to either a SPSERIAILZEDEVENT or SPSERIALIZEDEVENT64 structure.
*
* Returns:
* Number of bytes used by serizlied event
*
********************************************************************* RAL ***/
// WCE compiler does not work propertly with template
#ifndef _WIN32_WCE
template <class T>
inline ULONG SpSerializedEventSize(const T * pSerEvent)
{
ULONG ulSize = sizeof(T);
if( ( pSerEvent->elParamType == SPET_LPARAM_IS_POINTER ) && pSerEvent->SerializedlParam )
{
ulSize += ULONG(pSerEvent->SerializedwParam);
}
else if ((pSerEvent->elParamType == SPET_LPARAM_IS_STRING || pSerEvent->elParamType == SPET_LPARAM_IS_TOKEN) &&
pSerEvent->SerializedlParam != NULL)
{
ulSize += (wcslen((WCHAR*)(pSerEvent + 1)) + 1) * sizeof( WCHAR );
}
// Round up to nearest DWORD
ulSize += 3;
ulSize -= ulSize % 4;
return ulSize;
}
#else //_WIN32_WCE
inline ULONG SpSerializedEventSize(const SPSERIALIZEDEVENT * pSerEvent, ULONG ulSize)
{
if( ( pSerEvent->elParamType == SPET_LPARAM_IS_POINTER ) && pSerEvent->SerializedlParam )
{
ulSize += ULONG(pSerEvent->SerializedwParam);
}
else if ((pSerEvent->elParamType == SPET_LPARAM_IS_STRING || pSerEvent->elParamType == SPET_LPARAM_IS_TOKEN) &&
pSerEvent->SerializedlParam != NULL)
{
ulSize += (wcslen((WCHAR*)(pSerEvent + 1)) + 1) * sizeof( WCHAR );
}
// Round up to nearest DWORD
ulSize += 3;
ulSize -= ulSize % 4;
return ulSize;
}
inline ULONG SpSerializedEventSize(const SPSERIALIZEDEVENT64 * pSerEvent, ULONG ulSize)
{
if( ( pSerEvent->elParamType == SPET_LPARAM_IS_POINTER ) && pSerEvent->SerializedlParam )
{
ulSize += ULONG(pSerEvent->SerializedwParam);
}
else if ((pSerEvent->elParamType == SPET_LPARAM_IS_STRING || pSerEvent->elParamType == SPET_LPARAM_IS_TOKEN) &&
pSerEvent->SerializedlParam != NULL)
{
ulSize += (wcslen((WCHAR*)(pSerEvent + 1)) + 1) * sizeof( WCHAR );
}
// Round up to nearest DWORD
ulSize += 3;
ulSize -= ulSize % 4;
return ulSize;
}
#endif //_WIN32_WCE
/*** CSpEvent helper class
*
*/
class CSpEvent : public SPEVENT
{
public:
CSpEvent()
{
SpInitEvent(this);
}
~CSpEvent()
{
SpClearEvent(this);
}
// If you need to take the address of a CSpEvent that is not const, use the AddrOf() method
// which will do debug checking of parameters. If you encounter this problem when calling
// GetEvents from an event source, you may want to use the GetFrom() method of this class.
const SPEVENT * operator&()
{
return this;
}
CSpEvent * AddrOf()
{
// Note: This method does not ASSERT since we assume the caller knows what they are doing.
return this;
}
void Clear()
{
SpClearEvent(this);
}
HRESULT CopyTo(SPEVENT * pDestEvent) const
{
memcpy(pDestEvent, this, sizeof(*pDestEvent));
if ((elParamType == SPET_LPARAM_IS_POINTER) && lParam)
{
SPDBG_ASSERT(wParam && (wParam < 0x100000)); // this is too big!
pDestEvent->lParam = (LPARAM)::CoTaskMemAlloc(wParam);
if (pDestEvent->lParam)
{
memcpy((void *)pDestEvent->lParam, (void *)lParam, wParam);
}
else
{
pDestEvent->eEventId = SPEI_UNDEFINED;
return E_OUTOFMEMORY;
}
}
else if (elParamType == SPET_LPARAM_IS_STRING && lParam != NULL)
{
pDestEvent->lParam = (LPARAM)::CoTaskMemAlloc((wcslen((WCHAR*)lParam) + 1) * sizeof(WCHAR));
if (pDestEvent->lParam)
{
wcscpy((WCHAR*)pDestEvent->lParam, (WCHAR*)lParam);
}
else
{
pDestEvent->eEventId = SPEI_UNDEFINED;
return E_OUTOFMEMORY;
}
}
else if (elParamType == SPET_LPARAM_IS_TOKEN ||
elParamType == SPET_LPARAM_IS_OBJECT)
{
((IUnknown*)lParam)->AddRef();
}
return S_OK;
}
HRESULT GetFrom(ISpEventSource * pEventSrc)
{
SpClearEvent(this);
return pEventSrc->GetEvents(1, this, NULL);
}
HRESULT CopyFrom(const SPEVENT * pSrcEvent)
{
SpClearEvent(this);
return static_cast<const CSpEvent *>(pSrcEvent)->CopyTo(this);
}
void Detach(SPEVENT * pDestEvent = NULL)
{
if (pDestEvent)
{
memcpy(pDestEvent, this, sizeof(*pDestEvent));
}
memset(this, 0, sizeof(*this));
}
template <class T>
ULONG SerializeSize() const
{
return SpEventSerializeSize<T>(this);
}
// Call this method with either SPSERIALIZEDEVENT or SPSERIALIZEDEVENT64
template <class T>
void Serialize(T * pSerEvent) const
{
SPDBG_ASSERT(elParamType != SPET_LPARAM_IS_OBJECT);
pSerEvent->eEventId = this->eEventId;
pSerEvent->elParamType = this->elParamType;
pSerEvent->ulStreamNum = this->ulStreamNum;
pSerEvent->ullAudioStreamOffset = this->ullAudioStreamOffset;
pSerEvent->SerializedwParam = static_cast<ULONG>(this->wParam);
pSerEvent->SerializedlParam = static_cast<LONG>(this->lParam);
if (lParam)
{
switch(elParamType)
{
case SPET_LPARAM_IS_POINTER:
memcpy(pSerEvent + 1, (void *)lParam, wParam);
pSerEvent->SerializedlParam = sizeof(T);
break;
case SPET_LPARAM_IS_STRING:
wcscpy((WCHAR *)(pSerEvent + 1), (WCHAR*)lParam);
pSerEvent->SerializedlParam = sizeof(T);
break;
case SPET_LPARAM_IS_TOKEN:
{
CSpDynamicString dstrObjectId;
if( SUCCEEDED( ((ISpObjectToken*)lParam)->GetId( &dstrObjectId ) ) )
{
pSerEvent->SerializedwParam = (dstrObjectId.Length() + 1) * sizeof( WCHAR );;
memcpy( pSerEvent + 1, (void *)dstrObjectId.m_psz, static_cast<ULONG>(pSerEvent->SerializedwParam) );
}
pSerEvent->SerializedlParam = sizeof(T);
}
break;
default:
break;
}
}
}
template <class T>
HRESULT Serialize(T ** ppCoMemSerEvent, ULONG * pcbSerEvent) const
{
// WCE compiler does not work propertly with template
#ifndef _WIN32_WCE
*pcbSerEvent = SpEventSerializeSize<T>(this);
#else
*pcbSerEvent = SpEventSerializeSize(this, sizeof(** ppCoMemSerEvent));
#endif
*ppCoMemSerEvent = (T *)::CoTaskMemAlloc(*pcbSerEvent);
if (*ppCoMemSerEvent)
{
Serialize(*ppCoMemSerEvent);
return S_OK;
}
else
{
*pcbSerEvent = 0;
return E_OUTOFMEMORY;
}
}
// Call this method with either SPSERIALIZEDEVENT or SPSERIALIZEDEVENT64
template <class T>
HRESULT Deserialize(const T * pSerEvent, ULONG * pcbUsed = NULL)
{
Clear();
HRESULT hr = S_OK;
const UNALIGNED T * pTemp = pSerEvent;
this->eEventId = pTemp->eEventId;
this->elParamType = pTemp->elParamType;
this->ulStreamNum = pTemp->ulStreamNum;
this->ullAudioStreamOffset = pTemp->ullAudioStreamOffset;
this->wParam = static_cast<WPARAM>(pTemp->SerializedwParam);
this->lParam = static_cast<LPARAM>(pTemp->SerializedlParam);
if (pTemp->SerializedlParam)
{
ULONG cbAlloc = 0;
switch (pTemp->elParamType)
{
case SPET_LPARAM_IS_POINTER:
cbAlloc = static_cast<ULONG>(wParam);
break;
case SPET_LPARAM_IS_STRING:
cbAlloc = sizeof(WCHAR) * (1 + wcslen((const WCHAR *)(pTemp + 1)));
break;
case SPET_LPARAM_IS_TOKEN:
{
ULONG ulDataOffset = ULONG(lParam);
hr = SpGetTokenFromId( (const WCHAR*)(pTemp + 1),
(ISpObjectToken **)&lParam );
wParam = 0;
}
break;
}
if (cbAlloc)
{
void * pvBuff = ::CoTaskMemAlloc(cbAlloc);
this->lParam = (LPARAM)pvBuff;
if (pvBuff)
{
memcpy(pvBuff, pTemp + 1, cbAlloc);
}
else
{
hr = E_OUTOFMEMORY;
}
}
}
if( SUCCEEDED( hr ) && pcbUsed )
{
// WCE compiler does not work propertly with template
#ifndef _WIN32_WCE
*pcbUsed = SpEventSerializeSize<T>(this);
#else
*pcbUsed = SpEventSerializeSize(this, sizeof(*pTemp));
#endif
}
return hr;
}
//
// Helpers for access to events. Performs run-time checks in debug and casts
// data to the appropriate types
//
SPPHONEID Phoneme() const
{
SPDBG_ASSERT(eEventId == SPEI_PHONEME);
return (SPPHONEID)LOWORD(lParam);
}
SPVISEMES Viseme() const
{
SPDBG_ASSERT(eEventId == SPEI_VISEME);
return (SPVISEMES)LOWORD(lParam);
}
ULONG InputWordPos() const
{
SPDBG_ASSERT(eEventId == SPEI_WORD_BOUNDARY);
return ULONG(lParam);
}
ULONG InputWordLen() const
{
SPDBG_ASSERT(eEventId == SPEI_WORD_BOUNDARY);
return ULONG(wParam);
}
ULONG InputSentPos() const
{
SPDBG_ASSERT(eEventId == SPEI_SENTENCE_BOUNDARY);
return ULONG(lParam);
}
ULONG InputSentLen() const
{
SPDBG_ASSERT(eEventId == SPEI_SENTENCE_BOUNDARY);
return ULONG(wParam);
}
ISpObjectToken * ObjectToken() const
{
SPDBG_ASSERT(elParamType == SPET_LPARAM_IS_TOKEN);
return (ISpObjectToken *)lParam;
}
ISpObjectToken * VoiceToken() const // More explicit check than ObjectToken()
{
SPDBG_ASSERT(eEventId == SPEI_VOICE_CHANGE);
return ObjectToken();
}
BOOL PersistVoiceChange() const
{
SPDBG_ASSERT(eEventId == SPEI_VOICE_CHANGE);
return (BOOL)wParam;
}
IUnknown * Object() const
{
SPDBG_ASSERT(elParamType == SPET_LPARAM_IS_OBJECT);
return (IUnknown*)lParam;
}
ISpRecoResult * RecoResult() const
{
SPDBG_ASSERT(eEventId == SPEI_RECOGNITION || eEventId == SPEI_FALSE_RECOGNITION || eEventId == SPEI_HYPOTHESIS);
return (ISpRecoResult *)Object();
}
BOOL IsPaused()
{
SPDBG_ASSERT(eEventId == SPEI_RECOGNITION || eEventId == SPEI_SR_BOOKMARK);
return (BOOL)(wParam & SPREF_AutoPause);
}
BOOL IsEmulated()
{
SPDBG_ASSERT(eEventId == SPEI_RECOGNITION);
return (BOOL)(wParam & SPREF_Emulated);
}
const WCHAR * String() const
{
SPDBG_ASSERT(elParamType == SPET_LPARAM_IS_STRING);
return (const WCHAR*)lParam;
}
const WCHAR * BookmarkName() const
{
SPDBG_ASSERT(eEventId == SPEI_TTS_BOOKMARK);
return String();
}
const WCHAR * RequestTypeOfUI() const
{
SPDBG_ASSERT(eEventId == SPEI_REQUEST_UI);
return String();
}
SPRECOSTATE RecoState() const
{
SPDBG_ASSERT(eEventId == SPEI_RECO_STATE_CHANGE);
return static_cast<SPRECOSTATE>(wParam);
}
const WCHAR * PropertyName() const
{
SPDBG_ASSERT((eEventId == SPEI_PROPERTY_NUM_CHANGE && elParamType == SPET_LPARAM_IS_STRING) ||
(eEventId == SPEI_PROPERTY_STRING_CHANGE && elParamType == SPET_LPARAM_IS_POINTER));
// Note: Don't use String() method here since in the case of string attributes, the elParamType
// field specifies LPARAM_IS_POINTER, but the attribute name IS the first string in this buffer
return (const WCHAR*)lParam;
}
const LONG PropertyNumValue() const
{
SPDBG_ASSERT(eEventId == SPEI_PROPERTY_NUM_CHANGE);
return static_cast<LONG>(wParam);
}
const WCHAR * PropertyStringValue() const
{
// Search for the first NULL and return pointer to the char past it.
SPDBG_ASSERT(eEventId == SPEI_PROPERTY_STRING_CHANGE);
for (const WCHAR * psz = (const WCHAR *)lParam; *psz; psz++) {}
return psz + 1;
}
SPINTERFERENCE Interference() const
{
SPDBG_ASSERT(eEventId == SPEI_INTERFERENCE);
return static_cast<SPINTERFERENCE>(lParam);
}
HRESULT EndStreamResult() const
{
SPDBG_ASSERT(eEventId == SPEI_END_SR_STREAM);
return static_cast<HRESULT>(lParam);
}
BOOL InputStreamReleased() const
{
SPDBG_ASSERT(eEventId == SPEI_END_SR_STREAM);
return (wParam & SPESF_STREAM_RELEASED) ? TRUE : FALSE;
}
};
class CSpPhrasePtr
{
public:
SPPHRASE * m_pPhrase;
CSpPhrasePtr() : m_pPhrase(NULL) {}
CSpPhrasePtr(ISpPhrase * pPhraseObj, HRESULT * phr)
{
*phr = pPhraseObj->GetPhrase(&m_pPhrase);
}
~CSpPhrasePtr()
{
::CoTaskMemFree(m_pPhrase);
}
//The assert on operator& usually indicates a bug. If this is really
//what is needed, however, take the address of the m_pPhrase member explicitly.
SPPHRASE ** operator&()
{
SPDBG_ASSERT(m_pPhrase == NULL);
return &m_pPhrase;
}
operator SPPHRASE *() const
{
return m_pPhrase;
}
SPPHRASE & operator*() const
{
SPDBG_ASSERT(m_pPhrase);
return *m_pPhrase;
}
SPPHRASE * operator->() const
{
return m_pPhrase;
}
bool operator!() const
{
return (m_pPhrase == NULL);
}
void Clear()
{
if (m_pPhrase)
{
::CoTaskMemFree(m_pPhrase);
m_pPhrase = NULL;
}
}
HRESULT GetFrom(ISpPhrase * pPhraseObj)
{
Clear();
return pPhraseObj->GetPhrase(&m_pPhrase);
}
};
template <class T>
class CSpCoTaskMemPtr
{
public:
T * m_pT;
CSpCoTaskMemPtr() : m_pT(NULL) {}
CSpCoTaskMemPtr(void * pv) : m_pT((T *)pv) {}
CSpCoTaskMemPtr(ULONG cElements, HRESULT * phr)
{
m_pT = (T *)::CoTaskMemAlloc(cElements * sizeof(T));
*phr = m_pT ? S_OK : E_OUTOFMEMORY;
}
~CSpCoTaskMemPtr()
{
::CoTaskMemFree(m_pT);
}
void Clear()
{
if (m_pT)
{
::CoTaskMemFree(m_pT);
m_pT = NULL;
}
}
HRESULT Alloc(ULONG cArrayElements = 1)
{
m_pT = (T *)::CoTaskMemRealloc(m_pT, sizeof(T) * cArrayElements);
SPDBG_ASSERT(m_pT);
return (m_pT ? S_OK : E_OUTOFMEMORY);
}
void Attach(void * pv)
{
Clear();
m_pT = (T *)pv;
}
T * Detatch()
{
T * pT = m_pT;
m_pT = NULL;
return pT;
}
//The assert on operator& usually indicates a bug. If this is really
//what is needed, however, take the address of the m_pT member explicitly.
T ** operator&()
{
SPDBG_ASSERT(m_pT == NULL);
return &m_pT;
}
T * operator->()
{
SPDBG_ASSERT(m_pT != NULL);
return m_pT;
}
operator T *()
{
return m_pT;
}
bool operator!() const
{
return (m_pT == NULL);
}
};
/**** Helper function used to create a new phrase object from an array of
test words. Each word in the string is converted to a phrase element.
This is useful to create a phrase to pass to the EmulateRecognition method.
The method can convert standard words as well as words with the
"/display_text/lexical_form/pronounciation;" word format.
You can also specify the DisplayAttributes for each element if desired.
If prgDispAttribs is NULL then the DisplayAttribs for each element default to
SPAF_ONE_TRAILING_SPACE. ****/
inline HRESULT CreatePhraseFromWordArray(const WCHAR ** ppWords, ULONG cWords,
SPDISPLYATTRIBUTES * prgDispAttribs,
ISpPhraseBuilder **ppResultPhrase,
LANGID LangId = 0,
CComPtr<ISpPhoneConverter> cpPhoneConv = NULL)
{
SPDBG_FUNC("CreatePhraseFromWordArray");
HRESULT hr = S_OK;
if ( cWords == 0 || ppWords == NULL || ::IsBadReadPtr(ppWords, sizeof(*ppWords) * cWords ) )
{
return E_INVALIDARG;
}
if ( prgDispAttribs != NULL && ::IsBadReadPtr(prgDispAttribs, sizeof(*prgDispAttribs) * cWords ) )
{
return E_INVALIDARG;
}
ULONG cTotalChars = 0;
ULONG i;
WCHAR** pStringPtrArray = (WCHAR**)::CoTaskMemAlloc( cWords * sizeof(WCHAR *));
if ( !pStringPtrArray )
{
return E_OUTOFMEMORY;
}
for (i = 0; i < cWords; i++)
{
cTotalChars += wcslen(ppWords[i])+1;
}
CSpDynamicString dsText(cTotalChars);
if(dsText.m_psz == NULL)
{
::CoTaskMemFree(pStringPtrArray);
return E_OUTOFMEMORY;
}
CSpDynamicString dsPhoneId(cTotalChars);
if(dsPhoneId.m_psz == NULL)
{
::CoTaskMemFree(pStringPtrArray);
return E_OUTOFMEMORY;
}
SPPHONEID* pphoneId = dsPhoneId;
SPPHRASE Phrase;
memset(&Phrase, 0, sizeof(Phrase));
Phrase.cbSize = sizeof(Phrase);
if(LangId == 0)
{
LangId = SpGetUserDefaultUILanguage();
}
if(cpPhoneConv == NULL)
{
hr = SpCreatePhoneConverter(LangId, NULL, NULL, &cpPhoneConv);
if(FAILED(hr))
{
::CoTaskMemFree(pStringPtrArray);
return hr;
}
}
SPPHRASEELEMENT *pPhraseElement = new SPPHRASEELEMENT[cWords];
if(pPhraseElement == NULL)
{
::CoTaskMemFree(pStringPtrArray);
return E_OUTOFMEMORY;
}
memset(pPhraseElement, 0, sizeof(SPPHRASEELEMENT) * cWords); // !!!
WCHAR * pText = dsText;
for (i = 0; SUCCEEDED(hr) && i < cWords; i++)
{
WCHAR *p = pText;
pStringPtrArray[i] = pText;
wcscpy( pText, ppWords[i] );
pText += wcslen( p ) + 1;
if (*p == L'/')
{
//This is a compound word
WCHAR* pszFirstPart = ++p;
WCHAR* pszSecondPart = NULL;
WCHAR* pszThirdPart = NULL;
while (*p && *p != L'/')
{
p++;
}
if (*p == L'/')
{
//It means we stop at the second '/'
*p = L'\0';
pszSecondPart = ++p;
while (*p && *p != L'/')
{
p++;
}
if (*p == L'/')
{
//It means we stop at the third '/'
*p = L'\0';
pszThirdPart = ++p;
}
}
pPhraseElement[i].pszDisplayText = pszFirstPart;
pPhraseElement[i].pszLexicalForm = pszSecondPart ? pszSecondPart : pszFirstPart;
if ( pszThirdPart)
{
hr = cpPhoneConv->PhoneToId(pszThirdPart, pphoneId);
if (SUCCEEDED(hr))
{
pPhraseElement[i].pszPronunciation = pphoneId;
pphoneId += wcslen(pphoneId) + 1;
}
}
}
else
{
//It is the simple format, only have one form, use it for everything.
pPhraseElement[i].pszDisplayText = NULL;
pPhraseElement[i].pszLexicalForm = p;
pPhraseElement[i].pszPronunciation = NULL;
}
pPhraseElement[i].bDisplayAttributes = (BYTE)(prgDispAttribs ? prgDispAttribs[i] : SPAF_ONE_TRAILING_SPACE);
pPhraseElement[i].RequiredConfidence = SP_NORMAL_CONFIDENCE;
pPhraseElement[i].ActualConfidence = SP_NORMAL_CONFIDENCE;
}
Phrase.Rule.ulCountOfElements = cWords;
Phrase.pElements = pPhraseElement;
Phrase.LangID = LangId;
CComPtr<ISpPhraseBuilder> cpPhrase;
if (SUCCEEDED(hr))
{
hr = cpPhrase.CoCreateInstance(CLSID_SpPhraseBuilder);
}
if (SUCCEEDED(hr))
{
hr = cpPhrase->InitFromPhrase(&Phrase);
}
if (SUCCEEDED(hr))
{
*ppResultPhrase = cpPhrase.Detach();
}
delete pPhraseElement;
::CoTaskMemFree(pStringPtrArray);
return hr;
}
/**** Helper function used to create a new phrase object from a
test string. Each word in the string is converted to a phrase element.
This is useful to create a phrase to pass to the EmulateRecognition method.
The method can convert standard words as well as words with the
"/display_text/lexical_form/pronounciation;" word format ****/
inline HRESULT CreatePhraseFromText(const WCHAR *pszOriginalText,
ISpPhraseBuilder **ppResultPhrase,
LANGID LangId = 0,
CComPtr<ISpPhoneConverter> cpPhoneConv = NULL)
{
SPDBG_FUNC("CreatePhraseFromText");
HRESULT hr = S_OK;
//We first trim the input text
CSpDynamicString dsText(pszOriginalText);
if(dsText.m_psz == NULL)
{
return E_OUTOFMEMORY;
}
dsText.TrimBoth();
ULONG cWords = 0;
BOOL fInCompoundword = FALSE;
// Set first array pointer (if *p).
WCHAR *p = dsText;
while (*p)
{
if( iswspace(*p) && !fInCompoundword)
{
cWords++;
*p++ = L'\0';
while (*p && iswspace(*p))
{
*p++ = L'\0';
}
// Add new array pointer. Use vector.
}
else if (*p == L'/' && !fInCompoundword)
{
fInCompoundword = TRUE;
}
else if (*p == L';' && fInCompoundword)
{
fInCompoundword = FALSE;
*p++ = L'\0';
// Add new array element.
}
else
{
p++;
}
}
cWords++;
WCHAR** pStringPtrArray = (WCHAR**)::CoTaskMemAlloc( cWords * sizeof(WCHAR *));
if ( !pStringPtrArray )
{
hr = E_OUTOFMEMORY;
}
if ( SUCCEEDED( hr ) )
{
p = dsText;
for (ULONG i=0; i<cWords; i++)
{
pStringPtrArray[i] = p;
p += wcslen(p)+1;
}
hr = CreatePhraseFromWordArray((const WCHAR **)pStringPtrArray, cWords, NULL, ppResultPhrase, LangId, cpPhoneConv);
::CoTaskMemFree(pStringPtrArray);
}
return hr;
}
#endif /* This must be the last line in the file */