windows-nt/Source/XPSP1/NT/net/tcpip/driver/common/nt/mdlpool.c
2020-09-26 16:20:57 +08:00

906 lines
26 KiB
C

/*++
Copyright (c) 1999-2000 Microsoft Corporation
Module Name:
mdlpool.c
Abstract:
This file contains the implementation of an MDL buffer pool.
Author:
Shaun Cox (shaunco) 21-Oct-1999
--*/
#include "ntddk.h"
#include "mdlpool.h"
#define SHOW_DEBUG_OUTPUT 0
#define SCAVENGE_PERIOD_IN_SECONDS 30
#define MINIMUM_PAGE_LIFETIME_IN_SECONDS 20
#define USED_PAGES_SCAVENGE_THRESHOLD 64
#if defined (_WIN64)
#define MAX_CACHE_LINE_SIZE 128
#define BLOCK_TYPE SLIST_HEADER
#else
#define MAX_CACHE_LINE_SIZE 64
#define BLOCK_TYPE PVOID
#endif
// The following structures are used in the single allocation that
// a pool handle points to.
// PoolHandle ---> [POOL_HEADER + CPU_POOL_HEADER for cpu 0 +
// CPU_POOL_HEADER for cpu 1 + ...
// CPU_POOL_HEADER for cpu N]
//
// POOL_HEADER is the data common to all CPUs for a given pool.
//
typedef struct _POOL_HEADER
{
// cache-line -----
struct _POOL_HEADER_BASE
{
ULONG Tag;
USHORT BufferSize;
USHORT MdlsPerPage;
};
UCHAR Alignment[MAX_CACHE_LINE_SIZE
- (sizeof(struct _POOL_HEADER_BASE) % MAX_CACHE_LINE_SIZE)];
} POOL_HEADER, *PPOOL_HEADER;
C_ASSERT(sizeof(POOL_HEADER) % MAX_CACHE_LINE_SIZE == 0);
// CPU_POOL_HEADER is the data specific to a CPU for a given pool.
//
typedef struct _CPU_POOL_HEADER
{
// cache-line -----
struct _CPU_POOL_HEADER_BASE
{
// The doubly-linked list of pages that make up this processor's pool.
// These pages have one or more free MDLs available.
//
LIST_ENTRY PageList;
// The doubly-linked list of pages that are fully in use. This list
// is separate from the above list so that we do not spend time walking
// a very long list during MdpAllocate when many pages are fully used.
//
LIST_ENTRY UsedPageList;
// The next scheduled time (in units of KeQueryTickCount()) for
// scavenging this pool. The next scavenge will happen no earlier
// that this.
//
LARGE_INTEGER NextScavengeTick;
// Count of pages on the used page list.
// If this becomes greater than USED_PAGES_SCAVENGE_THRESHOLD
// and we know we missed a page move during a prior MdpFree,
// we will scavenge during the next MdpAllocate.
//
USHORT PagesOnUsedPageList;
// Set to TRUE during MdpFree if could not move a previously used
// page back to the normal list because the free was done by a
// non-owning processor. Set to FALSE during MdpScavenge.
//
BOOLEAN MissedPageMove;
// The number of the processor that owns this pool.
//
UCHAR OwnerCpu;
ULONG TotalMdlsAllocated;
ULONG TotalMdlsFreed;
ULONG PeakMdlsInUse;
ULONG TotalPagesAllocated;
ULONG TotalPagesFreed;
ULONG PeakPagesInUse;
};
UCHAR Alignment[MAX_CACHE_LINE_SIZE
- (sizeof(struct _CPU_POOL_HEADER_BASE) % MAX_CACHE_LINE_SIZE)];
} CPU_POOL_HEADER, *PCPU_POOL_HEADER;
C_ASSERT(sizeof(CPU_POOL_HEADER) % MAX_CACHE_LINE_SIZE == 0);
// PAGE_HEADER is the data at the beginning of each allocated pool page
// that describes the current state of the MDLs on the page.
//
typedef struct _PAGE_HEADER
{
// cache-line -----
// Back pointer to the owning cpu pool.
//
PCPU_POOL_HEADER Pool;
// Linkage entry for the list of pages managed by the cpu pool.
//
LIST_ENTRY PageLink;
// Number of MDLs built so far on this page. MDLs are built on
// demand. When this number reaches Pool->MdlsPerPage, all MDLs on this
// page have been built.
//
USHORT MdlsBuilt;
// Boolean indicator of whether or not this page is on the cpu pool's
// used-page list. This is checked during MdpFree to see if the page
// should be moved back to the normal page list.
// (it is a USHORT, instead of BOOLEAN, for proper padding)
//
USHORT OnUsedPageList;
// List of free MDLs on this page.
//
SLIST_HEADER FreeList;
// The value of KeQueryTickCount (normalized to units of seconds)
// which represents the time after which this page can be freed back
// to the system's pool. This time is only valid if the depth of
// FreeList is Pool->MdlsPerPage. (i.e. this time is only valid if
// the page is completely unused.)
//
LARGE_INTEGER LastUsedTick;
} PAGE_HEADER, *PPAGE_HEADER;
// MDLs that we build are always limited to one page and they never
// describe buffers that span a page boundry.
//
#define MDLSIZE sizeof(MDL) + sizeof(PFN_NUMBER)
// Get a pointer to the overall pool given a pointer to one of
// the per-processor pools within it.
//
__inline
PPOOL_HEADER
PoolFromCpuPool(
IN PCPU_POOL_HEADER CpuPool
)
{
return (PPOOL_HEADER)(CpuPool - CpuPool->OwnerCpu) - 1;
}
__inline
VOID
ConvertSecondsToTicks(
IN ULONG Seconds,
OUT PLARGE_INTEGER Ticks
)
{
// If the following assert fires, you need to cast Seconds below to
// ULONGLONG so that 64 bit multiplication and division are used.
// The current code assumes less that 430 seconds so that the
// 32 multiplication below won't overflow.
//
ASSERT(Seconds < 430);
Ticks->HighPart = 0;
Ticks->LowPart = (Seconds * 10*1000*1000) / KeQueryTimeIncrement();
}
// Build the next MDL on the specified pool page.
// This can only be called if not all of the MDLs have been built yet.
//
PMDL
MdppBuildNextMdl(
IN const POOL_HEADER* Pool,
IN OUT PPAGE_HEADER Page
)
{
PMDL Mdl;
ULONG BlockSize = ALIGN_UP(MDLSIZE + Pool->BufferSize, BLOCK_TYPE);
ASSERT(Page->MdlsBuilt < Pool->MdlsPerPage);
ASSERT((PAGE_SIZE - sizeof(PAGE_HEADER)) / BlockSize == Pool->MdlsPerPage);
Mdl = (PMDL)((PCHAR)(Page + 1) + (Page->MdlsBuilt * BlockSize));
ASSERT(PAGE_ALIGN(Mdl) == Page);
MmInitializeMdl(Mdl, (PCHAR)Mdl + MDLSIZE, Pool->BufferSize);
MmBuildMdlForNonPagedPool(Mdl);
ASSERT(MDLSIZE == Mdl->Size);
ASSERT(MmGetMdlBaseVa(Mdl) == Page);
ASSERT(MmGetMdlByteCount(Mdl) == Pool->BufferSize);
Page->MdlsBuilt++;
return Mdl;
}
// Allocate a new pool page and insert it at the head of the specified
// CPU pool. Build the first MDL on the new page and return a pointer
// to it.
//
PMDL
MdppAllocateNewPageAndBuildOneMdl(
IN const POOL_HEADER* Pool,
IN PCPU_POOL_HEADER CpuPool
)
{
PPAGE_HEADER Page;
PMDL Mdl = NULL;
ULONG PagesInUse;
ASSERT(Pool);
Page = ExAllocatePoolWithTagPriority(NonPagedPool, PAGE_SIZE, Pool->Tag,
NormalPoolPriority);
if (Page)
{
ASSERT(Page == PAGE_ALIGN(Page));
RtlZeroMemory(Page, sizeof(PAGE_HEADER));
Page->Pool = CpuPool;
ExInitializeSListHead(&Page->FreeList);
// Insert the page at the head of the cpu's pool.
//
InsertHeadList(&CpuPool->PageList, &Page->PageLink);
CpuPool->TotalPagesAllocated++;
// Update the pool's statistics.
//
PagesInUse = CpuPool->TotalPagesAllocated - CpuPool->TotalPagesFreed;
if (PagesInUse > CpuPool->PeakPagesInUse)
{
CpuPool->PeakPagesInUse = PagesInUse;
}
Mdl = MdppBuildNextMdl(Pool, Page);
ASSERT(Mdl);
#if SHOW_DEBUG_OUTPUT
DbgPrint(
"[%d] %c%c%c%c page allocated : Pages(a%4d,u%4d,p%4d), Mdls(a%6d,u%6d,p%6d)\n",
CpuPool->OwnerCpu,
Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24,
CpuPool->TotalPagesAllocated,
CpuPool->TotalPagesAllocated - CpuPool->TotalPagesFreed,
CpuPool->PeakPagesInUse,
CpuPool->TotalMdlsAllocated,
CpuPool->TotalMdlsAllocated - CpuPool->TotalMdlsFreed,
CpuPool->PeakMdlsInUse);
#endif
}
return Mdl;
}
// Free the specified pool page back to the system's pool.
//
VOID
MdppFreePage(
IN PCPU_POOL_HEADER CpuPool,
IN PPAGE_HEADER Page
)
{
#if SHOW_DEBUG_OUTPUT
ULONG Tag;
#endif
ASSERT(Page == PAGE_ALIGN(Page));
ASSERT(Page->Pool == CpuPool);
ExFreePool (Page);
CpuPool->TotalPagesFreed++;
ASSERT(CpuPool->TotalPagesFreed <= CpuPool->TotalPagesAllocated);
#if SHOW_DEBUG_OUTPUT
Tag = PoolFromCpuPool(CpuPool)->Tag;
DbgPrint(
"[%d] %c%c%c%c page freed : Pages(a%4d,u%4d,p%4d), Mdls(a%6d,u%6d,p%6d)\n",
CpuPool->OwnerCpu,
Tag, Tag >> 8, Tag >> 16, Tag >> 24,
CpuPool->TotalPagesAllocated,
CpuPool->TotalPagesAllocated - CpuPool->TotalPagesFreed,
CpuPool->PeakPagesInUse,
CpuPool->TotalMdlsAllocated,
CpuPool->TotalMdlsAllocated - CpuPool->TotalMdlsFreed,
CpuPool->PeakMdlsInUse);
#endif
}
// Reclaim the memory consumed by completely unused pool pages belonging
// to the specified per-processor pool.
//
// Caller IRQL: [DISPATCH_LEVEL]
//
VOID
MdppScavengePool(
IN OUT PCPU_POOL_HEADER CpuPool
)
{
PPOOL_HEADER Pool;
PPAGE_HEADER Page;
PLIST_ENTRY Scan;
PLIST_ENTRY Next;
LARGE_INTEGER Ticks;
LARGE_INTEGER TicksDelta;
// We must not only be at DISPATCH_LEVEL (or higher), we must also
// be called on the processor that owns the specified pool.
//
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
ASSERT(KeGetCurrentProcessorNumber() == CpuPool->OwnerCpu);
Pool = PoolFromCpuPool(CpuPool);
KeQueryTickCount(&Ticks);
// Compute the next tick value which represents the earliest time
// that we will scavenge this pool again.
//
ConvertSecondsToTicks(SCAVENGE_PERIOD_IN_SECONDS, &TicksDelta);
CpuPool->NextScavengeTick.QuadPart = Ticks.QuadPart + TicksDelta.QuadPart;
// Compute the tick value which represents the last point at which
// its okay to free a page.
//
ConvertSecondsToTicks(MINIMUM_PAGE_LIFETIME_IN_SECONDS, &TicksDelta);
Ticks.QuadPart = Ticks.QuadPart - TicksDelta.QuadPart;
for (Scan = CpuPool->PageList.Flink;
Scan != &CpuPool->PageList;
Scan = Next)
{
Page = CONTAINING_RECORD(Scan, PAGE_HEADER, PageLink);
ASSERT(Page == PAGE_ALIGN(Page));
ASSERT(CpuPool == Page->Pool);
ASSERT(!Page->OnUsedPageList);
// Step to the next link before we possibly unlink this page.
//
Next = Scan->Flink;
if ((Pool->MdlsPerPage == ExQueryDepthSList(&Page->FreeList)) &&
(Ticks.QuadPart > Page->LastUsedTick.QuadPart))
{
RemoveEntryList(Scan);
MdppFreePage(CpuPool, Page);
}
}
// Scan the used pages to see if they can be moved back to the normal
// list. This can happen if too many frees by non-owning processors
// are done. In that case, the pages get orphaned on the used-page
// list after all of their MDLs have been freed to the page. Un-orhpan
// them here.
//
for (Scan = CpuPool->UsedPageList.Flink;
Scan != &CpuPool->UsedPageList;
Scan = Next)
{
Page = CONTAINING_RECORD(Scan, PAGE_HEADER, PageLink);
ASSERT(Page == PAGE_ALIGN(Page));
ASSERT(CpuPool == Page->Pool);
ASSERT(Page->OnUsedPageList);
// Step to the next link before we possibly unlink this page.
//
Next = Scan->Flink;
if (0 != ExQueryDepthSList(&Page->FreeList))
{
RemoveEntryList(Scan);
Page->OnUsedPageList = FALSE;
InsertTailList(&CpuPool->PageList, Scan);
CpuPool->PagesOnUsedPageList--;
#if SHOW_DEBUG_OUTPUT
DbgPrint(
"[%d] %c%c%c%c page moved off of used-page list during scavenge\n",
CpuPool->OwnerCpu,
Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24);
#endif
}
}
// Reset our indicator of a missed page move now that we've scavenged.
//
CpuPool->MissedPageMove = FALSE;
}
// Creates a pool of MDLs built over non-paged pool. Each MDL describes
// a buffer that is BufferSize bytes long. If NULL is not returned,
// MdpDestroyPool should be called at a later time to reclaim the
// resources used by the pool.
//
// Arguments:
// BufferSize - The size, in bytes, of the buffer that each MDL
// should describe.
// Tag - The pool tag to be used internally for calls to
// ExAllocatePoolWithTag. This allows callers to track
// memory consumption for different pools.
//
// Returns the handle used to identify the pool.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
HANDLE
MdpCreatePool(
IN USHORT BufferSize,
IN ULONG Tag
)
{
SIZE_T Size;
PPOOL_HEADER Pool;
PCPU_POOL_HEADER CpuPool;
USHORT BlockSize;
CCHAR NumberCpus = KeNumberProcessors;
CCHAR i;
ASSERT(BufferSize);
// Compute the size of our pool header allocation.
//
Size = sizeof(POOL_HEADER) + (sizeof(CPU_POOL_HEADER) * NumberCpus);
// Allocate the pool header.
//
Pool = ExAllocatePoolWithTag(NonPagedPool, Size, ' pdM');
if (Pool)
{
BlockSize = (USHORT)ALIGN_UP(MDLSIZE + BufferSize, BLOCK_TYPE);
// Initialize the pool header fields.
//
RtlZeroMemory(Pool, Size);
Pool->Tag = Tag;
Pool->BufferSize = BufferSize;
Pool->MdlsPerPage = (PAGE_SIZE - sizeof(PAGE_HEADER)) / BlockSize;
// Initialize the per-cpu pool headers.
//
CpuPool = (PCPU_POOL_HEADER)(Pool + 1);
for (i = 0; i < NumberCpus; i++)
{
InitializeListHead(&CpuPool[i].PageList);
InitializeListHead(&CpuPool[i].UsedPageList);
CpuPool[i].OwnerCpu = i;
}
}
return Pool;
}
// Destroys a pool of MDLs previously created by a call to MdpCreatePool.
//
// Arguments:
// Pool - Handle which identifies the pool being destroyed.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
VOID
MdpDestroyPool(
IN HANDLE PoolHandle
)
{
PPOOL_HEADER Pool;
PPAGE_HEADER Page;
PCPU_POOL_HEADER CpuPool;
PLIST_ENTRY Scan;
PLIST_ENTRY Next;
CCHAR NumberCpus = KeNumberProcessors;
CCHAR i;
ASSERT(PoolHandle);
Pool = (PPOOL_HEADER)PoolHandle;
if (!Pool)
{
return;
}
for (i = 0, CpuPool = (PCPU_POOL_HEADER)(Pool + 1);
i < NumberCpus;
i++, CpuPool++)
{
ASSERT(CpuPool->OwnerCpu == (ULONG)i);
for (Scan = CpuPool->PageList.Flink;
Scan != &CpuPool->PageList;
Scan = Next)
{
Page = CONTAINING_RECORD(Scan, PAGE_HEADER, PageLink);
ASSERT(Page == PAGE_ALIGN(Page));
ASSERT(CpuPool == Page->Pool);
ASSERT(!Page->OnUsedPageList);
ASSERT(Page->MdlsBuilt <= Pool->MdlsPerPage);
ASSERT(Page->MdlsBuilt == ExQueryDepthSList(&Page->FreeList));
// Step to the next link before we free this page.
//
Next = Scan->Flink;
RemoveEntryList(Scan);
MdppFreePage(CpuPool, Page);
}
ASSERT(IsListEmpty(&CpuPool->UsedPageList));
ASSERT(CpuPool->TotalPagesAllocated == CpuPool->TotalPagesFreed);
ASSERT(CpuPool->TotalMdlsAllocated == CpuPool->TotalMdlsFreed);
}
}
// Returns an MDL allocated from a pool. NULL is returned if the
// request could not be granted.
//
// Arguments:
// PoolHandle - Handle which identifies the pool being allocated from.
// Buffer - Address to receive the pointer to the underlying mapped buffer
// described by the MDL.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
PMDL
MdpAllocate(
IN HANDLE PoolHandle,
OUT PVOID* Buffer
)
{
KIRQL OldIrql;
PMDL Mdl;
OldIrql = KeRaiseIrqlToDpcLevel();
Mdl = MdpAllocateAtDpcLevel(PoolHandle, Buffer);
KeLowerIrql(OldIrql);
return Mdl;
}
// Returns an MDL allocated from a pool. NULL is returned if the
// request could not be granted.
//
// Arguments:
// PoolHandle - Handle which identifies the pool being allocated from.
// Buffer - Address to receive the pointer to the underlying mapped buffer
// described by the MDL.
//
// Caller IRQL: [DISPATCH_LEVEL]
//
PMDL
MdpAllocateAtDpcLevel(
IN HANDLE PoolHandle,
OUT PVOID* Buffer
)
{
PPOOL_HEADER Pool;
PCPU_POOL_HEADER CpuPool;
PPAGE_HEADER Page;
PSINGLE_LIST_ENTRY MdlLink;
PMDL Mdl = NULL;
ULONG Cpu;
LARGE_INTEGER Ticks;
#if DBG
ASSERT(PoolHandle);
ASSERT(Buffer);
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
#endif
*Buffer = NULL;
Pool = (PPOOL_HEADER)PoolHandle;
Cpu = KeGetCurrentProcessorNumber();
CpuPool = (PCPU_POOL_HEADER)(Pool + 1) + Cpu;
// If we know we've had frees by non-owning processors and there
// are more than USED_PAGES_SCAVENGE_THRESHOLD pages on the used
// page list, it is time to scavenge. This is common in situations
// where the buffer size is very large causing there to be just a few
// MDLs per page. Pages get used up quickly and if non-owning frees
// are prevalent, the used page list can get very big even in
// the normal scavenge period.
//
if (CpuPool->MissedPageMove &&
(CpuPool->PagesOnUsedPageList > USED_PAGES_SCAVENGE_THRESHOLD))
{
#if SHOW_DEBUG_OUTPUT
DbgPrint(
"[%d] %c%c%c%c Scavenging because of excessive used pages.\n",
CpuPool->OwnerCpu,
Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24);
#endif
MdppScavengePool(CpuPool);
}
else
{
// See if the minimum time has passed since we last scavenged
// the pool. If it has, we'll scavenge again. Normally, scavenging
// should only be performed when we free. However, for the case when
// the caller constantly frees on a non-owning processor, we'll
// take this chance to do the scavenging.
//
KeQueryTickCount(&Ticks);
if (Ticks.QuadPart > CpuPool->NextScavengeTick.QuadPart)
{
MdppScavengePool(CpuPool);
}
}
if (!IsListEmpty(&CpuPool->PageList))
{
Page = CONTAINING_RECORD(CpuPool->PageList.Flink, PAGE_HEADER, PageLink);
ASSERT(Page == PAGE_ALIGN(Page));
ASSERT(CpuPool == Page->Pool);
ASSERT(!Page->OnUsedPageList);
MdlLink = InterlockedPopEntrySList(&Page->FreeList);
if (MdlLink)
{
Mdl = CONTAINING_RECORD(MdlLink, MDL, Next);
}
else
{
// If there were no MDLs on this page's free list, it had better
// mean we haven't yet built all of the MDLs on the page.
// (Otherwise, what is a fully used page doing on the page list
// and not on the used-page list?)
//
ASSERT(Page->MdlsBuilt < Pool->MdlsPerPage);
Mdl = MdppBuildNextMdl(Pool, Page);
ASSERT(Mdl);
}
if ((Page != PAGE_ALIGN(Page)) || (CpuPool != Page->Pool) ||
Page->OnUsedPageList || (PAGE_ALIGN(Mdl) != Page))
{
KeBugCheckEx(BAD_POOL_CALLER, 2, (ULONG_PTR)Mdl,
(ULONG_PTR)Page, (ULONG_PTR)CpuPool);
}
// Got an MDL. Now check to see if it was the last one on a fully
// built page. If so, move the page to the used-page list.
//
if ((0 == ExQueryDepthSList(&Page->FreeList)) &&
(Page->MdlsBuilt == Pool->MdlsPerPage))
{
PLIST_ENTRY PageLink;
PageLink = RemoveHeadList(&CpuPool->PageList);
InsertTailList(&CpuPool->UsedPageList, PageLink);
Page->OnUsedPageList = TRUE;
CpuPool->PagesOnUsedPageList++;
ASSERT(Page == CONTAINING_RECORD(PageLink, PAGE_HEADER, PageLink));
#if SHOW_DEBUG_OUTPUT
DbgPrint(
"[%d] %c%c%c%c page moved to used-page list\n",
CpuPool->OwnerCpu,
Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24);
#endif
}
ASSERT(Mdl);
goto GotAnMdl;
}
else
{
// The page list is empty so we have to allocate and add a new page.
//
Mdl = MdppAllocateNewPageAndBuildOneMdl(Pool, CpuPool);
}
// If we are returning an MDL, update the statistics.
//
if (Mdl)
{
ULONG MdlsInUse;
GotAnMdl:
CpuPool->TotalMdlsAllocated++;
MdlsInUse = CpuPool->TotalMdlsAllocated - CpuPool->TotalMdlsFreed;
if (MdlsInUse > CpuPool->PeakMdlsInUse)
{
CpuPool->PeakMdlsInUse = MdlsInUse;
}
// Don't give anyone ideas about where this might point. I don't
// want anyone trashing my pool because they thought this field
// was valid for some reason.
//
Mdl->Next = NULL;
// Reset the length of the buffer described by the MDL. This is
// a convienence to callers who sometimes adjust this length while
// using the MDL, but who expect it to be reset on subsequent MDL
// allocations.
//
Mdl->ByteCount = Pool->BufferSize;
ASSERT(Mdl->MdlFlags & MDL_SOURCE_IS_NONPAGED_POOL);
*Buffer = Mdl->MappedSystemVa;
}
return Mdl;
}
// Free an MDL to the pool from which it was allocated.
//
// Arguments:
// Mdl - An Mdl returned from a prior call to MdpAllocate.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
VOID
MdpFree(
IN PMDL Mdl
)
{
PPAGE_HEADER Page;
PCPU_POOL_HEADER CpuPool;
PPOOL_HEADER Pool;
LARGE_INTEGER Ticks;
LOGICAL PageIsPossiblyUnused;
LOGICAL PageIsOnUsedPageList;
LOGICAL Scavenge = FALSE;
ASSERT(Mdl);
// Get the address of the page that this MDL maps. This is where
// our page header is stored.
//
Page = PAGE_ALIGN(Mdl);
// Follow the back pointer in the page header to locate the owning
// cpu's pool.
//
CpuPool = Page->Pool;
// Locate the pool header.
//
Pool = PoolFromCpuPool(CpuPool);
//#if DBG
// If someone changed the MDL to point to there own buffer,
// or otherwise corrupted it, we'll stop here and let them know.
//
if ((MmGetMdlBaseVa(Mdl) != Page) ||
(MDLSIZE != Mdl->Size) ||
((ULONG_PTR)Mdl->MappedSystemVa != (ULONG_PTR)Mdl + MDLSIZE) ||
(MmGetMdlVirtualAddress(Mdl) != Mdl->MappedSystemVa))
{
KeBugCheckEx(BAD_POOL_CALLER, 3, (ULONG_PTR)Mdl,
(ULONG_PTR)CpuPool, (ULONG_PTR)Pool);
}
//#endif
// See if the minimum time has passed since we last scavenged
// the pool. If it has, we'll scavenge again.
//
KeQueryTickCount(&Ticks);
if (Ticks.QuadPart > CpuPool->NextScavengeTick.QuadPart)
{
Scavenge = TRUE;
}
// If this is the last MDL to be returned to this page, the page is
// now unused. Note that since there is no synchronization beyond
// InterlockedPush/PopSEntryList between allocate and free, we
// cannot guarantee that it will remain unused even before the next
// few instructions are executed.
//
PageIsPossiblyUnused = (ExQueryDepthSList(&Page->FreeList)
== (Pool->MdlsPerPage - 1));
if (PageIsPossiblyUnused)
{
// Note the tick that this page was last used. This sets the
// minimum time that this page will continue to live unless it
// gets re-used.
//
Page->LastUsedTick.QuadPart = Ticks.QuadPart;
}
// If this page is on the used-page list, we'll put it back on the normal
// page list (only after pushing the MDL back on the page's free list)
// if, after raising IRQL, we are on the processor that owns this
// pool.
//
PageIsOnUsedPageList = Page->OnUsedPageList;
InterlockedIncrement(&CpuPool->TotalMdlsFreed);
// Now return the MDL to the page's free list.
//
InterlockedPushEntrySList(&Page->FreeList, (PSINGLE_LIST_ENTRY)&Mdl->Next);
//
// Warning: Now that the MDL is back on the page, one cannot reliably
// dereference anything through 'Page' anymore. It may have just been
// scavenged by its owning processor. This is not the case if the
// page was on the used-page list (because scavenging doesn't affect
// the used-page list). We saved off the value of Page->OnUsedPageList
// before returning the MDL so we would not risk touching Page to get
// this value only to find that it was false.
//
// If we need to move the page from the used-page list to the normal
// page list, or if we need to scavenge, we need to be at DISPATCH_LEVEL
// and be executing on the processor that owns this pool.
// Find out if the CPU we are executing on right now owns this pool.
// Note that if we are running at PASSIVE_LEVEL, the current CPU may
// change over the duration of this function call, so this value is
// not absolute over the life of the function.
//
if ((PageIsOnUsedPageList || Scavenge) &&
(KeGetCurrentProcessorNumber() == CpuPool->OwnerCpu))
{
KIRQL OldIrql;
OldIrql = KeRaiseIrqlToDpcLevel();
// Now that we are at DISPATCH_LEVEL, perform the work if we are still
// executing on the processor that owns the pool.
//
if (KeGetCurrentProcessorNumber() == CpuPool->OwnerCpu)
{
// If the page is still on the used-page list (meaning another
// MdpFree didn't just sneak by), then put the page on the
// normal list. Very important to do this after (not before)
// returning the MDL to the free list because MdpAllocate expects
// MDL's to be available from pages on the page list.
//
if (PageIsOnUsedPageList && Page->OnUsedPageList)
{
RemoveEntryList(&Page->PageLink);
Page->OnUsedPageList = FALSE;
InsertTailList(&CpuPool->PageList, &Page->PageLink);
CpuPool->PagesOnUsedPageList--;
PageIsOnUsedPageList = FALSE;
#if SHOW_DEBUG_OUTPUT
DbgPrint(
"[%d] %c%c%c%c page moved off of used-page list\n",
CpuPool->OwnerCpu,
Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24);
#endif
}
// Perform the scavenge if we previously noted we needed to do so.
//
if (Scavenge)
{
MdppScavengePool(CpuPool);
}
}
KeLowerIrql(OldIrql);
}
// If we missed being able to put this page back on the normal list.
// note it.
//
if (PageIsOnUsedPageList)
{
CpuPool->MissedPageMove = TRUE;
}
}