windows-nt/Source/XPSP1/NT/multimedia/directx/dxg/ref8/common/rdsurf.cpp
2020-09-26 16:20:57 +08:00

1136 lines
34 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) Microsoft Corporation, 1998.
//
// texmap.cpp
//
// Direct3D Reference Rasterizer - Texture Map Access Methods
//
///////////////////////////////////////////////////////////////////////////////
#include "pch.cpp"
#pragma hdrstop
//----------------------------------------------------------------------------
//
// FindOutSurfFormat
//
// Converts a DDPIXELFORMAT to RDSurfaceFormat.
//
//----------------------------------------------------------------------------
HRESULT FASTCALL
FindOutSurfFormat(LPDDPIXELFORMAT pDdPixFmt,
RDSurfaceFormat* pFmt,
BOOL* pbIsDepth)
{
if( pbIsDepth ) *pbIsDepth = FALSE;
if (pDdPixFmt->dwFourCC == D3DFMT_Q8W8V8U8 )
{
*pFmt = RD_SF_U8V8W8Q8;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_W11V11U10 )
{
*pFmt = RD_SF_U10V11W11;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_V16U16 )
{
*pFmt = RD_SF_U16V16;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_R8G8B8 )
{
*pFmt = RD_SF_B8G8R8;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_A8 )
{
*pFmt = RD_SF_A8;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_A8P8 )
{
*pFmt = RD_SF_P8A8;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_X4R4G4B4 )
{
*pFmt = RD_SF_B4G4R4X4;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_A2B10G10R10)
{
*pFmt = RD_SF_R10G10B10A2;
}
#if 0
else if (pDdPixFmt->dwFourCC == D3DFMT_A8B8G8R8)
{
*pFmt = RD_SF_R8G8B8A8;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_X8B8G8R8)
{
*pFmt = RD_SF_R8G8B8X8;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_W10V11U11)
{
*pFmt = RD_SF_U11V11W10;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_A8X8V8U8)
{
*pFmt = RD_SF_U8V8X8A8;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_L8X8V8U8)
{
*pFmt = RD_SF_U8V8X8L8;
}
#endif
else if (pDdPixFmt->dwFourCC == D3DFMT_G16R16)
{
*pFmt = RD_SF_R16G16;
}
else if (pDdPixFmt->dwFourCC == D3DFMT_A2W10V10U10)
{
*pFmt = RD_SF_U10V10W10A2;
}
else if (pDdPixFmt->dwFourCC == MAKEFOURCC('U', 'Y', 'V', 'Y'))
{
*pFmt = RD_SF_UYVY;
}
else if (pDdPixFmt->dwFourCC == MAKEFOURCC('Y', 'U', 'Y', '2'))
{
*pFmt = RD_SF_YUY2;
}
else if (pDdPixFmt->dwFourCC == MAKEFOURCC('D', 'X', 'T', '1'))
{
*pFmt = RD_SF_DXT1;
}
else if (pDdPixFmt->dwFourCC == MAKEFOURCC('D', 'X', 'T', '2'))
{
*pFmt = RD_SF_DXT2;
}
else if (pDdPixFmt->dwFourCC == MAKEFOURCC('D', 'X', 'T', '3'))
{
*pFmt = RD_SF_DXT3;
}
else if (pDdPixFmt->dwFourCC == MAKEFOURCC('D', 'X', 'T', '4'))
{
*pFmt = RD_SF_DXT4;
}
else if (pDdPixFmt->dwFourCC == MAKEFOURCC('D', 'X', 'T', '5'))
{
*pFmt = RD_SF_DXT5;
}
else if (pDdPixFmt->dwFourCC == 0xFF000004)
{
// This is an example of a IHV-specific format
// The HIWORD must be the PCI-ID of the IHV
// and the third byte must be zero.
// In this case, we're using a sample PCI-ID of
// FF00, and we're denoting the 4th format
// by that PCI-ID
*pFmt = RD_SF_Z32S0;
}
else if (pDdPixFmt->dwFlags & DDPF_ZBUFFER)
{
if( pbIsDepth ) *pbIsDepth = TRUE;
switch(pDdPixFmt->dwZBitMask)
{
default:
case 0x0000FFFF: *pFmt = RD_SF_Z16S0; break;
case 0xFFFFFF00:
switch(pDdPixFmt->dwStencilBitMask)
{
default:
case 0x00000000: *pFmt = RD_SF_Z24X8; break;
case 0x000000FF: *pFmt = RD_SF_Z24S8; break;
case 0x0000000F: *pFmt = RD_SF_Z24X4S4; break;
}
break;
case 0x00FFFFFF:
switch(pDdPixFmt->dwStencilBitMask)
{
default:
case 0x00000000: *pFmt = RD_SF_X8Z24; break;
case 0xFF000000: *pFmt = RD_SF_S8Z24; break;
case 0x0F000000: *pFmt = RD_SF_X4S4Z24; break;
}
break;
case 0x0000FFFE: *pFmt = RD_SF_Z15S1; break;
case 0x00007FFF: *pFmt = RD_SF_S1Z15; break;
case 0xFFFFFFFF: *pFmt = RD_SF_Z32S0; break;
}
}
else if (pDdPixFmt->dwFlags & DDPF_BUMPDUDV)
{
UINT uFmt = pDdPixFmt->dwBumpDvBitMask;
switch (uFmt)
{
case 0x0000ff00:
switch (pDdPixFmt->dwRGBBitCount)
{
case 32:
*pFmt = RD_SF_U8V8L8X8;
break;
case 16:
*pFmt = RD_SF_U8V8;
break;
}
break;
case 0x000003e0:
*pFmt = RD_SF_U5V5L6;
break;
}
}
else if (pDdPixFmt->dwFlags & DDPF_PALETTEINDEXED8)
{
if (pDdPixFmt->dwFlags & DDPF_ALPHAPIXELS)
{
*pFmt = RD_SF_P8A8;
}
else
{
*pFmt = RD_SF_PALETTE8;
}
}
else if (pDdPixFmt->dwFlags & DDPF_PALETTEINDEXED4)
{
*pFmt = RD_SF_PALETTE4;
}
else if (pDdPixFmt->dwFlags & DDPF_ALPHA)
{
if (pDdPixFmt->dwAlphaBitDepth == 8)
{
*pFmt = RD_SF_A8;
}
else
{
*pFmt = RD_SF_NULL;
}
}
else
{
UINT uFmt = pDdPixFmt->dwGBitMask | pDdPixFmt->dwRBitMask;
if (pDdPixFmt->dwFlags & DDPF_ALPHAPIXELS)
{
uFmt |= pDdPixFmt->dwRGBAlphaBitMask;
}
switch (uFmt)
{
case 0x00ffff00:
switch (pDdPixFmt->dwRGBBitCount)
{
case 32:
*pFmt = RD_SF_B8G8R8X8;
break;
case 24:
*pFmt = RD_SF_B8G8R8;
break;
}
break;
case 0xffffff00:
*pFmt = RD_SF_B8G8R8A8;
break;
case 0xffe0:
if (pDdPixFmt->dwFlags & DDPF_ALPHAPIXELS)
{
*pFmt = RD_SF_B5G5R5A1;
}
else
{
*pFmt = RD_SF_B5G6R5;
}
break;
case 0x07fe0:
*pFmt = RD_SF_B5G5R5X1;
break;
case 0xff0:
*pFmt = RD_SF_B4G4R4X4;
break;
case 0xfff0:
*pFmt = RD_SF_B4G4R4A4;
break;
case 0xff:
if (pDdPixFmt->dwFlags & DDPF_ALPHAPIXELS)
{
*pFmt = RD_SF_L4A4;
}
else
{
*pFmt = RD_SF_L8;
}
break;
case 0xffff:
*pFmt = RD_SF_L8A8;
break;
case 0xfc:
*pFmt = RD_SF_B2G3R3;
break;
case 0xfffc:
*pFmt = RD_SF_B2G3R3A8;
break;
default:
*pFmt = RD_SF_NULL;
break;
}
}
return D3D_OK;
}
//----------------------------------------------------------------------------
//
// ValidMipmapSize
//
// Computes size of next smallest mipmap level, clamping at 1
//
//----------------------------------------------------------------------------
BOOL FASTCALL
ValidMipmapSize(INT16 iPreSize, INT16 iSize)
{
if (iPreSize == 1)
{
if (iSize == 1)
{
return TRUE;
}
else
{
return FALSE;
}
}
else
{
return ((iPreSize >> 1) == iSize);
}
}
//////////////////////////////////////////////////////////////////////////////
//
// RDPalette
//
//////////////////////////////////////////////////////////////////////////////
const DWORD RDPalette::RDPAL_ALPHAINPALETTE = (1 << 0);
const DWORD RDPalette::m_dwNumEntries = 256;
HRESULT
RDPalette::Update( WORD StartIndex, WORD wNumEntries, PALETTEENTRY* pEntries )
{
_ASSERT( StartIndex < m_dwNumEntries, "Bad StartIndex\n" );
_ASSERT( StartIndex+wNumEntries <= m_dwNumEntries, "Too many entries\n" );
for( WORD i = 0; i < wNumEntries; i++ )
{
m_Entries[StartIndex+i] = D3DCOLOR_ARGB( pEntries[i].peFlags,
pEntries[i].peRed,
pEntries[i].peGreen,
pEntries[i].peBlue );
}
return S_OK;
}
//-----------------------------------------------------------------------------
//
// Constructor/Destructor
//
//-----------------------------------------------------------------------------
RDSurface2D::RDSurface2D( void )
{
m_pRefDev = NULL;
m_uFlags = 0;
m_iWidth = 0;
m_iHeight = 0;
m_iDepth = 0;
m_cLOD = 0;
m_SurfFormat = RD_SF_NULL;
m_dwColorKey = 0;
m_dwEmptyFaceColor = 0;
m_pPalette = 0;
m_pPalObj = NULL;
m_cLODDDS = 0;
m_hTex = 0;
m_bHasAlpha = 0;
memset(m_pBits, 0, sizeof(m_pBits));
memset(m_iPitch, 0, sizeof(m_iPitch));
memset(m_iSlicePitch, 0, sizeof(m_iSlicePitch));
memset(m_pDDSLcl, 0, sizeof(m_pDDSLcl));
m_cDimension = 0;
memset(m_fTexels, 0, sizeof(m_fTexels));
memset(m_cTexels, 0, sizeof(m_cTexels));
}
//-----------------------------------------------------------------------------
RDSurface2D::~RDSurface2D( void )
{
}
DWORD
RDSurface2D::ComputePitch( LPDDRAWI_DDRAWSURFACE_LCL pLcl,
RDSurfaceFormat SurfFormat,
DWORD width, DWORD height ) const
{
if ((SurfFormat == RD_SF_DXT1) ||
(SurfFormat == RD_SF_DXT2) ||
(SurfFormat == RD_SF_DXT3) ||
(SurfFormat == RD_SF_DXT4) ||
(SurfFormat == RD_SF_DXT5))
{
// Note, here is the assumption that:
// 1) width and height are reported correctly by the runtime.
// 2) The allocation of the memory is contiguous (as done by hel)
return (((width+3)>>2) *
g_DXTBlkSize[(int)SurfFormat - (int)RD_SF_DXT1]);
}
#if 0
else if( (SurfFormat == RD_SF_YUY2) ||
(SurfFormat == RD_SF_UYVY) )
{
// Same assumptions as for DXTn.
return (DDSurf_Pitch(pLcl)/height);
}
#endif
else
{
return DDSurf_Pitch(pLcl);
}
}
DWORD
RDSurface2D::ComputePitch( LPDDRAWI_DDRAWSURFACE_LCL pLcl ) const
{
return ComputePitch( pLcl, m_SurfFormat, m_iWidth, m_iHeight );
}
//-----------------------------------------------------------------------------
//
// RDSurface2D::Initialize()
//
//-----------------------------------------------------------------------------
HRESULT
RDSurface2D::Initialize( LPDDRAWI_DDRAWSURFACE_LCL pLcl )
{
HRESULT hr = D3D_OK;
RDSurfaceFormat SurfFormat;
DDSCAPS2 ddscaps;
LPDDRAWI_DDRAWSURFACE_GBL pGbl = pLcl->lpGbl;
LPDDRAWI_DDRAWSURFACE_MORE pMore = pLcl->lpSurfMore;
memset(&ddscaps, 0, sizeof(ddscaps));
UINT wMultiSampleCount = 0xfL & pMore->ddsCapsEx.dwCaps3;
//Older than DX8 runtimes place a zero in this field
if (wMultiSampleCount == 0)
wMultiSampleCount = 1;
if( pLcl->ddsCaps.dwCaps & DDSCAPS_TEXTURE )
m_SurfType |= RR_ST_TEXTURE;
if( pLcl->ddsCaps.dwCaps & DDSCAPS_ZBUFFER )
{
m_iSamples = wMultiSampleCount;
m_SurfType |= RR_ST_RENDERTARGETDEPTH;
}
if( pLcl->ddsCaps.dwCaps & DDSCAPS_3DDEVICE )
{
m_iSamples = wMultiSampleCount;
m_SurfType |= RR_ST_RENDERTARGETCOLOR;
}
m_iWidth = DDSurf_Width(pLcl);
m_iHeight = DDSurf_Height(pLcl);
HR_RET(FindOutSurfFormat(&(DDSurf_PixFmt(pLcl)), &SurfFormat, NULL));
m_SurfFormat = SurfFormat;
if (pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_VOLUME)
{
// low word of ddsCaps.ddsCapsEx.dwCaps4 has depth
// (volume texture only).
m_iDepth = LOWORD(pMore->ddsCapsEx.dwCaps4);
}
else
{
m_iDepth = 0;
}
m_cTexels[0][0] = m_iWidth;
m_cTexels[0][1] = m_iHeight;
m_cTexels[0][2] = m_iDepth;
m_fTexels[0][0] = (float)m_cTexels[0][0];
m_fTexels[0][1] = (float)m_cTexels[0][1];
m_fTexels[0][2] = (float)m_cTexels[0][2];
m_cLOD = 0;
if( wMultiSampleCount > 1 )
{
RDCREATESURFPRIVATE* pPriv = (RDCREATESURFPRIVATE*)pGbl->dwReserved1;
m_pBits[0] = pPriv->pMultiSampleBits;
m_iPitch[0] = pPriv->dwMultiSamplePitch;
}
else
{
m_pBits[0] = (BYTE *)SURFACE_MEMORY(pLcl);
m_iPitch[0] = ComputePitch( pLcl );
}
if (pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_VOLUME)
{
// set slice pitch (volume texture only).
m_iSlicePitch[0] = pGbl->lSlicePitch;
}
else
{
m_iSlicePitch[0] = 0;
}
// If the surface is not a texture early out.
if( (pLcl->ddsCaps.dwCaps & DDSCAPS_TEXTURE) == 0 )
{
SetInitialized();
return S_OK;
}
// Set the transparent bit and the transparent color with pDDS[0]
if ((pLcl->dwFlags & DDRAWISURF_HASCKEYSRCBLT) != 0)
{
m_uFlags |= RR_TEXTURE_HAS_CK;
m_dwColorKey = pLcl->ddckCKSrcBlt.dwColorSpaceLowValue;
}
else
{
m_uFlags &= ~RR_TEXTURE_HAS_CK;
}
// set the empty face color with pDDS[0]
// note that ddckCKDestOverlay is unioned with dwEmptyFaceColor,
// but not in the internal structure
m_dwEmptyFaceColor = pLcl->ddckCKDestOverlay.dwColorSpaceLowValue;
if (pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_VOLUME)
{
m_uFlags |= RR_TEXTURE_VOLUME;
m_cDimension = 3;
}
else
{
m_cDimension = 2;
}
// Compute sizes and pitches
// We need to gather info on all surfaces under the top-level
// mipmap face (This test is DX7+ runtime dependent)
if ((0 == (pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_MIPMAPSUBLEVEL)) &&
(pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_CUBEMAP_POSITIVEX) )
{
m_uFlags |= RR_TEXTURE_CUBEMAP;
LPDDRAWI_DDRAWSURFACE_LCL pDDSNextLcl;
ddscaps.dwCaps = DDSCAPS_TEXTURE;
m_pDDSLcl[0] = pLcl;
m_pBits[0] = (BYTE *)SURFACE_MEMORY(m_pDDSLcl[0]);
m_iPitch[0] = ComputePitch( m_pDDSLcl[0] );
m_iSlicePitch[0] = 0;
// get rest of top level surfaces, in order
for (INT i = 1; i < 6; i++)
{
switch(i)
{
case 1: ddscaps.dwCaps2 = DDSCAPS2_CUBEMAP_NEGATIVEX; break;
case 2: ddscaps.dwCaps2 = DDSCAPS2_CUBEMAP_POSITIVEY; break;
case 3: ddscaps.dwCaps2 = DDSCAPS2_CUBEMAP_NEGATIVEY; break;
case 4: ddscaps.dwCaps2 = DDSCAPS2_CUBEMAP_POSITIVEZ; break;
case 5: ddscaps.dwCaps2 = DDSCAPS2_CUBEMAP_NEGATIVEZ; break;
}
ddscaps.dwCaps2 |= DDSCAPS2_CUBEMAP;
pDDSNextLcl = NULL;
hr = DDGetAttachedSurfaceLcl( pLcl, &ddscaps, &pDDSNextLcl);
if ((hr != D3D_OK) && (hr != DDERR_NOTFOUND))
{
return hr;
}
if (hr == DDERR_NOTFOUND)
{
m_pDDSLcl[i] = NULL;
return hr;
}
else
{
m_pDDSLcl[i] = pDDSNextLcl;
}
m_pBits[i] = (BYTE *)SURFACE_MEMORY(m_pDDSLcl[i]);
m_iPitch[i] = ComputePitch( m_pDDSLcl[i] );
m_iSlicePitch[i] = 0;
m_cTexels[i][0] = DDSurf_Width(m_pDDSLcl[i]);
m_cTexels[i][1] = DDSurf_Height(m_pDDSLcl[i]);
m_fTexels[i][0] = (float)m_cTexels[i][0];
m_fTexels[i][1] = (float)m_cTexels[i][1];
}
for (i = 0; i < 6; i++)
{
pLcl = m_pDDSLcl[i];
m_cLOD = 0;
if (pLcl)
{
// Check for mipmap if any.
LPDDRAWI_DDRAWSURFACE_LCL pTmpSLcl;
// iPreSizeU and iPreSizeV store the size(u and v) of the
// previous level mipmap. They are init'ed with the first
// texture size.
INT16 iPreSizeU = (INT16)m_iWidth;
INT16 iPreSizeV = (INT16)m_iHeight;
for (;;)
{
ddscaps.dwCaps = DDSCAPS_TEXTURE;
ddscaps.dwCaps2 = DDSCAPS2_MIPMAPSUBLEVEL;
pTmpSLcl = NULL;
hr = DDGetAttachedSurfaceLcl( pLcl, &ddscaps, &pTmpSLcl);
if (hr != D3D_OK && hr != DDERR_NOTFOUND)
{
return hr;
}
if (hr == DDERR_NOTFOUND)
{
break;
}
pLcl = pTmpSLcl;
pGbl = pLcl->lpGbl;
pMore = pLcl->lpSurfMore;
m_cLOD ++;
INT iMap = m_cLOD*6+i;
m_pDDSLcl[iMap] = pLcl;
m_pBits[iMap] = (BYTE *)SURFACE_MEMORY(pLcl);
m_iPitch[iMap] = ComputePitch( pLcl, m_SurfFormat,
m_iWidth>>m_cLOD,
m_iHeight>>m_cLOD );
if (pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_VOLUME)
{
// set slice pitch
// (volume texture only).
m_iSlicePitch[iMap] = pGbl->lSlicePitch;
}
else
{
m_iSlicePitch[iMap] = 0;
}
m_cTexels[iMap][0] = DDSurf_Width(pLcl);
m_cTexels[iMap][1] = DDSurf_Height(pLcl);
m_fTexels[iMap][0] = (float)m_cTexels[iMap][0];
m_fTexels[iMap][1] = (float)m_cTexels[iMap][1];
// Check for invalid mipmap texture size
if (!ValidMipmapSize(iPreSizeU,
(INT16)DDSurf_Width(pLcl)) ||
!ValidMipmapSize(iPreSizeV,
(INT16)DDSurf_Height(pLcl)))
{
return DDERR_INVALIDPARAMS;
}
iPreSizeU = (INT16)DDSurf_Width(pLcl);
iPreSizeV = (INT16)DDSurf_Height(pLcl);
}
}
}
}
else if ((0 == (pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_MIPMAPSUBLEVEL) &&
(0 == (pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_CUBEMAP))) )
{
//This surface is not a top-level cubemap.
//Maybe it's a top-level mipmap. Go find its sublevels.
m_pDDSLcl[0] = pLcl;
// Check for mipmap if any.
LPDDRAWI_DDRAWSURFACE_LCL pTmpSLcl;
// iPreSizeU and iPreSizeV store the size(u and v) of the previous
// level mipmap. They are init'ed with the first texture size.
INT16 iPreSizeU = (INT16)m_iWidth;
INT16 iPreSizeV = (INT16)m_iHeight;
for (;;)
{
ddscaps.dwCaps = DDSCAPS_TEXTURE;
ddscaps.dwCaps2 = DDSCAPS2_MIPMAPSUBLEVEL;
pTmpSLcl = NULL;
hr = DDGetAttachedSurfaceLcl( pLcl, &ddscaps, &pTmpSLcl);
if (hr != D3D_OK && hr != DDERR_NOTFOUND)
{
return hr;
}
if (hr == DDERR_NOTFOUND)
{
break;
}
pLcl = pTmpSLcl;
pGbl = pLcl->lpGbl;
pMore = pLcl->lpSurfMore;
m_cLOD ++;
m_pDDSLcl[m_cLOD] = pLcl;
// Save the pointer to the real bits and the pitch.
m_pBits[m_cLOD] = (BYTE *)SURFACE_MEMORY(pLcl);
m_iPitch[m_cLOD] = ComputePitch( pLcl, m_SurfFormat,
m_iWidth>>m_cLOD,
m_iHeight>>m_cLOD );
if (pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_VOLUME)
{
// set slice pitch (volume texture only).
m_iSlicePitch[m_cLOD] = pGbl->lSlicePitch;
}
else
{
m_iSlicePitch[m_cLOD] = 0;
}
// Check for invalid mipmap texture size
if (!ValidMipmapSize(iPreSizeU, (INT16)DDSurf_Width(pLcl)) ||
!ValidMipmapSize(iPreSizeV, (INT16)DDSurf_Height(pLcl)))
{
return DDERR_INVALIDPARAMS;
}
iPreSizeU = (INT16)DDSurf_Width(pLcl);
iPreSizeV = (INT16)DDSurf_Height(pLcl);
m_cTexels[m_cLOD][0] = DDSurf_Width(pLcl);
m_cTexels[m_cLOD][1] = DDSurf_Height(pLcl);
if (pMore->ddsCapsEx.dwCaps2 & DDSCAPS2_VOLUME)
m_cTexels[m_cLOD][2] = LOWORD(pMore->ddsCapsEx.dwCaps4);
else
m_cTexels[m_cLOD][2] = 0;
m_fTexels[m_cLOD][0] = (float)m_cTexels[m_cLOD][0];
m_fTexels[m_cLOD][1] = (float)m_cTexels[m_cLOD][1];
m_fTexels[m_cLOD][2] = (float)m_cTexels[m_cLOD][2];
}
}
// Copy the palette
// UpdatePalette();
m_cLODDDS = m_cLOD;
if ( !(Validate()) )
{
return DDERR_GENERIC;
}
SetInitialized();
return D3D_OK;
}
//----------------------------------------------------------------------------
//
// UpdatePalette
//
//----------------------------------------------------------------------------
void
RDSurface2D::UpdatePalette()
{
// Update palette
if (m_SurfFormat == RD_SF_PALETTE8 || m_SurfFormat == RD_SF_PALETTE4 || m_SurfFormat == RD_SF_P8A8 )
{
#if 0
// This code needs to be revived in case the DX6 DDI
// emulation is ever implemented in RefDev.
if (m_pDDSLcl[0]->lpDDPalette)
{
LPDDRAWI_DDRAWPALETTE_GBL pPal =
m_pDDSLcl[0]->lpDDPalette->lpLcl->lpGbl;
m_pPalette = (DWORD*)pPal->lpColorTable;
if (pPal->dwFlags & DDRAWIPAL_ALPHA)
{
m_uFlags |= RR_TEXTURE_ALPHAINPALETTE;
}
else
{
m_uFlags &= ~RR_TEXTURE_ALPHAINPALETTE;
}
}
#endif
_ASSERT( m_pPalObj, "No Palette set for this paletted texture\n" );
m_pPalette = m_pPalObj->GetEntries();
if( m_SurfFormat == RD_SF_PALETTE8 || m_SurfFormat == RD_SF_PALETTE4 )
{
if( m_pPalObj->HasAlpha() )
{
m_uFlags |= RR_TEXTURE_ALPHAINPALETTE;
}
else
{
m_uFlags &= ~RR_TEXTURE_ALPHAINPALETTE;
}
}
}
}
//-----------------------------------------------------------------------------
//
// Validate - Updates private data. Must be called anytime public data is
// altered.
//
//-----------------------------------------------------------------------------
BOOL
RDSurface2D::Validate( void )
{
// validate inputs
if ( m_cLOD >= RD_MAX_CLOD ) // too many LODs
{
DPFRR(1,"RDSurface2D::Validate failed. Too many LODs");
return FALSE;
}
// compute the 'has alpha' flag
m_bHasAlpha = FALSE;
switch ( m_SurfFormat )
{
case RD_SF_A8:
case RD_SF_P8A8:
case RD_SF_B8G8R8A8:
case RD_SF_B5G5R5A1:
case RD_SF_B4G4R4A4:
case RD_SF_L8A8:
case RD_SF_L4A4:
case RD_SF_B2G3R3A8:
case RD_SF_DXT1:
case RD_SF_DXT2:
case RD_SF_DXT3:
case RD_SF_DXT4:
case RD_SF_DXT5:
m_bHasAlpha = TRUE;
break;
case RD_SF_PALETTE4:
case RD_SF_PALETTE8:
m_bHasAlpha = ( m_uFlags & RR_TEXTURE_ALPHAINPALETTE ) ? TRUE : FALSE;
break;
}
return TRUE;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
inline UINT8 CLAMP_BYTE(double f)
{
if (f > 255.0) return 255;
if (f < 0.0) return 0;
return (BYTE) f;
}
//-----------------------------------------------------------------------------
// TexelFromBlock - decompress a color block and obtain texel color
//-----------------------------------------------------------------------------
UINT32 TexelFromBlock(RDSurfaceFormat surfType, char *pblockSrc,
int x, int y)
{
UINT32 index = ((y & 0x3)<<2) + (x & 0x3);
DDRGBA colorDst[DXT_BLOCK_PIXELS];
switch(surfType)
{
case RD_SF_DXT1:
DecodeBlockRGB((DXTBlockRGB *)pblockSrc, (DXT_COLOR *)colorDst);
break;
case RD_SF_DXT2:
case RD_SF_DXT3:
DecodeBlockAlpha4((DXTBlockAlpha4 *)pblockSrc,
(DXT_COLOR *)colorDst);
break;
case RD_SF_DXT4:
case RD_SF_DXT5:
DecodeBlockAlpha3((DXTBlockAlpha3 *)pblockSrc,
(DXT_COLOR *)colorDst);
break;
}
return RGBA_MAKE(colorDst[index].red,
colorDst[index].green,
colorDst[index].blue,
colorDst[index].alpha);
}
//-----------------------------------------------------------------------------
//
// ReadTexelColor - Reads texel from texture map at given LOD; converts to
// RDColor format, applying palette if necessary; also performs colorkey by
// returning match information
//
//-----------------------------------------------------------------------------
void
RDSurface2D::ReadColor(
INT32 iX, INT32 iY, INT32 iZ, INT32 iLOD,
RDColor& Texel, BOOL &bColorKeyKill )
{
if ( (iLOD > m_cLOD) && !(m_uFlags & RR_TEXTURE_CUBEMAP) )
{
return;
}
if ( NULL == m_pBits[iLOD] ) { return; }
char* pSurfaceBits =
PixelAddress( iX, iY, iZ, m_pBits[iLOD],
m_iPitch[iLOD], m_iSlicePitch[iLOD], m_SurfFormat );
switch ( m_SurfFormat )
{
default:
Texel.ConvertFrom( m_SurfFormat, pSurfaceBits );
break;
case RD_SF_P8A8:
{
UINT8 uIndex = *((UINT8*)pSurfaceBits);
Texel.ConvertFrom( RD_SF_B8G8R8A8, (char*)((UINT32*)m_pPalette + uIndex) );
Texel.A = *((UINT8*)pSurfaceBits+1)/255.f;
}
break;
case RD_SF_PALETTE8:
{
UINT8 uIndex = *((UINT8*)pSurfaceBits);
Texel.ConvertFrom( RD_SF_B8G8R8A8, (char*)((UINT32*)m_pPalette + uIndex) );
if ( !( m_uFlags & RR_TEXTURE_ALPHAINPALETTE ) ) Texel.A = 1.f;
}
break;
case RD_SF_PALETTE4:
{
UINT8 uIndex = *((INT8*)pSurfaceBits);
if ((iX & 1) == 0) { uIndex &= 0xf; }
else { uIndex >>= 4; }
Texel.ConvertFrom( RD_SF_B8G8R8A8, (char*)((UINT32*)m_pPalette + uIndex) );
if ( !( m_uFlags & RR_TEXTURE_ALPHAINPALETTE ) ) Texel.A = 1.f;
}
break;
case RD_SF_UYVY:
case RD_SF_YUY2:
// Converts a given YUV (8bits each) to RGB scaled between 0 and 255
// These are using the YCrCb to RGB algorithms given on page 30
// in "VIDEO DEMYSTIFIED" by Keith Jack
// ISBN#: 1-878707-09-4
// IN PC graphics, even though they call it YUV, it is really YCrCb
// formats that are used by most framegrabbers etc. Hence the pixel
// data we will obtain in these YUV surfaces will most likely be this
// and not the original YUV which is actually used in PAL broadcast
// only (NTSC uses YIQ). So really, U should be called Cb (Blue color
// difference) and V should be called Cr (Red color difference)
//
// These equations are meant to handle the following ranges
// (from the same book):
// Y (16 to 235), U and V (16 to 240, 128 = zero)
// -----------
// Y U V
// -----------
// White : 180 128 128
// Black : 16 128 128
// Red : 65 100 212
// Green : 112 72 58
// Blue : 35 212 114
// Yellow : 162 44 142
// Cyan : 131 156 44
// Magenta: 84 184 198
// -----------
// It is assumed that the gamma corrected RGB range is (0 - 255)
//
// UYVY: U0Y0 V0Y1 U2Y2 V2Y3 (low byte always has current Y)
// If iX is even, hight-byte has current U (Cb)
// If iX is odd, hight-byte has previous V (Cr)
//
// YUY2: Y0U0 Y1V0 Y2U2 Y3V2 (high byte always has current Y)
// (UYVY bytes flipped)
//
// In this algorithm, we use U and V values from two neighboring
// pixels
{
UINT8 Y, U, V;
UINT16 u16Curr = *((UINT16*)pSurfaceBits);
UINT16 u16ForU = 0; // Extract U from this
UINT16 u16ForV = 0; // Extract V from this
// By default we assume YUY2. Change it later if it is UYVY
int uvShift = 8;
int yShift = 0;
if (m_SurfFormat == RD_SF_UYVY)
{
uvShift = 0;
yShift = 8;
}
if ((iX & 1) == 0)
{
// For even numbered pixels:
// Current U is available.
// Current V is available in the next pixel.
u16ForU = u16Curr;
// Obtain V from the next pixel
u16ForV = *((UINT16*)PixelAddress( iX+1, iY, iZ,
m_pBits[iLOD],
m_iPitch[iLOD],
m_iSlicePitch[iLOD],
m_SurfFormat ));
U = (u16ForU >> uvShift) & 0xff;
V = (u16ForV >> uvShift) & 0xff;
}
else
{
UINT16 u16ForU1 = 0, u16ForU2 = 0;
UINT16 u16ForV1 = 0, u16ForV2 = 0;
// For odd numbered pixels. Neither current U nor V are
// available.
// Obtain U by interpolating U from i-1 and i+1 pixels.
_ASSERT( iX > 0, "iX is negative" );
u16ForU1 = *((UINT16*)PixelAddress( iX-1, iY, iZ,
m_pBits[iLOD],
m_iPitch[iLOD],
m_iSlicePitch[iLOD],
m_SurfFormat ));
if( (iX+1) < (m_iWidth >> iLOD) )
{
u16ForU2 = *((UINT16*)PixelAddress( iX+1, iY, iZ,
m_pBits[iLOD],
m_iPitch[iLOD],
m_iSlicePitch[iLOD],
m_SurfFormat ));
U = (((u16ForU1 >> uvShift) & 0xff) +
((u16ForU2 >> uvShift) & 0xff)) >> 1;
}
else
{
U = (u16ForU1 >> uvShift) & 0xff;
}
// Obtain V by interpolating V from i and i+2 pixels.
u16ForV1 = u16Curr;
if( (iX+2) < (m_iWidth >> iLOD) )
{
u16ForV2 = *((UINT16*)PixelAddress( iX+2, iY, iZ,
m_pBits[iLOD],
m_iPitch[iLOD],
m_iSlicePitch[iLOD],
m_SurfFormat ));
V = (((u16ForV1 >> uvShift) & 0xff) +
((u16ForV2 >> uvShift) & 0xff)) >> 1;
}
else
{
V = (u16ForV1 >> uvShift) & 0xff;
}
}
Y = (u16Curr >> yShift) & 0xff;
Texel = RGB_MAKE(
CLAMP_BYTE(1.164*(Y-16) + 1.596*(V-128)),
CLAMP_BYTE(1.164*(Y-16) - 0.813*(V-128) - 0.391*(U-128)),
CLAMP_BYTE(1.164*(Y-16) + 2.018*(U-128))
);
Texel.A = 1.f;
}
break;
// DXTn compressed formats:
// We have the address to the block, now extract the actual color
case RD_SF_DXT1:
case RD_SF_DXT2:
case RD_SF_DXT3:
case RD_SF_DXT4:
case RD_SF_DXT5:
Texel = TexelFromBlock(m_SurfFormat, pSurfaceBits, iX, iY);
break;
}
// colorkey
if ( m_pRefDev->ColorKeyEnabled() )
{
DWORD dwBits;
switch ( m_SurfFormat )
{
default:
case RD_SF_NULL:
return; // don't colorkey unknown or null surfaces
case RD_SF_PALETTE4:
{
UINT8 uIndex = *((INT8*)pSurfaceBits);
if ((iX & 1) == 0) { uIndex &= 0xf; }
else { uIndex >>= 4; }
dwBits = (DWORD)uIndex;
}
break;
case RD_SF_L8:
case RD_SF_A8:
case RD_SF_PALETTE8:
case RD_SF_B2G3R3:
case RD_SF_L4A4:
{
UINT8 uBits = *((UINT8*)pSurfaceBits);
dwBits = (DWORD)uBits;
}
break;
case RD_SF_B5G6R5:
case RD_SF_B5G5R5X1:
case RD_SF_B5G5R5A1:
case RD_SF_B4G4R4A4:
case RD_SF_B4G4R4X4:
case RD_SF_L8A8:
case RD_SF_P8A8:
case RD_SF_B2G3R3A8:
{
UINT16 uBits = *((UINT16*)pSurfaceBits);
dwBits = (DWORD)uBits;
}
break;
case RD_SF_B8G8R8:
{
UINT32 uBits = 0;
uBits |= ( *((UINT8*)pSurfaceBits+0) ) << 0;
uBits |= ( *((UINT8*)pSurfaceBits+1) ) << 8;
uBits |= ( *((UINT8*)pSurfaceBits+2) ) << 16;
dwBits = (DWORD)uBits;
}
break;
case RD_SF_B8G8R8A8:
case RD_SF_B8G8R8X8:
{
UINT32 uBits = *((UINT32*)pSurfaceBits);
dwBits = (DWORD)uBits;
}
break;
}
DWORD ColorKey = m_dwColorKey;
if ( dwBits == ColorKey )
{
if (m_pRefDev->GetRS()[D3DRENDERSTATE_COLORKEYENABLE])
{
bColorKeyKill = TRUE;
}
if (m_pRefDev->GetRS()[D3DRENDERSTATE_COLORKEYBLENDENABLE])
{
Texel.R = 0.F;
Texel.G = 0.F;
Texel.B = 0.F;
Texel.A = 0.F;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
// end