windows-nt/Source/XPSP1/NT/multimedia/directx/dmusic/dmsynth/synth.h
2020-09-26 16:20:57 +08:00

1491 lines
57 KiB
C++

// Synth.h
// Copyright (c) 1996-1999 Microsoft Corporation
//
/* For internal representation, volume is stored in Volume Cents,
where each increment represents 1/100 of a dB.
Pitch is stored in Pitch Cents, where each increment
represents 1/100 of a semitone.
*/
#ifndef __SYNTH_H__
#define __SYNTH_H__
#pragma warning(disable:4296)
#include "clist.h"
#include "dmdls.h"
#include "dls2.h"
#include "dsound.h"
#include "dmusicc.h"
#ifdef DBG
extern DWORD sdwDebugLevel;
#endif
#define MIDI_NOTEOFF 0x80
#define MIDI_NOTEON 0x90
#define MIDI_PTOUCH 0xA0
#define MIDI_CCHANGE 0xB0
#define MIDI_PCHANGE 0xC0
#define MIDI_MTOUCH 0xD0
#define MIDI_PBEND 0xE0
#define MIDI_SYSX 0xF0
#define MIDI_MTC 0xF1
#define MIDI_SONGPP 0xF2
#define MIDI_SONGS 0xF3
#define MIDI_EOX 0xF7
#define MIDI_CLOCK 0xF8
#define MIDI_START 0xFA
#define MIDI_CONTINUE 0xFB
#define MIDI_STOP 0xFC
#define MIDI_SENSE 0xFE
// controller numbers
#define CC_BANKSELECTH 0x00
#define CC_BANKSELECTL 0x20
#define CC_MODWHEEL 0x01
#define CC_VOLUME 0x07
#define CC_PAN 0x0A
#define CC_EXPRESSION 0x0B
#define CC_SUSTAIN 0x40
#define CC_CUTOFFFREQ 0x4A
#define CC_REVERB 0x5B
#define CC_CHORUS 0x5D
#define CC_ALLSOUNDSOFF 0x78
#define CC_RESETALL 0x79
#define CC_ALLNOTESOFF 0x7B
#define CC_MONOMODE 0x7E
#define CC_POLYMODE 0x7F
// rpn controllers
#define CC_DATAENTRYMSB 0x06
#define CC_DATAENTRYLSB 0x26
#define CC_NRPN_LSB 0x62
#define CC_NRPN_MSB 0x63
#define CC_RPN_LSB 0x64
#define CC_RPN_MSB 0x65
// registered parameter numbers
#define RPN_PITCHBEND 0x00
#define RPN_FINETUNE 0x01
#define RPN_COARSETUNE 0x02
/* Sample format and Sample playback flags are organized
together because together they determine which
mix loop to use.
*/
#define SFORMAT_16 1 // Sixteen bit sample.
#define SFORMAT_8 2 // Eight bit sample.
#define SPLAY_MMX 0x10 // Use MMX processor (16 bit only).
#define SPLAY_INTERLEAVED 0x40 // Interleave Buffer
#define SPLAY_FILTERED 0x80 // Non-trivial filter coeff's
/* Output buffer format flags, defines whether the buffers being
played are multi-buffer, interleave or just plain mono
*/
#define BUFFERFLAG_MONO 0x00000000
#define BUFFERFLAG_INTERLEAVED 0x00000001
#define BUFFERFLAG_MULTIBUFFER 0x00000002
typedef long PREL; // Pitch cents, for relative pitch.
typedef short PRELS; // Pitch cents, in storage form.
typedef long VREL; // Volume cents, for relative volume.
typedef short VRELS; // Volume cents, in storage form.
typedef long TREL; // Time cents, for relative time
typedef short TRELS; // Time Cents, in storage form.
typedef LONGLONG STIME; // Time value, in samples.
typedef long MTIME; // Time value, in milliseconds.
typedef long PFRACT; // Pitch increment, where upper 20 bits are
// the index and the lower 12 are the fractional
// component.
typedef long VFRACT; // Volume, where lower 12 bits are the fraction.
typedef long TCENT;
typedef short SPERCENT;
#define COEFF_UNITY 0x40000000 // 1.0 multiplier as a 2.30 number
typedef unsigned long COEFF; // 2.30 fixed point filter coefficient
typedef long COEFFDELTA; // 2.30 fixed point filter coefficient delta value
#define FILTER_PARMS_DIM_Q 16 // the number of different resonances in the filter parameter table (rows)
#define FILTER_PARMS_DIM_FC 89 // the number of different cutoff frequencies in the filter parameter table (cols)
#define FILTER_FREQ_RANGE 10688 // the difference in pitch cents between the sample rate of the filter design and the
#define MAX_VOLUME 0 // No attenuation and no amplification
#define MIN_VOLUME -9600 // Below 96 db down is considered off.
#define PERCEIVED_MIN_VOLUME -8000 // But, we cheat.
#define SAMPLE_RATE_22 22050 // 22 kHz is the standard rate.
#define SAMPLE_RATE_44 44100 // 44 kHz is the high quality rate.
#define SAMPLE_RATE_11 11025 // 11 kHz should not be allowed!
#define STEREO_ON 1
#define STEREO_OFF 0
#define MAX_DAUD_CHAN 32
#define FORCEBOUNDS(data,min,max) {if (data < min) data = min; else if (data > max) data = max;}
class CControlLogic;
/*
>>>>>>>>> comment
*/
class CBusIds
{
public:
CBusIds();
~CBusIds();
HRESULT Initialize();
HRESULT AssignBuses(LPDWORD pdwBusIds, DWORD dwBusCount);
public:
DWORD m_dwBusCount; // Number of Bus Id's
DWORD m_dwBusIds[MAX_DAUD_CHAN]; // Array of bus IDs
};
/* CSourceLFO is the file format definition of the LFO in an
instrument. This is used to represent an LFO as part of
a specific articulation set within an instrument that
has been loaded from disk. Once the instrument is chosen
to play a note, this is also copied into the CVoice
object.
*/
class CSourceLFO
{
public:
CSourceLFO();
void Init(DWORD dwSampleRate);
void SetSampleRate(long lDirection);
void Verify(); // Verifies that the data is valid.
PFRACT m_pfFrequency; // Frequency, in increments through the sine table.
STIME m_stDelay; // How long to delay in sample units.
VRELS m_vrMWVolumeScale; // Scaling of volume LFO by Mod Wheel.
PRELS m_prMWPitchScale; // Scaling of pitch LFO by Mod Wheel.
VRELS m_vrVolumeScale; // Scaling of straight volume signal from LFO.
PRELS m_prPitchScale; // Scaling of straight pitch signal from LFO.
/* DirectX8 members */
PRELS m_prCPPitchScale; // Scaling of pitch signal from channel pressure.
VRELS m_vrCPVolumeScale; // Scaling of volume signal from channel pressure.
//>>>>>>>> comments
PRELS m_prCutoffScale; // Scaling of Cutoff feq >>>>>>
PRELS m_prMWCutoffScale; // Scaling of Cutoff feq mod wheel
PRELS m_prCPCutoffScale; // Scaling of Cutoff feq channel pressure
};
/* CSourceEG is the file format definition of an Envelope
generator in an instrument.
*/
class CSourceEG
{
public:
CSourceEG();
void SetSampleRate(long lDirection);
void Init();
void Verify(); // Verifies valid data.
STIME m_stAttack; // Attack rate.
STIME m_stDecay; // Decay rate.
STIME m_stRelease; // Release rate.
TRELS m_trVelAttackScale; // Scaling of attack by note velocity.
TRELS m_trKeyDecayScale; // Scaling of decay by note value.
SPERCENT m_pcSustain; // Sustain level.
short m_sScale; // Scaling of entire signal.
/* DLS2 */
STIME m_stDelay; // Delay rate.
STIME m_stHold; // Hold rate.
TRELS m_trKeyHoldScale; // Scaling of Hold by note value.
//>>>>>>>> comments
PRELS m_prCutoffScale; // Scaling of Cutoff feq >>>>>>
};
//>>>>>>>> comments
class CSourceFilter
{
public:
CSourceFilter();
void SetSampleRate(long lDirection);
void Init(DWORD dwSampleRate);
void Verify();
PRELS m_prSampleRate; // Sample rate in cents
PRELS m_prCutoff; // Cutoff Frequency in absolute pitch
PRELS m_prCutoffSRAdjust; // Cutoff Frequency adjusted to the sampel rate
VRELS m_vrQ; // Resonance
DWORD m_iQIndex; // Q index
PRELS m_prVelScale; // Scale by key velocity
PRELS m_prKeyScale; // Scaling by note value.
};
/* CSourceArticulation is the file format definition of
a complete articulation set: the LFO and two
envelope generators.
Since several regions within one Instrument can
share one articulation, a counter is used to keep
track of the usage.
*/
class CSourceArticulation
{
public:
CSourceArticulation();
HRESULT Download(DMUS_DOWNLOADINFO * pInfo,
void * pvOffsetTable[], DWORD dwIndex,
DWORD dwSampleRate, BOOL fNewFormat);
#ifdef DDUMP
void Dump(DWORD dwIndent,DWORD dwLevel);
#endif
void Init(DWORD dwSampleRate);
void Verify(); // Verifies valid data.
void AddRef();
void Release();
void SetSampleRate(DWORD dwSampleRate);
CSourceEG m_PitchEG; // Pitch envelope.
CSourceEG m_VolumeEG; // Volume envelope.
CSourceLFO m_LFO; // Low frequency oscillator.
DWORD m_dwSampleRate;
WORD m_wUsageCount; // Keeps track of how many times in use.
short m_sDefaultPan; // default pan (for drums)
/* DLS2 */
CSourceLFO m_LFO2; // Vibrato
CSourceFilter m_Filter; // Low pass filter
};
/* Since multiple regions may reference
the same Wave, a reference count is maintained to
keep track of how many regions are using the sample.
*/
class CWave : public CListItem
{
public:
CWave();
~CWave();
#ifdef DDUMP
void Dump(DWORD dwIndent,DWORD dwLevel);
#endif
void Verify(); // Verifies that the data is valid.
void Release(); // Remove reference.
void AddRef(); // Add reference.
void PlayOn(); // Increment play count.
void PlayOff(); // Decrement play count.
BOOL IsPlaying(); // Is currently playing?
CWave * GetNext() {return(CWave *)CListItem::GetNext();};
DWORD m_dwSampleLength; // Length of sample.
DWORD m_dwSampleRate;
HRESULT ( CALLBACK *m_lpFreeHandle)(HANDLE,HANDLE);
HANDLE m_hUserData; // Used to notify app when wave released.
short * m_pnWave;
DWORD m_dwID; // ID for matching wave with regions.
WORD m_wUsageCount; // Keeps track of how many times in use.
WORD m_wPlayCount; // Wave is currently being played.
BYTE m_bSampleType;
/* DirectX 8 members */
BYTE m_bStream; // This wave is used as a streaming buffer
BYTE m_bActive; // This buffer is currently be used to play out of
BYTE m_bValid; // Indicates data in the buffer is valid
BYTE m_bLastSampleInit; // Indicates the the buffers last sample has been initialize
};
class CWavePool : public CList
{
public:
CWave * GetHead() {return (CWave *)CList::GetHead();};
CWave * GetItem(DWORD dwID) {return (CWave *)CList::GetItem((LONG)dwID);};
CWave * RemoveHead() {return (CWave *)CList::RemoveHead();};
};
/* The CSourceSample class describes one sample in an
instrument. The sample is referenced by a CSourceRegion
structure.
*/
class Collection;
class CSourceSample
{
public:
CSourceSample();
~CSourceSample();
BOOL CopyFromWave();
void Verify(); // Verifies that the data is valid.
CWave * m_pWave; // Wave in pool.
DWORD m_dwLoopStart; // Index of start of loop.
DWORD m_dwLoopEnd; // Index of end of loop.
DWORD m_dwSampleLength; // Length of sample.
DWORD m_dwSampleRate; // Sample rate of recording.
PRELS m_prFineTune; // Fine tune to correct pitch.
DWORD m_dwID; // Wave pool id.
BYTE m_bSampleType; // 16 or 8.
BYTE m_bOneShot; // Is this a one shot sample?
BYTE m_bMIDIRootKey; // MIDI note number for sample.
DWORD m_dwLoopType; // WLOOP_TYPE_xxx
};
/* The CSourceRegion class defines a region within an instrument.
The sample is managed with a pointer instead of an embedded
sample. This allows multiple regions to use the same
sample.
Each region also has an associated articulation. For drums, there
is a one to one matching. For melodic instruments, all regions
share the same articulation. So, to manage this, each region
points to the articulation.
*/
class CSourceRegion : public CListItem
{
public:
CSourceRegion();
~CSourceRegion();
#ifdef DDUMP
void Dump(DWORD dwIndent,DWORD dwLevel);
#endif
CSourceRegion *GetNext() {return(CSourceRegion *)CListItem::GetNext();};
void Verify(); // Verifies that the data is valid.
void SetSampleRate(DWORD dwSampleRate);
HRESULT Download(DMUS_DOWNLOADINFO * pInfo, void * pvOffsetTable[],
DWORD *pdwRegionIX, DWORD dwSampleRate, BOOL fNewFormat);
CSourceSample m_Sample; // Sample structure.
CSourceArticulation * m_pArticulation; // Pointer to associated articulation.
VRELS m_vrAttenuation; // Volume change to apply to sample.
PRELS m_prTuning; // Pitch shift to apply to sample.
BYTE m_bAllowOverlap; // Allow overlapping of note.
BYTE m_bKeyHigh; // Upper note value for region.
BYTE m_bKeyLow; // Lower note value.
BYTE m_bGroup; // Logical group (for drums.)
/* DLS2 */
BYTE m_bVelocityHigh; // Upper velocity value for region.
BYTE m_bVelocityLow; // Lower velocity value.
SHORT m_sWaveLinkOptions; // Wave link chunk option flags
DWORD m_dwChannel; // Region channels, from WAVELINK chunk
// Channel in m_dwChannel provides voice destination and overrides anything
// from the articulation.
//
inline BOOL IsMultiChannel() const
{ return (BOOL)(m_sWaveLinkOptions & F_WAVELINK_MULTICHANNEL); }
};
class CSourceRegionList : public CList
{
public:
CSourceRegion *GetHead() {return (CSourceRegion *)CList::GetHead();};
CSourceRegion *RemoveHead() {return (CSourceRegion *)CList::RemoveHead();};
};
/* The CInstrument class is really the file format definition
of an instrument.
The CInstrument can be either a Drum or a Melodic instrument.
If a drum, it has up to 128 pairings of articulations and
regions. If melodic, all regions share the same articulation.
ScanForRegion is called by ControlLogic to get the region
that corresponds to a note.
*/
class CInstManager;
class CInstrument : public CListItem
{
public:
CInstrument();
~CInstrument();
#ifdef DDUMP
void Dump(DWORD dwIndent,DWORD dwLevel);
#endif
void Init(DWORD dwSampleRate);
void Verify(); // Verifies that the data is valid.
CInstrument * GetInstrument(DWORD dwProgram,DWORD dwAccept);
CInstrument * GetNext() {return(CInstrument *)CListItem::GetNext();};
void SetSampleRate(DWORD dwSampleRate);
CSourceRegion * ScanForRegion(DWORD dwNoteValue, DWORD dwVelocity, CSourceRegion *pRegion = NULL);
CSourceRegionList m_RegionList; // Linked list of regions.
DWORD m_dwProgram; // Which program change it represents.
HRESULT LoadRegions( BYTE *p, BYTE *pEnd, DWORD dwSampleRate);
HRESULT Load( BYTE *p, BYTE *pEnd, DWORD dwSampleRate);
};
class CInstrumentList : public CList
{
public:
CInstrument * GetHead() {return (CInstrument *)CList::GetHead();};
CInstrument * RemoveHead() {return (CInstrument *)CList::RemoveHead();};
};
class CWaveBufferList;
class CWaveBuffer : public CListItem
{
friend CWaveBufferList;
public:
CWaveBuffer()
{
}
CWaveBuffer * GetNext() { return (CWaveBuffer *)CListItem::GetNext();};
CWaveBuffer * GetNextLoop()
{
// Threat the list as a circular list
CWaveBuffer *pbuf;
pbuf = (CWaveBuffer *)CListItem::GetNext();
if ( pbuf == NULL )
pbuf = (CWaveBuffer *)*m_ppHead;
return pbuf;
};
CWave * m_pWave; // pointer to wave object
protected:
CListItem** m_ppHead;
};
class CWaveBufferList : public CList
{
public:
CWaveBuffer *GetHead() {return (CWaveBuffer *)CList::GetHead();};
CWaveBuffer *RemoveHead() {return (CWaveBuffer *)CList::RemoveHead();};
// Overide these methods so that m_pHead can be added to CWaveBuffer ListItem
// to allow GetNextLoop() to function as a simple circular buffer list
void InsertBefore(CListItem *pItem,CWaveBuffer *pInsert) {pInsert->m_ppHead = &m_pHead; CList::Cat(pItem);};
void Cat(CWaveBuffer *pItem) {pItem->m_ppHead = &m_pHead; CList::Cat(pItem);};
void AddHead(CWaveBuffer *pItem) {pItem->m_ppHead = &m_pHead; CList::AddHead(pItem);};
void AddTail(CWaveBuffer *pItem) {pItem->m_ppHead = &m_pHead; CList::AddTail(pItem);};
};
class CWaveArt : public CListItem
{
public:
CWaveArt();
~CWaveArt();
void Release(); // Remove reference.
void AddRef(); // Add reference.
void Verify(); // Verifies that the data is valid.
CWaveArt * GetNext() {return(CWaveArt *)CListItem::GetNext();};
DWORD m_dwID; // ID for matching wave with regions.
DMUS_WAVEARTDL m_WaveArtDl;
WAVEFORMATEX m_WaveformatEx;
CWaveBufferList m_pWaves; // Array of Wave buffers associated with dowload id's
// DWORD m_dwSampleLength;
BYTE m_bSampleType;
BOOL m_bStream; // Is this a streaming articulation
WORD m_wUsageCount; // Keeps track of how many times in use.
};
class CWaveArtList : public CList
{
public:
CWaveArt * GetHead() {return (CWaveArt *)CList::GetHead();};
CWaveArt * RemoveHead() {return (CWaveArt *)CList::RemoveHead();};
};
#define WAVE_HASH_SIZE 31 // Keep waves in a hash table of linked lists to speed access.
#define INSTRUMENT_HASH_SIZE 31 // Same with instruments.
#define WAVEART_HASH_SIZE 31
class CInstManager {
public:
CInstManager();
~CInstManager();
#ifdef DDUMP
void Dump(DWORD dwIndent,DWORD dwLevel);
#endif
CInstrument * GetInstrument(DWORD dwPatch,DWORD dwKey,DWORD dwVelocity);
void Verify(); // Verifies that the data is valid.
void SetSampleRate(DWORD dwSampleRate);
HRESULT Download(LPHANDLE phDownload,
void * pvData,
LPBOOL pbFree);
HRESULT Unload(HANDLE hDownload,
HRESULT ( CALLBACK *lpFreeHandle)(HANDLE,HANDLE),
HANDLE hUserData);
/* DirectX8 Methods */
CWave * GetWave(DWORD dwDLId);
CWaveArt * GetWaveArt(DWORD dwDLId);
private:
HRESULT DownloadInstrument(LPHANDLE phDownload,
DMUS_DOWNLOADINFO *pInfo,
void *pvOffsetTable[],
void *pvData,
BOOL fNewFormat);
HRESULT DownloadWave(LPHANDLE phDownload,
DMUS_DOWNLOADINFO *pInfo,
void *pvOffsetTable[],
void *pvData);
/* DirectX8 Private Methods */
HRESULT DownloadWaveArticulation(LPHANDLE phDownload,
DMUS_DOWNLOADINFO *pInfo,
void *pvOffsetTable[],
void *pvData);
HRESULT DownloadWaveRaw(LPHANDLE phDownload,
DMUS_DOWNLOADINFO *pInfo,
void *pvOffsetTable[],
void *pvData);
CInstrumentList m_InstrumentList[INSTRUMENT_HASH_SIZE];
CWavePool m_WavePool[WAVE_HASH_SIZE];
CWavePool m_FreeWavePool; // Track waves still in use, but unloaded.
DWORD m_dwSampleRate; // Sample rate requested by app.
/* DirectX8 Private Memmebers */
CWaveArtList m_WaveArtList[WAVEART_HASH_SIZE];
public:
DWORD m_dwSynthMemUse; /* Memory used by synth wave data */
CRITICAL_SECTION m_CriticalSection; // Critical section to manage access.
BOOL m_fCSInitialized;
};
/* CMIDIRecorder is used to keep track of a time
slice of MIDI continuous controller events.
This is subclassed by the PitchBend, Volume,
Expression, and ModWheel Recorder classes, so
each of them may reliably manage MIDI events
coming in.
CMIDIRecorder uses a linked list of CMIDIData
structures to keep track of the changes within
the time slice.
Allocation and freeing of the CMIDIData events
is kept fast and efficient because they are
always pulled from the static pool m_pFreeList,
which is really a list of events pulled directly
from the static array m_sEventBuffer. This is
safe because we can make the assumption that
the maximum MIDI rate is 1000 events per second.
Since we are managing time slices of roughly
1/16 of a second, a buffer of 100 events would
be overkill.
Although CMIDIRecorder is subclassed to several
different event types, they all share the one
staticly declared free list.
*/
class CMIDIData : public CListItem
{
public:
CMIDIData();
CMIDIData * GetNext() {return (CMIDIData *)CListItem::GetNext();};
STIME m_stTime; // Time this event was recorded.
long m_lData; // Data stored in event.
};
class CMIDIDataList : public CList
{
public:
CMIDIData *GetHead() {return (CMIDIData *)CList::GetHead();};
CMIDIData *RemoveHead() {return (CMIDIData *)CList::RemoveHead();};
};
class CMIDIRecorder
{
public:
CMIDIRecorder();
~CMIDIRecorder(); // Be sure to clear local list.
BOOL FlushMIDI(STIME stTime); // Clear after time stamp.
BOOL ClearMIDI(STIME stTime); // Clear up to time stamp.
BOOL RecordMIDI(STIME stTime, long lData); // MIDI input goes here.
BOOL RecordMIDINote(STIME stTime, long lData); // MIDI input goes here.
long GetData(STIME stTime); // Gets data at time.
static VREL VelocityToVolume(WORD nVelocity);
protected:
static VREL m_vrMIDIToVREL[128]; // Array for converting MIDI to volume.
static VREL m_vrMIDIPercentToVREL[128]; // Array for converting MIDI reverb and chorus percentages to volume.
private:
static DWORD m_sUsageCount; // Keeps track of how many instances so free list can be released.
public:
static CMIDIDataList m_sFreeList; // Global free list of events.
protected:
CMIDIDataList m_EventList; // This recorder's list.
STIME m_stCurrentTime; // Time for current value.
long m_lCurrentData; // Current value.
};
class CNote {
public:
STIME m_stTime;
BYTE m_bPart;
BYTE m_bKey;
BYTE m_bVelocity;
};
// Fake note values held in CNoteIn's queue
// to indicate changes in the sustain pedal
// and "all notes off".
// This is a grab bag for synchronous events
// that should be queued in time, not simply done as
// soon as received.
// By putting them in the note queue, we ensure
// they are evaluated in the exact same order as
// the notes themselves.
const BYTE NOTE_PROGRAMCHANGE = 0xF1;
const BYTE NOTE_CC_BANKSELECTH = 0xF2;
const BYTE NOTE_CC_BANKSELECTL = 0xF3;
const BYTE NOTE_CC_POLYMODE = 0xF4;
const BYTE NOTE_CC_MONOMODE = 0xF5;
const BYTE NOTE_CC_RPN_MSB = 0xF6;
const BYTE NOTE_CC_RPN_LSB = 0xF7;
const BYTE NOTE_CC_NRPN = 0xF8;
const BYTE NOTE_CC_DATAENTRYLSB = 0xF9;
const BYTE NOTE_CC_DATAENTRYMSB = 0xFA;
const BYTE NOTE_ASSIGNRECEIVE = 0xFB;
const BYTE NOTE_MASTERVOLUME = 0xFC;
const BYTE NOTE_SOUNDSOFF = 0xFD;
const BYTE NOTE_SUSTAIN = 0xFE;
const BYTE NOTE_ALLOFF = 0xFF;
class CNoteIn : public CMIDIRecorder
{
public:
void FlushMIDI(STIME stTime);
void FlushPart(STIME stTime, BYTE bChannel);
BOOL RecordNote(STIME stTime, CNote * pNote);
BOOL RecordEvent(STIME stTime, DWORD dwPart, DWORD dwCommand, BYTE bData);
BOOL GetNote(STIME stTime, CNote * pNote); // Gets the next note.
};
/* CModWheelIn handles one channel of Mod Wheel
input. As such, it is not embedded in the CVoice
class, rather it is in the Channel class.
CModWheelIn's task is simple: keep track of MIDI
Mod Wheel events, each tagged with millisecond
time and value, and return the value for a specific
time request.
CModWheelIn inherits almost all of its functionality
from the CMIDIRecorder Class.
CModWheelIn receives MIDI mod wheel events through
the RecordMIDI() command, which stores the
time and value of the event.
CModWheelIn is called by CVoiceLFO to get the
current values for the mod wheel to set the amount
of LFO modulation for pitch and volume.
*/
class CModWheelIn : public CMIDIRecorder
{
public:
DWORD GetModulation(STIME stTime); // Gets the current Mod Wheel value.
};
/* CPitchBendIn handles one channel of Pitch Bend
input. Like the Mod Wheel module, it inherits
its abilities from the CMIDIRecorder class.
It has one additional routine, GetPitch(),
which returns the current pitch bend value.
*/
class CPitchBendIn : public CMIDIRecorder
{
public:
CPitchBendIn();
PREL GetPitch(STIME stTime); // Gets the current pitch in pitch cents.
// current pitch bend range. Note that this is not timestamped!
PREL m_prRange;
};
/* CVolumeIn handles one channel of Volume
input. It inherits its abilities from
the CMIDIRecorder class.
It has one additional routine, GetVolume(),
which returns the volume in decibels at the
specified time.
*/
class CVolumeIn : public CMIDIRecorder
{
public:
CVolumeIn();
VREL GetVolume(STIME stTime); // Gets the current volume in db cents.
};
/* CExpressionIn handles one channel of Expression
input. It inherits its abilities from
the CMIDIRecorder class.
It has one additional routine, GetVolume(),
which returns the volume in decibels at the
specified time.
*/
class CExpressionIn : public CMIDIRecorder
{
public:
CExpressionIn();
VREL GetVolume(STIME stTime); // Gets the current volume in db cents.
};
/* CPanIn handles one channel of Volume
input. It inherits its abilities from
the CMIDIRecorder class.
It has one additional routine, GetPan(),
which returns the pan position (MIDI value)
at the specified time.
*/
class CPanIn : public CMIDIRecorder
{
public:
CPanIn();
long GetPan(STIME stTime); // Gets the current pan.
};
/* CProgramIn handles one channel of Program change
input. It inherits its abilities from
the CMIDIRecorder class.
Unlike the other controllers, it actually
records a series of bank select and program
change events, so it's job is a little
more complex. Three routines handle the
recording of the three different commands (bank 1,
bank 2, program change).
*/
/*class CProgramIn : public CMIDIRecorder
{
public:
CProgramIn();
DWORD GetProgram(STIME stTime); // Gets the current program change.
BOOL RecordBankH(BYTE bBank1);
BOOL RecordBankL(BYTE bBank2);
BOOL RecordProgram(STIME stTime, BYTE bProgram);
private:
BYTE m_bBankH;
BYTE m_bBankL;
};*/
/* CPressureIn handles one channel of Channel Pressure
input. As such, it is not embedded in the CVoice
class, rather it is in the Channel class.
CPressureIn's task is simple: keep track of MIDI
Channel Pressure events, each tagged with millisecond
time and value, and return the value for a specific
time request.
CPressureIn inherits almost all of its functionality
from the CMIDIRecorder Class.
CPressureIn receives MIDI Channel Pressure events through
the RecordMIDI() command, which stores the
time and value of the event.
CPressureIn is called by CVoiceLFO to get the
current values for the channel pressure to set the amount
of LFO modulation for pitch.
*/
class CPressureIn : public CMIDIRecorder
{
public:
DWORD GetPressure(STIME stTime); // Gets the current channel pressure value.
};
//>>>> comment
class CReverbIn : public CMIDIRecorder
{
public:
CReverbIn();
DWORD GetVolume(STIME stTime); // Gets the current reverb attenuation.
};
//>>>> comment
class CChorusIn : public CMIDIRecorder
{
public:
DWORD GetVolume(STIME stTime); // Gets the current chorus attenuation.
};
//>>>> comment
class CCutOffFreqIn : public CMIDIRecorder
{
public:
CCutOffFreqIn();
DWORD GetFrequency(STIME stTime); // Gets the current pan.
};
class CWaveEvent {
public:
CWaveEvent() :
m_stTime(0),
m_bPart(0),
m_dwVoiceId(0),
m_vrVolume(0),
m_prPitch(0),
m_pWaveArt(NULL)
{}
public:
STIME m_stTime;
BYTE m_bPart;
DWORD m_dwVoiceId;
VREL m_vrVolume;
PREL m_prPitch;
SAMPLE_TIME m_stVoiceStart;
SAMPLE_TIME m_stLoopStart;
SAMPLE_TIME m_stLoopEnd;
CWaveArt* m_pWaveArt;
};
class CWaveData : public CListItem
{
public:
CWaveData();
CWaveData * GetNext() {return (CWaveData *)CListItem::GetNext();};
STIME m_stTime; // Time this event was recorded.
CWaveEvent m_WaveEventData; // Data stored in event.
};
class CWaveDataList : public CList
{
public:
CWaveData *GetHead() {return (CWaveData *)CList::GetHead();};
CWaveData *RemoveHead() {return (CWaveData *)CList::RemoveHead();};
};
class CWaveIn
{
public:
CWaveIn();
~CWaveIn(); // Be sure to clear local list.
// BOOL FlushWave(STIME stTime); // Clear after time stamp.
BOOL ClearWave(STIME stTime); // Clear up to time stamp.
BOOL RemoveWave(DWORD dwID); // Remove wave with dwID.
BOOL RemoveWaveByStopTime(DWORD dwID, STIME stStopTime);
BOOL RecordWave(STIME stTime, CWaveEvent *pWaveData);
BOOL GetWave(STIME stTime, CWaveEvent *pWave);
private:
static DWORD m_sUsageCount; // Keeps track of how many instances so free list can be released.
public:
static CWaveDataList m_sFreeList; // Global free list of events.
protected:
CWaveDataList m_EventList; // This recorder's list.
STIME m_stCurrentTime; // Time for current value.
CWaveEvent m_lCurrentData; // Current value.
};
/* The CVoiceLFO class is used to track the behavior
of an LFO within a voice. The LFO is hard wired to
output both volume and pitch values, through separate
calls to GetVolume and GetPitch.
It also manages mixing Mod Wheel control of pitch and
volume LFO output. It tracks the scaling of Mod Wheel
for each of these in m_nMWVolumeScale and m_nMWPitchScale.
It calls the Mod Wheel module to get the current values
if the respective scalings are greater than 0.
All of the preset values for the LFO are carried in
the m_CSource field, which is a replica of the file
CSourceLFO structure. This is initialized with the
StartVoice call.
*/
class CVoiceLFO
{
public:
CVoiceLFO();
static void Init(); // Set up sine table.
STIME StartVoice(CSourceLFO *pSource,
STIME stStartTime,CModWheelIn * pModWheelIn, CPressureIn * pPressureIn);
VREL GetVolume(STIME stTime, STIME *pstTime); // Returns volume cents.
PREL GetPitch(STIME stTime, STIME *pstTime); // Returns pitch cents.
/* DirectX8 Methods */
void Enable(BOOL bEnable) {m_bEnable = bEnable;};
PREL GetCutoff(STIME stTime); // Return filter cutoff
private:
long GetLevel(STIME stTime, STIME *pstTime);
CSourceLFO m_Source; // All of the preset information.
STIME m_stStartTime; // Time the voice started playing.
CModWheelIn *m_pModWheelIn; // Pointer to Mod Wheel for this channel.
STIME m_stRepeatTime; // Repeat time for LFO.
static short m_snSineTable[256]; // Sine lookup table.
/* DirectX8 Memmebers */
CPressureIn *m_pPressureIn; // Pointer to Channel Pressure for this channel.
BOOL m_bEnable;
};
/* The CVoiceEG class is used to track the behavior of
an Envelope Generator within a voice. There are two
EG's, one for pitch and one for volume. However, they
behave identically.
All of the preset values for the EG are carried in
the m_Source field, which is a replica of the file
CSourceEG structure. This is initialized with the
StartVoice call.
*/
class CVoiceEG
{
public:
static void Init(); // Set up linear attack table.
CVoiceEG();
STIME StartVoice(CSourceEG *pSource, STIME stStartTime,
WORD nKey, WORD nVelocity, STIME stMinAttack);
void StopVoice(STIME stTime);
void QuickStopVoice(STIME stTime, DWORD dwSampleRate);
VREL GetVolume(STIME stTime, STIME *pstTime); // Returns volume cents.
PREL GetPitch(STIME stTime, STIME *pstTime); // Returns pitch cents.
BOOL InAttack(STIME stTime); // is voice still in attack?
BOOL InRelease(STIME stTime); // is voice in release?
/* DirectX8 Methods */
void Enable(BOOL bEnable) {m_bEnable = bEnable;};
PREL GetCutoff(STIME stTime); // Return filter cutoff
private:
long GetLevel(STIME stTime, STIME *pstTime, BOOL fVolume);
CSourceEG m_Source; // Preset values for envelope, copied from file.
STIME m_stStartTime; // Time note turned on
STIME m_stStopTime; // Time note turned off
static short m_snAttackTable[201];
/* DirectX8 Memmebers */
BOOL m_bEnable;
};
//>>>>>>>>>>> comment
class CVoiceFilter
{
public:
void StartVoice(CSourceFilter *pSource, CVoiceLFO *pLFO, CVoiceEG *pEG, WORD nKey, WORD nVelocity);
void GetCoeff(STIME stTime, PREL prFreqIn, COEFF &cfK, COEFF &cfB1, COEFF &cfB2);
BOOL IsFiltered();
public:
CSourceFilter m_Source;
CVoiceLFO *m_pLFO;
CVoiceEG *m_pEG;
CPitchBendIn *m_pPitchBend;
PREL m_prVelScale;
PREL m_prKeyScale;
static COEFF m_aK[FILTER_PARMS_DIM_Q][FILTER_PARMS_DIM_FC];
static COEFF m_aB1[FILTER_PARMS_DIM_Q][FILTER_PARMS_DIM_FC];
static COEFF m_aB2[FILTER_PARMS_DIM_Q][FILTER_PARMS_DIM_FC];
};
/* The CDigitalAudio class is used to track the playback
of a sample within a voice.
It manages the loop points, the pointer to the sample.
and the base pitch and base volume, which it initially sets
when called via StartVoice().
Pitch is stored in a fixed point format, where the leftmost
20 bits define the sample increment and the right 12 bits
define the factional increment within the sample. This
format is also used to track the position in the sample.
Mix is a critical routine. It is called by the CVoice to blend
the instrument into the data buffer. It is handed relative change
values for pitch and volume (semitone cents and decibel
cents.) These it converts into three linear values:
Left volume, Right volume, and Pitch.
It then compares these new values with the values that existed
for the previous slice and divides by the number of samples to
determine an incremental change at the sample rate.
Then, in the critical mix loop, these are added to the
volume and pitch indices to give a smooth linear slope to the
change in volume and pitch.
*/
#define MAX_SAMPLE 4095
#define MIN_SAMPLE (-4096)
#define MAXDB 0
#define MINDB -100
#define TEST_WRITE_SIZE 3000
#define TEST_SOURCE_SIZE 44100
class CSynth;
class CDigitalAudio
{
public:
CDigitalAudio();
~CDigitalAudio();
void ClearVoice();
STIME StartVoice(CSynth *pSynth,
CSourceSample *pSample,
PREL prBasePitch, long lKey);
STIME StartWave(CSynth *pSynth,
CWaveArt *pWaveArt,
PREL prBasePitch,
SAMPLE_TIME stVoiceStart,
SAMPLE_TIME stLoopStart,
SAMPLE_TIME stLoopEnd);
BOOL Mix(short **ppBuffers,
DWORD dwInterleaved,
DWORD dwBufferCount,
DWORD dwLength,
VREL vrMaxVolumeDelta,
VFRACT vrNewVolume[],
VFRACT vrLastVolume[],
PREL dwPitch,
DWORD dwIsFiltered, COEFF cfK, COEFF cfB1, COEFF cfB2);
inline void BreakLoop()
{ m_bOneShot = TRUE; }
static void Init(); // Set up lookup tables.
static PFRACT PRELToPFRACT(PREL prPitch); // Pitch cents to pitch.
static VFRACT VRELToVFRACT(VREL vrVolume); // dB to absolute.
SAMPLE_POSITION GetCurrentPos() {return m_ullSamplesSoFar;};
//
// Optimized Interleaved mixers
//
private:
DWORD Mix8(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaLVolume,
VFRACT vfDeltaRVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
DWORD Mix16(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaLVolume,
VFRACT vfDeltaRVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
DWORD MixMono8(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
DWORD MixMono16(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
//
// Optimized MMX Interleaved mixers
//
private:
DWORD _cdecl Mix8X(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaLVolume,
VFRACT vfDeltaRVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
DWORD _cdecl Mix16X(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaLVolume,
VFRACT vfDeltaRVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
DWORD MixMono16X(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
DWORD MixMono8X(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
//
// Optimize Multi Buffer versions of the mixer
//
private:
DWORD MixMulti8(short *ppBuffer[],
DWORD dwBufferCount,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaVolume[],
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
DWORD MixMulti8Filter(short *ppBuffer[],
DWORD dwBufferCount,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaVolume[],
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength,
COEFF cfdK,
COEFF cfdB1,
COEFF cfdB2);
DWORD MixMulti16(short *ppBuffer[],
DWORD dwBufferCount,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaVolume[],
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength);
DWORD MixMulti16Filter(short *ppBuffer[],
DWORD dwBufferCount,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaVolume[],
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength,
COEFF cfdK,
COEFF cfdB1,
COEFF cfdB2);
DWORD Mix8Filter(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaLVolume,
VFRACT vfDeltaRVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength,
COEFF cfdK,
COEFF cfdB1,
COEFF cfdB2);
DWORD Mix16Filter(short * pBuffer,
DWORD dwLength,
DWORD dwDeltaPeriod,
VFRACT vfDeltaLVolume,
VFRACT vfDeltaRVolume,
VFRACT vfLastVolume[],
PFRACT pfDeltaPitch,
PFRACT pfSampleLength,
PFRACT pfLoopLength,
COEFF cfdK,
COEFF cfdB1,
COEFF cfdB2);
private:
void BeforeBigSampleMix();
void AfterBigSampleMix();
private:
CSourceSample m_Source; // Preset values for sample.
CSynth * m_pSynth; // For access to sample rate, etc.
static PFRACT m_spfCents[201]; // Pitch increment lookup.
static PFRACT m_spfSemiTones[97]; // Four octaves up and down.
static VFRACT m_svfDbToVolume[(MAXDB - MINDB) * 10 + 1]; // dB conversion table.
static BOOL m_sfMMXEnabled;
private:
short * m_pnWave; // Private pointer to wave.
PFRACT m_pfBasePitch; // Overall pitch.
PFRACT m_pfLastPitch; // The last pitch value.
PREL m_prLastPitch; // Same for pitch, in PREL.
PFRACT m_pfLastSample; // The last sample position.
PFRACT m_pfLoopStart; // Start of loop.
PFRACT m_pfLoopEnd; // End of loop.
PFRACT m_pfSampleLength; // Length of sample buffer.
BOOL m_fElGrande; // Indicates larger than 1m wave.
ULONGLONG m_ullLastSample; // Used to track > 1m wave.
ULONGLONG m_ullLoopStart; // Used to track > 1m wave.
ULONGLONG m_ullLoopEnd; // Used to track > 1m wave.
ULONGLONG m_ullSampleLength; // Used to track > 1m wave.
DWORD m_dwAddressUpper; // Temp storage for upper bits of address.
BOOL m_bOneShot; // Is the source region we're mixing a one-shot?
/* DLS2 filter members */
COEFF m_cfLastK; // Held filter coefficients
COEFF m_cfLastB1;
COEFF m_cfLastB2;
long m_lPrevSample; // Last two samples, post-filter
long m_lPrevPrevSample;
/* DirectX8 members */
CWaveBuffer* m_pCurrentBuffer;
CWaveArt* m_pWaveArt;
ULONGLONG m_ullSamplesSoFar;
};
/* The CVoice class pulls together everything needed to perform
one voice. It has the envelopes, lfo, and sample embedded
within it.
StartVoice() initializes a voice structure for playback. The
CSourceRegion structure carries the region and sample as well
as a pointer to the articulation, which is used to set up
the various articulation modules. It also carries pointers to
all the MIDI modulation inputs and the values for the note key
and channel which are used by the parent ControlLogic object
to match incoming note off events with the right voice.
*/
class CVoice : public CListItem
{
public:
CVoice();
CVoice * GetNext() {return (CVoice *)CListItem::GetNext();};
BOOL StartVoice(CSynth *pControl,
CSourceRegion *pRegion, STIME stStartTime,
CModWheelIn * pModWheelIn,
CPitchBendIn * pPitchBendIn,
CExpressionIn * pExpressionIn,
CVolumeIn * pVolumeIn,
CPanIn * pPanIn,
CPressureIn * pPressureIn,
CReverbIn * pReverbSend,
CChorusIn * pChorusSend,
CCutOffFreqIn * PCCutOffFreqIn,
CBusIds * pBusIds,
WORD nKey,WORD nVelocity,
VREL vrVolume, // Added for GS
PREL prPitch); // Added for GS
BOOL StartWave(CSynth *pSynth,
CWaveArt *pWaveArt,
DWORD dwVoiceId,
STIME stStartTime,
CPitchBendIn * pPitchBendIn,
CExpressionIn * pExpressionIn,
CVolumeIn * pVolumeIn,
CPanIn * pPanIn,
CReverbIn * pReverbSend,
CChorusIn * pChorusSend,
CCutOffFreqIn * pCCutOffFreqIn,
CBusIds * pBusIds,
VREL vrVolume,
PREL prPitch,
SAMPLE_TIME stVoiceStart,
SAMPLE_TIME stLoopStart,
SAMPLE_TIME stLoopEnd
);
static void Init(); // Initialize LFO, Digital Audio.
void StopVoice(STIME stTime);// Called on note off event.
void QuickStopVoice(STIME stTime);// Called to get quick release.
void SpeedRelease(); // Force an already off envelope to release quickly.
void ClearVoice(); // Release use of sample.
void GetNewPitch(STIME stTime, PREL& prPitch);// Return current pitch value
void GetNewVolume(STIME stTime, VREL& vrVolume, VREL& vrVolumeL, VREL& vrVolumeR, VREL& vrVolumeReverb, VREL& vrVolumeChorus);
void GetNewCoeff(STIME stTime, PREL& prCutOff, COEFF& cfK, COEFF& cfB1, COEFF& cfB2);
DWORD Mix(short **ppvBuffer, DWORD dwBufferFlags, DWORD dwLength, STIME stStart,STIME stEnd);
SAMPLE_POSITION GetCurrentPos();
private:
static VREL m_svrPanToVREL[128];// Converts Pan to db.
CVoiceLFO m_LFO; // LFO.
CVoiceEG m_PitchEG; // Pitch Envelope.
CVoiceEG m_VolumeEG; // Volume Envelope.
CDigitalAudio m_DigitalAudio; // The Digital Audio Engine structure.
CPitchBendIn * m_pPitchBendIn; // Pitch bend source.
CExpressionIn * m_pExpressionIn;// Expression source.
CVolumeIn * m_pVolumeIn; // Volume source, if allowed to vary
CPanIn * m_pPanIn; // Pan source, if allowed to vary
CReverbIn * m_pReverbSend; //>>>> comment
CChorusIn * m_pChorusSend; //>>>> comment
CCutOffFreqIn * m_CCutOffFreqIn;//>>>> comment
CSynth * m_pSynth; // To access sample rate, etc.
STIME m_stMixTime; // Next time we need a mix.
STIME m_stLastMix; // Last sample position mixed.
long m_lDefaultPan; // Default pan
PREL m_prLastCutOff; // Last cut off value.
public:
DWORD m_dwNoteID; // Unique id to keep all voices that represent layers of one note connected.
STIME m_stStartTime; // Time the sound starts.
STIME m_stStopTime; // Time the sound stops.
STIME m_stWaveStopTime; // Stop time set by direct call to stop the wave voice.
BOOL m_fInUse; // This is currently in use.
BOOL m_fNoteOn; // Note is considered on.
BOOL m_fTag; // Used to track note stealing.
VREL m_vrVolume; // Volume, used for voice stealing...
BOOL m_fSustainOn; // Sus pedal kept note on after off event.
WORD m_nPart; // Part that is playing this (channel).
WORD m_nKey; // Note played.
BOOL m_fAllowOverlap; // Allow overlapped note.
DWORD m_dwGroup; // Group this voice is playing now
DWORD m_dwProgram; // Bank and Patch choice.
DWORD m_dwPriority; // Priority.
CControlLogic * m_pControl; // Which control group is playing voice.
DWORD m_dwVoiceId; // Used to identify a playing wave
CSourceRegion *m_pRegion; // Used to determin which region a voice is playing out of
CVoiceFilter m_Filter; // Low pass filter
CVoiceLFO m_LFO2; // Vibrato
CBusIds m_BusIds; // Bus Id's to playe on this voice
DWORD m_dwLoopType; // Loop type
BOOL m_fIgnorePan; // If we're part of a multichannel wave/sample
VREL m_vrLastVolume[MAX_DAUD_CHAN];
VREL m_vrBaseVolume[MAX_DAUD_CHAN];
VFRACT m_vfLastVolume[MAX_DAUD_CHAN];
};
class CVoiceList : public CList
{
public:
CVoice * GetHead() {return (CVoice *)CList::GetHead();};
CVoice * RemoveHead() {return (CVoice *)CList::RemoveHead();};
CVoice * GetItem(LONG lIndex) {return (CVoice *) CList::GetItem(lIndex);};
};
/* Finally, ControlLogic is the big Kahuna that manages
the whole system. It parses incoming MIDI events
by channel and event type. And, it manages the mixing
of voices into the buffer.
MIDI Input:
The most important events are the note on and
off events. When a note on event comes in,
ControlLogic searches for an available voice.
ControlLogic matches the channel and finds the
instrument on that channel. It then call the instrument's
ScanForRegion() command which finds the region
that matches the note. At this point, it can copy
the region and associated articulation into the
voice, using the StartVoice command.
When it receives the sustain pedal command,
it artificially sets all notes on the channel on
until a sustain off arrives. To keep track of notes
that have been shut off while the sustain was on
it uses an array of 128 shorts, with each bit position
representing a channel. When the sustain releases,
it scans through the array and creates a note off for
each bit that was set.
It also receives program change events to set the
instrument choice for the channel. When such
a command comes in, it consults the softsynth.ini file
and loads an instrument with the file name described
in the ini file.
Additional continuous controller events are managed
by the CModWheelIn, CPitchBendIn, etc., MIDI input recording
modules.
Mixing:
Control Logic is also called to mix the instruments into
a buffer at regular intervals. The buffer is provided by the
calling sound driver (initially, AudioMan.)
Each voice is called to mix its sample into the buffer.
*/
typedef struct PerfStats
{
DWORD dwTotalTime;
DWORD dwTotalSamples;
DWORD dwNotesLost;
DWORD dwVoices;
DWORD dwCPU;
DWORD dwMaxAmplitude;
} PerfStats;
#define MIX_BUFFER_LEN 500 // Set the sample buffer size to 500 mils
#define MAX_NUM_VOICES 32
#define NUM_EXTRA_VOICES 8 // Extra voices for when we overload.
#define NUM_DEFAULT_BUSES 4
class CControlLogic
{
public:
CControlLogic();
~CControlLogic();
HRESULT Init(CInstManager *pInstruments, CSynth *pSynth);
void ClearAll();
void Flush(STIME stTime); // Clears all events after time.
BOOL RecordMIDI(STIME stTime,BYTE bStatus, BYTE bData1, BYTE bData2);
HRESULT RecordSysEx(DWORD dwSysExLength,BYTE *pSysExData, STIME stTime);
CSynth * m_pSynth;
void QueueNotes(STIME stStartTime, STIME stEndTime);
void ClearMIDI(STIME stEndTime);
void SetGainAdjust(VREL vrGainAdjust);
HRESULT SetChannelPriority(DWORD dwChannel,DWORD dwPriority);
HRESULT GetChannelPriority(DWORD dwChannel,LPDWORD pdwPriority);
/* DirectX8 methods */
void QueueWaves(STIME stEndTime);
void FlushWaveByStopTime(DWORD dwID, STIME stStopTime);
BOOL RecordWaveEvent(STIME stTime, BYTE bChannel, DWORD dwVoiceId, VREL prVolume, PREL prPitch, SAMPLE_TIME stVoiceStart, SAMPLE_TIME stLoopStart, SAMPLE_TIME stLoopEnd, CWaveArt* pWaveArt);
HRESULT AssignChannelToBuses(DWORD dwChannel, LPDWORD pdwBusIds, DWORD dwBusCount);
private:
void GMReset();
CInstManager * m_pInstruments;
CNoteIn m_Notes; // All Note ons and offs.
CModWheelIn m_ModWheel[16]; // Sixteen channels of Mod Wheel.
CPitchBendIn m_PitchBend[16]; // Sixteen channels of Pitch Bend.
CVolumeIn m_Volume[16]; // Sixteen channels of Volume.
CExpressionIn m_Expression[16]; // Sixteen channels of Expression.
CPanIn m_Pan[16]; // Sixteen channels of Pan.
CReverbIn m_ReverbSends[16]; //>>>> comment
CChorusIn m_ChorusSends[16]; //>>>> comment
CCutOffFreqIn m_CutOffFreqCC[16]; //>>>> comment
BOOL m_fSustain[16]; // Sustain on / off.
short m_nCurrentRPN[16]; // RPN number.
BYTE m_bBankH[16]; // Bank selects for instrument.
BYTE m_bBankL[16];
DWORD m_dwProgram[16]; // Instrument choice.
BOOL m_fEmpty; // Indicates empty lists, no need to flush.
VREL m_vrGainAdjust; // Final stage gain adjust
DWORD m_dwPriority[16]; // Priorities for each channel.
BOOL m_fXGActive; // Is XG Active?
BOOL m_fGSActive; // Is GS enabled?
WORD m_nData[16]; // Used to track RPN reading.
VREL m_vrMasterVolume; // Master Volume.
PREL m_prFineTune[16]; // Fine tune for each channel.
PREL m_prScaleTune[16][12]; // Alternate scale for each channel.
PREL m_prCoarseTune[16]; // Coarse tune.
BYTE m_bPartToChannel[16]; // Channel to Part converter.
BYTE m_bDrums[16]; // Melodic or which drum?
BOOL m_fMono[16]; // Mono mode?
public:
// This is static to protect the CMIDIRecorder free list, which is also static.
//
static CRITICAL_SECTION s_CriticalSection; // Critical section to manage access.
static BOOL s_fCSInitialized;
static BOOL InitCriticalSection();
static void KillCriticalSection();
/* DirectX8 members */
private:
CWaveIn m_Waves; // All waves scheduled to be played
CPressureIn m_Pressure[16]; // Sixteen channels of Channel Pressure.
CBusIds m_BusIds[16]; // Bus Id's for each channel
};
#endif // __SYNTH_H__