windows-nt/Source/XPSP1/NT/net/tcpip/driver/ipv4/ipxmit.c
2020-09-26 16:20:57 +08:00

5448 lines
188 KiB
C

/*++
Copyright (c) 1990-2000 Microsoft Corporation
Module Name:
ipxmit.c - IP transmit routines.
Abstract:
This module contains all transmit related IP routines.
Author:
[Environment:]
kernel mode only
[Notes:]
optional-notes
Revision History:
--*/
#include "precomp.h"
#include "info.h"
#include "iproute.h"
#include "iprtdef.h"
#include "arpdef.h"
#include "tcpipbuf.h"
#include "mdlpool.h"
#include "tcp.h"
#include "tcpsend.h"
#if DBG
ulong DbgIPSendHwChkSum = 0;
uint dbg_hdrincl = 0;
#endif
extern uint IPSecStatus;
extern IPSecQStatusRtn IPSecQueryStatusPtr;
extern Interface *IFList;
extern NetTableEntry **NewNetTableList; // hash table for NTEs
extern uint NET_TABLE_SIZE;
extern NetTableEntry *LoopNTE; // Pointer to loopback NTE.
extern NetTableEntry *DHCPNTE; // Pointer to NTE currently being DHCP'd.
extern ulong TimeStamp; // Starting timestamp.
extern ulong TSFlag; // Mask to use on this.
extern uint NumNTE;
IPID_CACHE_LINE IPIDCacheLine;
// Global variables for buffers and packets.
HANDLE IpHeaderPool;
//
// the global address for unnumbered interfaces
//
extern IPAddr g_ValidAddr;
BufferReference *GetBufferReference(void);
IP_STATUS ARPResolve(IPAddr DestAddress, IPAddr SourceAddress,
ARPControlBlock *ControlBlock, ArpRtn Callback);
NDIS_STATUS ARPResolveIP(void *Context, IPAddr Destination,
ARPControlBlock *ArpContB);
IP_STATUS SendICMPIPSecErr(IPAddr, IPHeader UNALIGNED *, uchar, uchar, ulong);
int ReferenceBuffer(BufferReference * BR, int Count);
extern Interface LoopInterface;
extern uint NumIF;
NDIS_HANDLE NdisPacketPool = NULL;
NDIS_HANDLE BufferPool;
#define BCAST_IF_CTXT (Interface *)-1
uint PacketPoolSizeMin = PACKET_GROW_COUNT;
uint PacketPoolSizeMax = SMALL_POOL;
//** GetIPID - Routine to get IP identification
//
// Input: None
//
// Returns: IPID+1
//
ushort
GetIPID()
{
return((ushort)InterlockedExchangeAdd(&IPIDCacheLine.Value, 1));
}
//** FreeIPHdrBuffer - Free a buffer back to the pool.
//
// Input: Buffer - Hdr buffer to be freed.
//
// Returns: Nothing.
//
__inline
VOID
FreeIPHdrBuffer(PNDIS_BUFFER Buffer)
{
MdpFree(Buffer);
}
//** FreeIPBufferChain - Free a chain of IP buffers.
//
// This routine takes a chain of NDIS_BUFFERs, and frees them all.
//
// Entry: Buffer - Pointer to buffer chain to be freed.
//
// Returns: Nothing.
//
void
FreeIPBufferChain(PNDIS_BUFFER Buffer)
{
PNDIS_BUFFER NextBuffer;
while (Buffer != (PNDIS_BUFFER) NULL) {
NdisGetNextBuffer(Buffer, &NextBuffer);
NdisFreeBuffer(Buffer);
Buffer = NextBuffer;
}
}
//** Free payload mdl
//
// Input: Buffer - Bufferchain which has ip allocated ndis_buffer
// OriginalBuffer - Original buffer which needs to be restored
//
// Returns: Nothing.
//
__inline
VOID
FreeIPPayloadBuffer(PNDIS_BUFFER Buffer, PNDIS_BUFFER OrgBuffer)
{
PNDIS_BUFFER PayloadBuffer;
PayloadBuffer = NDIS_BUFFER_LINKAGE(Buffer);
NDIS_BUFFER_LINKAGE(Buffer) = OrgBuffer;
ASSERT(NDIS_BUFFER_LINKAGE(OrgBuffer) == NDIS_BUFFER_LINKAGE(PayloadBuffer));
//KdPrint(("sendbcast restoring hdrincl %x %x\n",OrgBuffer,PayloadBuffer));
NDIS_BUFFER_LINKAGE(PayloadBuffer) = NULL;
NdisFreeBuffer(PayloadBuffer);
}
//** RestoreUserBuffer - Restores original user supplied buffer
//
// Takes orginal buffer and chains it back in the packet,
// freeing the one allocated by the stack.
//
// Entry: Packet
//
// Returns: Nothing.
//
void
RestoreUserBuffer(PNDIS_PACKET Packet)
{
PNDIS_BUFFER NextBuffer;
PacketContext *pc = (PacketContext *) Packet->ProtocolReserved;
PNDIS_BUFFER OrgBuffer, FirewallBuffer, Buffer;
BufferReference *BufRef;
BufRef = pc->pc_br;
FirewallBuffer = pc->pc_firewall;
OrgBuffer = pc->pc_hdrincl;
ASSERT(OrgBuffer != NULL);
pc->pc_hdrincl = NULL;
NdisQueryPacket(Packet, NULL, NULL, &NextBuffer, NULL);
if (!FirewallBuffer) {
// Firewall didn't munge the buffer: apply the normal stuff
// if bufref is true, IPFrag was called.
// buffer chain will be at ->br_buffer.
if (BufRef == (BufferReference *) NULL) {
Buffer = NDIS_BUFFER_LINKAGE(NextBuffer);
if (pc->pc_common.pc_flags & PACKET_FLAG_OPTIONS) {
Buffer = NDIS_BUFFER_LINKAGE(Buffer);
}
} else {
Buffer = BufRef->br_buffer;
}
FreeIPPayloadBuffer(Buffer, OrgBuffer);
} else {
if (BufRef == NULL) {
Buffer = FirewallBuffer;
if (pc->pc_common.pc_flags & PACKET_FLAG_OPTIONS) {
Buffer = NDIS_BUFFER_LINKAGE(Buffer);
}
FreeIPPayloadBuffer(Buffer, OrgBuffer);
}
}
}
//* FreeIPPacket - Free an IP packet when we're done with it.
//
// Called when a send completes and a packet needs to be freed. We look at the
// packet, decide what to do with it, and free the appropriate components.
//
// Entry: Packet - Packet to be freed.
// FixHdrs - If true, restores headers changed by ipsec/firewall and hdrinclude
// before freeing the packet.
// Status - final status from packet-processing.
//
// Returns: Pointer to next unfreed buffer on packet, or NULL if all buffers freed
// (i.e. this was a fragmented packet).
//
PNDIS_BUFFER
FreeIPPacket(PNDIS_PACKET Packet, BOOLEAN FixHdrs, IP_STATUS Status)
{
PNDIS_BUFFER NextBuffer, OldBuffer;
PacketContext *pc = (PacketContext *) Packet->ProtocolReserved;
PNDIS_BUFFER OrgBuffer = NULL;
PNDIS_BUFFER FirewallBuffer = NULL;
FWContext *FWC = (FWContext *) Packet->ProtocolReserved;
BufferReference *BufRef; // Buffer reference, if any.
BOOLEAN InitFirewallContext = FALSE;
NDIS_PER_PACKET_INFO_FROM_PACKET(Packet, ClassificationHandlePacketInfo) = NULL;
NdisClearPacketFlags(Packet, (NDIS_FLAGS_DONT_LOOPBACK | NDIS_FLAGS_LOOPBACK_ONLY));
#if !MILLEN
// ndis 5.1 feature
NDIS_SET_PACKET_CANCEL_ID(Packet, NULL);
#endif
NdisQueryPacket(Packet, NULL, NULL, &NextBuffer, NULL);
if ((pc->pc_common.pc_flags & PACKET_FLAG_FW) && FWC->fc_bufown) {
//Pkt forwarded thru buffer owner ship
ASSERT(pc->pc_firewall == NULL);
return NextBuffer;
}
BufRef = pc->pc_br;
// Restore the original buffer and MDL chain back.
// We should restore the reverse order in which the input Buffer was modified
// Order of modification: hdr_incl -> firewall -> ipsec
// Order of restoration: ipsec -> firewall -> hdr_incl
//
// See if IPSEC has to fix up anything
//
if (FixHdrs && pc->pc_common.pc_IpsecCtx) {
PNDIS_BUFFER NewBuffer;
if (!BufRef || (pc->pc_ipsec_flags & IPSEC_FLAG_FRAG_DONE)) {
ASSERT(IPSecSendCmpltPtr);
(*IPSecSendCmpltPtr) (Packet,
NextBuffer,
pc->pc_common.pc_IpsecCtx,
Status,
&NewBuffer);
pc->pc_common.pc_IpsecCtx = NULL;
if (NewBuffer) {
NextBuffer = NewBuffer;
} else {
//
// Reinjected packet, no IP resources to free
//
pc->pc_firewall = NULL;
pc->pc_firewall2 = NULL;
NdisFreePacket(Packet);
return NULL;
}
} else {
pc->pc_common.pc_IpsecCtx = NULL;
}
}
//
// FirewallBuffer will point to the input buffer which was passed to the
// firewall hook it will be non-NULL only if hook touched the packet
//
FirewallBuffer = pc->pc_firewall;
//
// Check if the buffers were munged by the firewall: FirewallBuffer != NULL
// If yes, restore original buffer
//
if (FixHdrs && FirewallBuffer) {
PNDIS_BUFFER NewBuffer;
PNDIS_BUFFER TmpBuffer;
if (BufRef == NULL) {
// Non fragmentation path
// if bufref is true means
// IPFrag was called buffer chain will.
// be at ->br_buffer.
// restoration will be done in ipsendcomplete when last fragment
// send completes
NewBuffer = NextBuffer;
if (!((pc->pc_common.pc_flags & PACKET_FLAG_IPHDR) ||
(pc->pc_common.pc_flags & PACKET_FLAG_OPTIONS))) {
// neither header nor option buffer
NdisReinitializePacket(Packet);
NdisChainBufferAtBack(Packet, FirewallBuffer);
NextBuffer = FirewallBuffer;
} else if ((pc->pc_common.pc_flags & PACKET_FLAG_IPHDR) &&
(pc->pc_common.pc_flags & PACKET_FLAG_OPTIONS)) {
// both header and option buffer
ASSERT(NewBuffer != NULL);
NewBuffer = NDIS_BUFFER_LINKAGE(NewBuffer); // skip hdr buffer
ASSERT(NewBuffer != NULL);
TmpBuffer = NewBuffer;
NewBuffer = NDIS_BUFFER_LINKAGE(NewBuffer); // skip options buffer
NDIS_BUFFER_LINKAGE(TmpBuffer) = FirewallBuffer;
} else {
// just header buffer
ASSERT(pc->pc_common.pc_flags & PACKET_FLAG_IPHDR);
ASSERT(!(pc->pc_common.pc_flags & PACKET_FLAG_OPTIONS));
ASSERT(NewBuffer != NULL);
TmpBuffer = NewBuffer;
NewBuffer = NDIS_BUFFER_LINKAGE(NewBuffer); // skip the header buffer
NDIS_BUFFER_LINKAGE(TmpBuffer) = FirewallBuffer;
}
//
// At this point NewBuffer points to the MDL chain allocated by
// the firewall. WE have already restored the original chain back
//
FreeIPBufferChain(NewBuffer);
pc->pc_firewall = NULL;
//
// We have to free OutRcvBuf chain we allocated and passed to
// firewall. This is the completion point, so we should free this
// chain here
//
ASSERT(pc->pc_firewall2);
IPFreeBuff(pc->pc_firewall2);
pc->pc_firewall2 = NULL;
} else { // bufref != NULL
// Firewall Headers are restored in IPSendComplete
// or in completion path that is executed when
// bufrefcnt is zero.
// These paths have already captured pc_firewall pointer.
// Initialize the packetcontext after calling RestoreUserBuffer
// below.
InitFirewallContext = TRUE;
}
}
// If users header is used as IP header, restore it.
if (FixHdrs && pc->pc_hdrincl) {
RestoreUserBuffer(Packet);
}
if (InitFirewallContext) {
pc->pc_firewall = NULL;
pc->pc_firewall2 = NULL;
}
// If there's no IP header on this packet, we have nothing else to do.
if (!(pc->pc_common.pc_flags & (PACKET_FLAG_IPHDR | PACKET_FLAG_FW))) {
pc->pc_firewall = NULL;
pc->pc_firewall2 = NULL;
NdisFreePacket(Packet);
return NextBuffer;
}
pc->pc_common.pc_flags &= ~PACKET_FLAG_IPHDR;
OldBuffer = NextBuffer;
ASSERT(OldBuffer != NULL);
NextBuffer = NDIS_BUFFER_LINKAGE(NextBuffer);
if (pc->pc_common.pc_flags & PACKET_FLAG_OPTIONS) {
// Have options with this packet.
PNDIS_BUFFER OptBuffer;
void *Options;
uint OptSize;
OptBuffer = NextBuffer;
ASSERT(OptBuffer != NULL);
NdisGetNextBuffer(OptBuffer, &NextBuffer);
ASSERT(NextBuffer != NULL);
TcpipQueryBuffer(OptBuffer, &Options, &OptSize, HighPagePriority);
// If this is a FW packet, the options don't really belong to us, so
// don't free them.
if (!(pc->pc_common.pc_flags & PACKET_FLAG_FW)) {
if (Options != NULL) {
CTEFreeMem(Options);
}
// Else leak Options b/c we can't get virtual address.
}
NdisFreeBuffer(OptBuffer);
pc->pc_common.pc_flags &= ~PACKET_FLAG_OPTIONS;
}
if (pc->pc_common.pc_flags & PACKET_FLAG_IPBUF) { // This packet is all
// IP buffers.
(void)FreeIPBufferChain(NextBuffer);
NextBuffer = (PNDIS_BUFFER) NULL;
pc->pc_common.pc_flags &= ~PACKET_FLAG_IPBUF;
}
if (!(pc->pc_common.pc_flags & PACKET_FLAG_FW)) {
FreeIPHdrBuffer(OldBuffer);
pc->pc_firewall = NULL;
pc->pc_firewall2 = NULL;
NdisFreePacket(Packet);
}
return NextBuffer;
}
//** AllocIPPacketList - Allocate the packet pool
//
// Called during initialization to allocate the packet pool
//
// Input: Nothing.
//
// Returns: TRUE if it succeeds, FALSE otherwise
//
BOOLEAN
AllocIPPacketList(void)
{
PacketContext * pc;
NDIS_STATUS Status;
//
// Determine the size of the machine and allocate the packet pool accordingly
//
#if MILLEN
PacketPoolSizeMax = SMALL_POOL;
#else // MILLEN
switch (MmQuerySystemSize()) {
case MmSmallSystem:
PacketPoolSizeMax = SMALL_POOL;
break;
case MmMediumSystem:
PacketPoolSizeMax = MEDIUM_POOL;
break;
case MmLargeSystem:
PacketPoolSizeMax = LARGE_POOL;
break;
}
#endif // !MILLEN
NdisAllocatePacketPoolEx(&Status,
&NdisPacketPool,
PacketPoolSizeMin,
PacketPoolSizeMax-PacketPoolSizeMin,
sizeof(PacketContext));
if (Status == NDIS_STATUS_SUCCESS) {
NdisSetPacketPoolProtocolId(NdisPacketPool, NDIS_PROTOCOL_ID_TCP_IP);
}
return (NdisPacketPool != NULL);
}
//** GetIPPacket - Get an NDIS packet to use.
//
// A routine to allocate an NDIS packet.
//
// Entry: Nothing.
//
// Returns: Pointer to NDIS_PACKET if allocated, or NULL.
//
PNDIS_PACKET
GetIPPacket(void)
{
PNDIS_PACKET Packet;
NDIS_STATUS Status;
NdisAllocatePacket(&Status, &Packet, NdisPacketPool);
if (Packet != NULL) {
PNDIS_PACKET_EXTENSION PktExt;
PacketContext * pc;
PktExt = NDIS_PACKET_EXTENSION_FROM_PACKET(Packet);
PktExt->NdisPacketInfo[TcpIpChecksumPacketInfo] = NULL;
PktExt->NdisPacketInfo[IpSecPacketInfo] = NULL;
PktExt->NdisPacketInfo[TcpLargeSendPacketInfo] = NULL;
PktExt->NdisPacketInfo[ClassificationHandlePacketInfo] = NULL;
NdisClearPacketFlags(Packet, (NDIS_FLAGS_DONT_LOOPBACK | NDIS_FLAGS_LOOPBACK_ONLY));
pc = (PacketContext *)Packet->ProtocolReserved;
pc->pc_if = NULL;
pc->pc_iflink = NULL;
pc->pc_common.pc_flags = 0;
pc->pc_common.pc_owner = PACKET_OWNER_IP;
pc->pc_hdrincl = 0;
}
return Packet;
}
//** GetIPHdrBuffer - Get an IP header buffer.
//
// A routine to allocate an IP header buffer, with an NDIS buffer.
//
// Entry: Nothing.
//
// Returns: Pointer to NDIS_BUFFER if allocated, or NULL.
//
__inline
PNDIS_BUFFER
GetIPHdrBuffer(IPHeader **Header)
{
return MdpAllocate(IpHeaderPool, Header);
}
//** GetIPHeader - Get a header buffer and packet.
//
// Called when we need to get a header buffer and packet. We allocate both,
// and chain them together.
//
// Input: Pointer to where to store packet.
//
// Returns: Pointer to IP header.
//
IPHeader *
GetIPHeader(PNDIS_PACKET *PacketPtr)
{
PNDIS_BUFFER Buffer;
PNDIS_PACKET Packet;
IPHeader *pIph;
Packet = GetIPPacket();
if (Packet != NULL) {
Buffer = GetIPHdrBuffer(&pIph);
if (Buffer != NULL) {
PacketContext *PC = (PacketContext *) Packet->ProtocolReserved;
PC->pc_common.pc_flags |= PACKET_FLAG_IPHDR;
NdisChainBufferAtBack(Packet, Buffer);
*PacketPtr = Packet;
return pIph;
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
}
return NULL;
}
//** ReferenceBuffer - Reference a buffer.
//
// Called when we need to update the count of a BufferReference strucutre, either
// by a positive or negative value. If the count goes to 0, we'll free the buffer
// reference and return success. Otherwise we'll return pending.
//
// Entry: BR - Pointer to buffer reference.
// Count - Amount to adjust refcount by.
//
// Returns: Success, or pending.
//
int
ReferenceBuffer(BufferReference * BR, int Count)
{
CTELockHandle handle;
int NewCount;
if (BR == NULL) {
return 0;
}
CTEGetLock(&BR->br_lock, &handle);
BR->br_refcount += Count;
NewCount = BR->br_refcount;
CTEFreeLock(&BR->br_lock, handle);
return NewCount;
}
//* IPSendComplete - IP send complete handler.
//
// Called by the link layer when a send completes. We're given a pointer to a
// net structure, as well as the completing send packet and the final status of
// the send.
//
// Entry: Context - Context we gave to the link layer.
// Packet - Completing send packet.
// Status - Final status of send.
//
// Returns: Nothing.
//
void
__stdcall
IPSendComplete(void *Context, PNDIS_PACKET Packet, NDIS_STATUS Status)
{
NetTableEntry *NTE = (NetTableEntry *) Context;
PacketContext *PContext = (PacketContext *) Packet->ProtocolReserved;
void (*xmitdone) (void *, PNDIS_BUFFER, IP_STATUS);
void *UContext; // Upper layer context.
BufferReference *BufRef; // Buffer reference, if any.
PNDIS_BUFFER Buffer;
PNDIS_PACKET_EXTENSION PktExt;
Interface *IF; // The interface on which this completed.
BOOLEAN fIpsec = (PContext->pc_common.pc_IpsecCtx != NULL);
PNDIS_BUFFER PC_firewall;
struct IPRcvBuf *PC_firewall2;
PNDIS_BUFFER PC_hdrincl;
LinkEntry *Link;
IP_STATUS SendStatus;
// Copy useful information from packet.
xmitdone = PContext->pc_pi->pi_xmitdone;
UContext = PContext->pc_context;
BufRef = PContext->pc_br;
PC_firewall = PContext->pc_firewall;
PC_firewall2 = PContext->pc_firewall2;
PC_hdrincl = PContext->pc_hdrincl;
IF = PContext->pc_if;
Link = PContext->pc_iflink;
SendStatus = (Status == NDIS_STATUS_FAILURE) ? IP_GENERAL_FAILURE
: IP_SUCCESS;
PktExt = NDIS_PACKET_EXTENSION_FROM_PACKET(Packet);
if (PtrToUlong(PktExt->NdisPacketInfo[TcpLargeSendPacketInfo])) {
//We are sure that this is tcp.
// get its context and pass on this info.
((SendCmpltContext *) UContext)->scc_ByteSent =
PtrToUlong(PktExt->NdisPacketInfo[TcpLargeSendPacketInfo]);
}
if (BufRef == (BufferReference *) NULL) {
// If this is a header include packet
// make sure that duped data part is
// freed here.
Buffer = FreeIPPacket(Packet, TRUE, SendStatus);
if (!Buffer) {
//
// if NULL was returned by IPSEC, it is ok since IPSEC
// might have released all the MDLs.
//
if (fIpsec) {
// We're done with the packet now, we may need to dereference
// the interface.
if (Link) {
DerefLink(Link);
}
if (IF) {
DerefIF(IF);
}
return;
} else {
ASSERT(FALSE);
}
}
ASSERT(Buffer);
(*xmitdone) (UContext, Buffer, SendStatus);
} else {
// Check if this is the last refcnt on this buffer.
// Decrement this reference only after all the operations are
// done on this packet.
if (ReferenceBuffer(BufRef, -1) == 0) {
PContext->pc_ipsec_flags |= IPSEC_FLAG_FRAG_DONE;
// Check for header include option on the packet.
// If true, then original buffer needs to be hooked
// back in to the chain freeing the one allocated by us.
// Note that this pc_hdrincl will be true only if the packet
// traversed thru slow path in ipxmit.
FreeIPPacket(Packet, TRUE, SendStatus);
Buffer = BufRef->br_buffer;
if (!Buffer) {
//
// if NULL was returned by IPSEC, it is ok since IPSEC
// might have released all the MDLs.
//
if (fIpsec) {
// We're done with the packet now, we may need to dereference
// the interface.
if (Link) {
DerefLink(Link);
}
if (IF) {
DerefIF(IF);
}
CTEFreeMem(BufRef);
return;
} else {
ASSERT(FALSE);
}
}
ASSERT(Buffer);
if (PC_firewall) {
PNDIS_BUFFER FirewallBuffer;
FirewallBuffer = PC_firewall;
FreeIPBufferChain(Buffer);
Buffer = FirewallBuffer;
ASSERT(PC_firewall2);
IPFreeBuff(PC_firewall2);
if (PC_hdrincl) {
FreeIPPayloadBuffer(Buffer,PC_hdrincl);
}
}
CTEFreeMem(BufRef);
(*xmitdone) (UContext, Buffer, SendStatus);
} else {
// Since there are more outstanding packets using the headers
// in attached to this packet, do not restore them now.
Buffer = FreeIPPacket(Packet, FALSE, SendStatus);
// We're not done with the send yet, so NULL the IF to
// prevent dereferencing it.
IF = NULL;
Link = NULL;
}
}
// We're done with the packet now, we may need to dereference
// the interface.
if (Link != NULL) {
DerefLink(Link);
}
if (IF == NULL) {
return;
} else {
DerefIF(IF);
}
}
#if DBG
ULONG DebugLockdown = 0;
#endif
//** SendIPPacket - Send an IP packet.
//
// Called when we have a filled in IP packet we need to send. Basically, we
// compute the xsum and send the thing.
//
// Entry: IF - Interface to send it on.
// FirstHop - First hop address to send it to.
// Packet - Packet to be sent.
// Buffer - Buffer to be sent.
// Header - Pointer to IP Header of packet.
// Options - Pointer to option buffer.
// OptionLength - Length of options.
//
// Returns: IP_STATUS of attempt to send.
IP_STATUS
SendIPPacket(Interface * IF, IPAddr FirstHop, PNDIS_PACKET Packet,
PNDIS_BUFFER Buffer, IPHeader * Header, uchar * Options,
uint OptionSize, BOOLEAN IPSeced, void *ArpCtxt,
BOOLEAN DontFreePacket)
{
ulong csum;
NDIS_STATUS Status;
IP_STATUS SendStatus;
#if DBG
//
// If DebugLockdown is set to 1, this means no unicast packets with
// protocol other than AH or ESP can be sent out; and we assert if so.
//
if (DebugLockdown) {
USHORT *pPort = NULL;
ULONG Length = 0;
USHORT IsakmpPort = net_short(500);
USHORT KerberosPort = net_short(88);
NdisQueryBuffer(Buffer, &pPort, &Length);
if (pPort &&
Header->iph_protocol != PROTOCOL_AH &&
Header->iph_protocol != PROTOCOL_ESP &&
IPGetAddrType(Header->iph_dest) == DEST_REMOTE) {
//
// We assert here unless this is exempt traffic.
//
ASSERT(Header->iph_protocol == PROTOCOL_RSVP ||
(Header->iph_protocol == PROTOCOL_UDP &&
(pPort[1] == IsakmpPort ||
pPort[0] == KerberosPort ||
pPort[1] == KerberosPort)) ||
(Header->iph_protocol == PROTOCOL_TCP &&
(pPort[0] == KerberosPort ||
pPort[1] == KerberosPort)));
}
}
#endif
ASSERT(IF->if_refcount != 0);
DEBUGMSG(DBG_TRACE && DBG_IP && DBG_TX,
(DTEXT("+SendIPPacket(%x, %x, %x, %x, %x, %x, %x, %X, %X, %x)\n"),
IF, FirstHop, Packet, Buffer, Header, Options, OptionSize, IPSeced,
ArpCtxt, DontFreePacket));
//
// If we IPSECed this buffer, then the packet is ready to go courtesy IPSEC
//
if (!IPSeced) {
csum = xsum(Header, sizeof(IPHeader));
if (Options) { // We have options, oh boy.
PNDIS_BUFFER OptBuffer;
PacketContext *pc = (PacketContext *) Packet->ProtocolReserved;
NdisAllocateBuffer(&Status, &OptBuffer, BufferPool,
Options, OptionSize);
if (Status != NDIS_STATUS_SUCCESS) { // Couldn't get the needed
// option buffer.
CTEFreeMem(Options);
if (!DontFreePacket) {
NdisChainBufferAtBack(Packet, Buffer);
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
}
return IP_NO_RESOURCES;
}
pc->pc_common.pc_flags |= PACKET_FLAG_OPTIONS;
NdisChainBufferAtBack(Packet, OptBuffer);
csum += xsum(Options, OptionSize);
csum = (csum >> 16) + (csum & 0xffff);
csum += (csum >> 16);
}
Header->iph_xsum = ~(ushort) csum;
NdisChainBufferAtBack(Packet, Buffer);
} else {
// Make sure that packet tail is pointing to the
// last MDL.
PNDIS_BUFFER tmp = Buffer;
if (tmp) {
while(NDIS_BUFFER_LINKAGE(tmp)) {
tmp = NDIS_BUFFER_LINKAGE(tmp);
}
Packet->Private.Tail = tmp;
}
}
if (CLASSD_ADDR(Header->iph_dest)) {
IF->if_OutMcastPkts++;
IF->if_OutMcastOctets += net_short(Header->iph_length) - sizeof(IPHeader);
}
Status = (*(IF->if_xmit)) (IF->if_lcontext, &Packet, 1, FirstHop,
NULL, ArpCtxt);
if (Status == NDIS_STATUS_PENDING) {
PacketContext *pc = (PacketContext *) Packet->ProtocolReserved;
return IP_PENDING;
}
// Status wasn't pending. Free the packet, and map the status.
if (Status == NDIS_STATUS_SUCCESS)
SendStatus = IP_SUCCESS;
else {
if (Status == NDIS_STATUS_FAILURE)
SendStatus = IP_GENERAL_FAILURE;
else
SendStatus = IP_HW_ERROR;
}
if (!DontFreePacket)
FreeIPPacket(Packet, TRUE, SendStatus);
return SendStatus;
}
//* SendDHCPPacket - Send a broadcast for DHCP.
//
// Called when somebody is sending a broadcast packet with a NULL source
// address. We assume this means they're sending a DHCP packet. We loop
// through the NTE table, and when we find an entry that's not valid we
// send out the interface associated with that entry.
//
// Input: Dest - Destination of packet.
// Packet - Packet to be send.
// Buffer - Buffer chain to be sent.
// Header - Pointer to header buffer being sent.
//
// Return: Status of send attempt.
//
IP_STATUS
SendDHCPPacket(IPAddr Dest, PNDIS_PACKET Packet, PNDIS_BUFFER Buffer,
IPHeader * IPH, void *ArpCtxt)
{
if (DHCPNTE != NULL && (DHCPNTE->nte_flags & NTE_ACTIVE)) {
// The DHCP NTE is currently invalid, and active. Send on that
// interface.
return SendIPPacket(DHCPNTE->nte_if, Dest, Packet, Buffer, IPH, NULL,
0, (BOOLEAN) (IPSecHandlerPtr != NULL),
ArpCtxt, FALSE);
}
// Didn't find an invalid NTE! Free the resources, and return the failure.
FreeIPPacket(Packet, TRUE, IP_DEST_HOST_UNREACHABLE);
IPSInfo.ipsi_outdiscards++;
return IP_DEST_HOST_UNREACHABLE;
}
//* IPCopyBuffer - Copy an NDIS buffer chain at a specific offset.
//
// This is the IP version of the function NdisCopyBuffer, which didn't
// get done properly in NDIS3. We take in an NDIS buffer chain, an offset,
// and a length, and produce a buffer chain describing that subset of the
// input buffer chain.
//
// This routine is not particularly efficient. Since only IPFragment uses
// it currently, it might be better to just incorporate this functionality
// directly into IPFragment.
//
// Input: OriginalBuffer - Original buffer chain to copy from.
// Offset - Offset from start to dup.
// Length - Length in bytes to dup.
//
// Returns: Pointer to new chain if we can make one, NULL if we can't.
//
PNDIS_BUFFER
IPCopyBuffer(PNDIS_BUFFER OriginalBuffer, uint Offset, uint Length)
{
PNDIS_BUFFER CurrentBuffer; // Pointer to current buffer.
PNDIS_BUFFER *NewBuffer; // Pointer to pointer to current new buffer.
PNDIS_BUFFER FirstBuffer; // First buffer in new chain.
UINT CopyLength; // Length of current copy.
NDIS_STATUS NewStatus; // Status of NdisAllocateBuffer operation.
PVOID pvBuffer;
// First skip over the number of buffers we need to to reach Offset.
CurrentBuffer = OriginalBuffer;
while (Offset >= NdisBufferLength(CurrentBuffer)) {
Offset -= NdisBufferLength(CurrentBuffer);
CurrentBuffer = NDIS_BUFFER_LINKAGE(CurrentBuffer);
if (CurrentBuffer == (PNDIS_BUFFER) NULL)
return NULL;
}
// Now CurrentBuffer is the buffer from which we start building the new chain, and
// Offset is the offset into CurrentBuffer from which to start.
FirstBuffer = NULL;
NewBuffer = &FirstBuffer;
do {
CopyLength = MIN(Length, NdisBufferLength(CurrentBuffer) - Offset);
pvBuffer = TcpipBufferVirtualAddress(CurrentBuffer, NormalPagePriority);
if (pvBuffer == NULL) {
break;
}
NdisAllocateBuffer(&NewStatus, NewBuffer, BufferPool,
((uchar *) pvBuffer) + Offset,
CopyLength);
if (NewStatus != NDIS_STATUS_SUCCESS)
break;
Offset = 0; // No offset from next buffer.
NewBuffer = &(NDIS_BUFFER_LINKAGE(*NewBuffer));
CurrentBuffer = NDIS_BUFFER_LINKAGE(CurrentBuffer);
Length -= CopyLength;
} while (Length != 0 && CurrentBuffer != (PNDIS_BUFFER) NULL);
if (Length == 0) { // We succeeded
return FirstBuffer;
} else { // We exited the loop because of an error.
// We need to free any allocated buffers, and return.
CurrentBuffer = FirstBuffer;
while (CurrentBuffer != (PNDIS_BUFFER) NULL) {
PNDIS_BUFFER Temp = CurrentBuffer;
CurrentBuffer = NDIS_BUFFER_LINKAGE(CurrentBuffer);
NdisFreeBuffer(Temp);
}
return NULL;
}
}
//** IPFragment - Fragment and send an IP datagram.
//
// Called when an outgoing datagram is larger than the local MTU, and needs
// to be fragmented. This is a somewhat complicated operation. The caller
// gives us a prebuilt IP header, packet, and options. We use the header and
// packet on the last fragment of the send, as the passed in header already
// has the more fragments bit set correctly for the last fragment.
//
// The basic idea is to figure out the maximum size which we can send as a
// multiple of 8. Then, while we can send a maximum size fragment we'll
// allocate a header, packet, etc. and send it. At the end we'll send the
// final fragment using the provided header and packet.
//
// Entry: DestIF - Outbound interface of datagram.
// MTU - MTU to use in transmitting.
// FirstHop - First (or next) hop for this datagram.
// Packet - Packet to be sent.
// Header - Prebuilt IP header.
// Buffer - Buffer chain for data to be sent.
// DataSize - Size in bytes of data.
// Options - Pointer to option buffer, if any.
// OptionSize - Size in bytes of option buffer.
// SentCount - Pointer to where to return pending send count (may be NULL).
// bDontLoopback - Determines whether NDIS_FLAGS_DONT_LOOPBACK needs
// to be set
//
// Returns: IP_STATUS of send.
//
IP_STATUS
IPFragment(Interface * DestIF, uint MTU, IPAddr FirstHop,
PNDIS_PACKET Packet, IPHeader * Header, PNDIS_BUFFER Buffer, uint DataSize,
uchar * Options, uint OptionSize, int *SentCount, BOOLEAN bDontLoopback, void *ArpCtxt)
{
BufferReference *BR; // Buffer reference we'll use.
PacketContext *PContext = (PacketContext *) Packet->ProtocolReserved;
FWContext *FWC = (FWContext *) Packet->ProtocolReserved;
PacketContext *CurrentContext; // Current Context in use.
uint MaxSend; // Maximum size (in bytes) we can send here.
uint PendingSends = 0; // Counter of how many pending sends we have.
PNDIS_BUFFER CurrentBuffer; // Current buffer to be sent.
PNDIS_PACKET CurrentPacket; // Current packet we're using.
IP_STATUS SendStatus; // Status of send command.
IPHeader *CurrentHeader; // Current header buffer we're using.
ushort Offset = 0; // Current offset into fragmented packet.
ushort StartOffset; // Starting offset of packet.
ushort RealOffset; // Offset of new fragment.
uint FragOptSize = 0; // Size (in bytes) of fragment options.
uchar FragmentOptions[MAX_OPT_SIZE]; // Master copy of options sent for fragments.
uchar Error = FALSE; // Set if we get an error in our main loop.
BOOLEAN NukeFwPktOptions = FALSE;
PNDIS_BUFFER HdrIncl = NULL;
uint FirewallMode = 0;
PNDIS_BUFFER TempBuffer, PC_Firewall;
struct IPRcvBuf *PC_Firewall2;
PNDIS_PACKET LastPacket = NULL;
PIPSEC_SEND_COMPLETE_CONTEXT pIpsecCtx;
BOOLEAN PC_reinject = FALSE;
PVOID PC_context;
void (*xmitdone) (void *, PNDIS_BUFFER, IP_STATUS);
MaxSend = (MTU - OptionSize) & ~7; // Determine max send size.
ASSERT(MaxSend < DataSize);
BR = PContext->pc_br; // Get the buffer reference we'll need.
ASSERT(BR);
FirewallMode = ProcessFirewallQ();
TempBuffer = BR->br_buffer;
PC_Firewall = PContext->pc_firewall;
PC_Firewall2 = PContext->pc_firewall2;
pIpsecCtx = PContext->pc_common.pc_IpsecCtx;
if (pIpsecCtx && (pIpsecCtx->Flags & SCF_FLUSH)) {
PC_reinject = TRUE;
PC_context = PContext->pc_context;
}
HdrIncl = PContext->pc_hdrincl;
xmitdone = PContext->pc_pi->pi_xmitdone;
if (Header->iph_offset & IP_DF_FLAG) { // Don't fragment flag set.
// Error out.
//
// If options are already linked in, dont free them. FreeIPPacket will.
//
if (Options &&
!(PContext->pc_common.pc_flags & PACKET_FLAG_OPTIONS)) {
CTEFreeMem(Options);
}
PContext->pc_ipsec_flags |= (IPSEC_FLAG_FRAG_DONE | IPSEC_FLAG_FLUSH);
FreeIPPacket(Packet, TRUE, IP_PACKET_TOO_BIG);
if (SentCount == (int *)NULL) // No sent count is to be
// returned.
CTEFreeMem(BR);
IPSInfo.ipsi_fragfails++;
return IP_PACKET_TOO_BIG;
}
#if DBG && GPC
if (PtrToUlong(NDIS_PER_PACKET_INFO_FROM_PACKET(Packet,
ClassificationHandlePacketInfo))) {
IF_IPDBG(IP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,"IPFrag: Packet %p with CH\n", Packet));
}
#endif
StartOffset = Header->iph_offset & IP_OFFSET_MASK;
StartOffset = net_short(StartOffset) * 8;
// If we have any options, copy the ones that need to be copied, and figure
// out the size of these new copied options.
if (Options != (uchar *) NULL) { // We have options.
uchar *TempOptions = Options;
const uchar *EndOptions = (const uchar *)(Options + OptionSize);
// Copy the options into the fragment options buffer.
NdisFillMemory(FragmentOptions, MAX_OPT_SIZE, IP_OPT_EOL);
while ((TempOptions[IP_OPT_TYPE] != IP_OPT_EOL) &&
(TempOptions < EndOptions)) {
if (TempOptions[IP_OPT_TYPE] & IP_OPT_COPIED) {
// This option needs to be copied.
uint TempOptSize;
TempOptSize = TempOptions[IP_OPT_LENGTH];
RtlCopyMemory(&FragmentOptions[FragOptSize], TempOptions,
TempOptSize);
FragOptSize += TempOptSize;
TempOptions += TempOptSize;
} else {
// A non-copied option, just skip over it.
if (TempOptions[IP_OPT_TYPE] == IP_OPT_NOP)
TempOptions++;
else
TempOptions += TempOptions[IP_OPT_LENGTH];
}
}
// Round the copied size up to a multiple of 4.
FragOptSize = ((FragOptSize & 3) ? ((FragOptSize & ~3) + 4) : FragOptSize);
//Is this from FW path?
if (PContext->pc_common.pc_flags & PACKET_FLAG_FW) {
//Nuke PContext->fc_options after first IpsendPacket
//To prevent double freeing of option buffer
NukeFwPktOptions = TRUE;
}
}
PContext->pc_common.pc_flags |= PACKET_FLAG_IPBUF;
// Now, while we can build maximum size fragments, do so.
do {
PVOID CancelId;
uchar Owner;
if ((CurrentHeader = GetIPHeader(&CurrentPacket)) == (IPHeader *) NULL) {
// Couldn't get a buffer. Break out, since no point in sending others.
SendStatus = IP_NO_RESOURCES;
Error = TRUE;
break;
}
NDIS_PER_PACKET_INFO_FROM_PACKET(CurrentPacket, ClassificationHandlePacketInfo) =
NDIS_PER_PACKET_INFO_FROM_PACKET(Packet, ClassificationHandlePacketInfo);
#if !MILLEN
// Set the cancel requestID from parent packet.
CancelId = NDIS_GET_PACKET_CANCEL_ID(Packet);
NDIS_SET_PACKET_CANCEL_ID(CurrentPacket, CancelId);
#endif
// Copy the buffer into a new one, if we can.
CurrentBuffer = IPCopyBuffer(Buffer, Offset, MaxSend);
if (CurrentBuffer == NULL) { // No buffer, free resources and
// break.
// header cleanup will be done in error handling
// routine
SendStatus = IP_NO_RESOURCES;
FreeIPPacket(CurrentPacket, FALSE, SendStatus);
Error = TRUE;
break;
}
//
// Options for this send are set up when we get here, either from the
// entry from the loop, or from the allocation below.
// We have all the pieces we need. Put the packet together and send it.
//
CurrentContext = (PacketContext *) CurrentPacket->ProtocolReserved;
Owner = CurrentContext->pc_common.pc_owner;
*CurrentContext = *PContext;
CurrentContext->pc_common.pc_owner = Owner;
*CurrentHeader = *Header;
CurrentContext->pc_common.pc_flags &= ~PACKET_FLAG_FW;
CurrentHeader->iph_verlen = IP_VERSION +
((OptionSize + sizeof(IPHeader)) >> 2);
CurrentHeader->iph_length = net_short(MaxSend + OptionSize + sizeof(IPHeader));
RealOffset = (StartOffset + Offset) >> 3;
CurrentHeader->iph_offset = net_short(RealOffset) | IP_MF_FLAG;
if (bDontLoopback) {
NdisSetPacketFlags(CurrentPacket,
NDIS_FLAGS_DONT_LOOPBACK);
} else {
if (CurrentHeader->iph_ttl == 0) {
NdisSetPacketFlags(CurrentPacket, NDIS_FLAGS_LOOPBACK_ONLY);
}
}
// Clear Options flag if we are not sending any options
if (Options == NULL) {
CurrentContext->pc_common.pc_flags &= ~PACKET_FLAG_OPTIONS;
}
// Do not free the packet in SendIPPacket, as we may need
// to chain the buffer in case of IP_NO_RESOURCES
SendStatus = SendIPPacket(DestIF, FirstHop, CurrentPacket,
CurrentBuffer, CurrentHeader, Options,
OptionSize, FALSE, ArpCtxt, TRUE);
if (SendStatus == IP_PENDING) {
PendingSends++;
} else {
if(SendStatus == IP_NO_RESOURCES) {
// SendIPPacket has not chained the buffer..
NdisChainBufferAtBack(CurrentPacket, CurrentBuffer);
}
FreeIPPacket(CurrentPacket, FALSE, SendStatus);
}
IPSInfo.ipsi_fragcreates++;
Offset += (ushort) MaxSend;
DataSize -= MaxSend;
if (NukeFwPktOptions) {
//This is to avoid double frees of option
// in IpFreepacket and Freefwpacket.
FWC->fc_options = (uchar *) NULL;
FWC->fc_optlength = 0;
NukeFwPktOptions = FALSE;
}
// If we have any fragmented options, set up to use them next time.
if (FragOptSize) {
Options = CTEAllocMemN(OptionSize = FragOptSize, 'qiCT');
if (Options == (uchar *) NULL) { // Can't get an option buffer.
SendStatus = IP_NO_RESOURCES;
Error = TRUE;
break;
}
RtlCopyMemory(Options, FragmentOptions, OptionSize);
} else {
Options = (uchar *) NULL;
OptionSize = 0;
}
} while (DataSize > MaxSend);
// Clear Options flag if we are not sending any options
if (Options == NULL) {
PContext->pc_common.pc_flags &= ~PACKET_FLAG_OPTIONS;
}
//
// We've sent all of the previous fragments, now send the last one. We
// already have the packet and header buffer, as well as options if there
// are any - we need to copy the appropriate data.
//
if (!Error) { // Everything went OK above.
CurrentBuffer = IPCopyBuffer(Buffer, Offset, DataSize);
if (CurrentBuffer == NULL) { // No buffer, free resources
//
// If options are already linked in, dont free them. FreeIPPacket will.
//
if (Options &&
!(PContext->pc_common.pc_flags & PACKET_FLAG_OPTIONS)) {
CTEFreeMem(Options);
}
if (PC_reinject)
LastPacket = Packet;
else
FreeIPPacket(Packet, FALSE, IP_NO_RESOURCES);
IPSInfo.ipsi_outdiscards++;
} else { // Everything's OK, send it.
Header->iph_verlen = IP_VERSION + ((OptionSize + sizeof(IPHeader)) >> 2);
Header->iph_length = net_short(DataSize + OptionSize + sizeof(IPHeader));
RealOffset = (StartOffset + Offset) >> 3;
Header->iph_offset = net_short(RealOffset) | (Header->iph_offset & IP_MF_FLAG);
if (bDontLoopback) {
NdisSetPacketFlags(Packet,
NDIS_FLAGS_DONT_LOOPBACK);
} else {
if (Header->iph_ttl == 0) {
NdisSetPacketFlags(CurrentPacket, NDIS_FLAGS_LOOPBACK_ONLY);
}
}
// Do not free the packet in SendIPPacket, as we may need
// to chain the buffer in case of IP_NO_RESOURCES
SendStatus = SendIPPacket(DestIF, FirstHop, Packet,
CurrentBuffer, Header, Options,
OptionSize, FALSE, ArpCtxt, TRUE);
if (SendStatus == IP_PENDING) {
PendingSends++;
} else if (PC_reinject) {
LastPacket = Packet;
} else {
if (SendStatus == IP_NO_RESOURCES) {
// SendIPPacket has not chained the buffer..
NdisChainBufferAtBack(Packet, CurrentBuffer);
}
FreeIPPacket(Packet, FALSE, SendStatus);
}
IPSInfo.ipsi_fragcreates++;
IPSInfo.ipsi_fragoks++;
}
} else { // We had some sort of error.
// Free resources.
//
// If options are already linked in, dont free them. FreeIPPacket will.
//
if (Options &&
!(PContext->pc_common.pc_flags & PACKET_FLAG_OPTIONS)) {
CTEFreeMem(Options);
}
if (PC_reinject)
LastPacket = Packet;
else
FreeIPPacket(Packet, FALSE, SendStatus);
IPSInfo.ipsi_outdiscards++;
}
// Now, figure out what error code to return and whether or not we need to
// free the BufferReference.
if (SentCount == (int *)NULL) { // No sent count is to be
// returned.
if (ReferenceBuffer(BR, PendingSends) == 0) {
if (PC_reinject) {
if (LastPacket) {
PacketContext *pc = (PacketContext *) LastPacket->ProtocolReserved;
pc->pc_ipsec_flags |= (IPSEC_FLAG_FRAG_DONE | IPSEC_FLAG_FLUSH);
// This is the last packet that is being freed
// Fixup ipsec/firewall/hdrincl headers, if any
FreeIPPacket(LastPacket, TRUE, SendStatus);
} else if (PendingSends) {
//
// IPSEC reinject and last packet is NULL, but we still
// return success !!!!
// Also, pendingsends is +ve =>ipsendcomplete already
// called in same thread somebody has to free IPSEC's buffer
// freeippacket has been called by ipsendcomplete
// the only remaining way is calling xmitdone
// since ipsendcomplete won't have called xmit done as
// refcount would be -ve
//
(*IPSecSendCmpltPtr) (NULL, TempBuffer, pIpsecCtx,
IP_PACKET_TOO_BIG,
&TempBuffer);
(*xmitdone) (PC_context, TempBuffer, IP_SUCCESS);
}
} else {
// Need to undo ipsec, firewall and then
// header include changes to teh buffer list.
if (pIpsecCtx) {
(*IPSecSendCmpltPtr) (NULL, TempBuffer, pIpsecCtx,
IP_SUCCESS,&TempBuffer);
}
// If this is user header include packet,
// relink the original user buffer if necessary
if (PC_Firewall) {
BR->br_buffer = PC_Firewall;
}
if (BR->br_userbuffer) {
FreeIPPayloadBuffer(BR->br_buffer, BR->br_userbuffer);
}
}
CTEFreeMem(BR);
if (FirewallMode && PC_Firewall) {
FreeIPBufferChain(TempBuffer); // free the mdl chain
// allocated in firewall path
IPFreeBuff(PC_Firewall2); // free the rcvbuf chain
}
return IP_SUCCESS;
}
//
// This send is still pending. Call freepacket without setting
// pc_ipsec flag
//
if (LastPacket)
FreeIPPacket(LastPacket, FALSE, IP_PENDING);
return IP_PENDING;
} else
*SentCount += PendingSends;
// Just free the packet. Headers will be restored when the last packet completes.
if (LastPacket)
FreeIPPacket(LastPacket, FALSE, IP_PENDING);
return IP_PENDING;
}
//* UpdateRouteOption - Update a SR or RR options.
//
// Called by UpdateOptions when it needs to update a route option.
//
// Input: RTOption - Pointer to route option to be updated.
// Address - Address to update with.
//
// Returns: TRUE if we updated, FALSE if we didn't.
//
uchar
UpdateRouteOption(uchar * RTOption, IPAddr Address)
{
uchar Pointer; // Pointer value of option.
Pointer = RTOption[IP_OPT_PTR] - 1;
if (Pointer < RTOption[IP_OPT_LENGTH]) {
if ((RTOption[IP_OPT_LENGTH] - Pointer) < sizeof(IPAddr)) {
return FALSE;
}
*(IPAddr UNALIGNED *) & RTOption[Pointer] = Address;
RTOption[IP_OPT_PTR] += sizeof(IPAddr);
}
return TRUE;
}
//* UpdateOptions - Update an options buffer.
//
// Called when we need to update an options buffer outgoing. We stamp the indicated
// options with our local address.
//
// Input: Options - Pointer to options buffer to be updated.
// Index - Pointer to information about which ones to update.
// Address - Local address with which to update the options.
//
// Returns: Index of option causing the error, or MAX_OPT_SIZE if all goes well.
//
uchar
UpdateOptions(uchar * Options, OptIndex * Index, IPAddr Address)
{
uchar *LocalOption;
uchar LocalIndex;
// If we have both options and an index, update the options.
if (Options != (uchar *) NULL && Index != (OptIndex *) NULL) {
//
// If we have a source route to update, update it. If this
// fails return the index of the source route.
//
LocalIndex = Index->oi_srindex;
if (LocalIndex != MAX_OPT_SIZE)
if (!UpdateRouteOption(Options + LocalIndex, Address))
return LocalIndex;
// Do the same thing for any record route option.
LocalIndex = Index->oi_rrindex;
if (LocalIndex != MAX_OPT_SIZE)
if (!UpdateRouteOption(Options + LocalIndex, Address))
return LocalIndex;
// Now handle timestamp.
if ((LocalIndex = Index->oi_tsindex) != MAX_OPT_SIZE) {
uchar Flags, Length, Pointer;
LocalOption = Options + LocalIndex;
Pointer = LocalOption[IP_OPT_PTR] - 1;
Flags = LocalOption[IP_TS_OVFLAGS] & IP_TS_FLMASK;
// If we have room in the option, update it.
if (Pointer < (Length = LocalOption[IP_OPT_LENGTH])) {
ulong Now;
ulong UNALIGNED *TSPtr;
//
// Get the current time as milliseconds from midnight GMT,
// mod the number of milliseconds in 24 hours.
//
Now = ((TimeStamp + CTESystemUpTime()) | TSFlag) % (24 * 3600 * 1000);
Now = net_long(Now);
TSPtr = (ulong UNALIGNED *) & LocalOption[Pointer];
switch (Flags) {
//
// Just record the TS. If there is some room but not
// enough for an IP
// address we have an error.
//
case TS_REC_TS:
if ((Length - Pointer) < sizeof(IPAddr))
return LocalIndex; // Error - not enough room.
*TSPtr = Now;
LocalOption[IP_OPT_PTR] += sizeof(ulong);
break;
// Record only matching addresses.
case TS_REC_SPEC:
//
// If we're not the specified address, break out, else
// fall through to the record address case.
//
if (*(IPAddr UNALIGNED *) TSPtr != Address)
break;
//
// Record an address and timestamp pair. If there is some
// room but not enough for the address/timestamp pait, we
// have an error, so bail out.
//
case TS_REC_ADDR:
if ((Length - Pointer) < (sizeof(IPAddr) + sizeof(ulong)))
return LocalIndex; // Not enough room.
*(IPAddr UNALIGNED *) TSPtr = Address; // Store the address.
TSPtr++; // Update to where to put TS.
*TSPtr = Now; // Store TS
LocalOption[IP_OPT_PTR] += (sizeof(ulong) + sizeof(IPAddr));
break;
default: // Unknown flag type. Just ignore it.
break;
}
} else { // Have overflow.
//
// We have an overflow. If the overflow field isn't maxed,
// increment it. If it is maxed we have an error.
//
if ((LocalOption[IP_TS_OVFLAGS] & IP_TS_OVMASK) != IP_TS_MAXOV)
// This is not maxed, so increment it.
LocalOption[IP_TS_OVFLAGS] += IP_TS_INC;
else
return LocalIndex; // Would have overflowed.
}
}
}
return MAX_OPT_SIZE;
}
typedef struct {
IPAddr bsl_addr;
Interface *bsl_if;
uint bsl_mtu;
ushort bsl_flags;
ushort bsl_if_refs;
} BCastSendList;
VOID
FreeBCastSendList(BCastSendList * SendList, uint SendListSize)
{
uint i;
CTELockHandle LockHandle;
CTEGetLock(&RouteTableLock.Lock, &LockHandle);
for (i = 0; i < SendListSize / sizeof(BCastSendList); i++) {
if (SendList[i].bsl_if) {
LockedDerefIF(SendList[i].bsl_if);
}
}
CTEFreeLock(&RouteTableLock.Lock, LockHandle);
CTEFreeMem(SendList);
}
//** SendIPBcast - Send a local BCast IP packet.
//
// This routine is called when we need to send a bcast packet. This may
// involve sending on multiple interfaces. We figure out which interfaces
// to send on, then loop through sending on them.
//
// Some care is needed to avoid sending the packet onto the same physical media
// multiple times. What we do is loop through the NTE table, deciding in we
// should send on the interface. As we go through we build up a list of
// interfaces to send on. Then we loop through this list, sending on each
// interface. This is a little cumbersome, but allows us to localize the
// decision on where to send datagrams into one spot. If SendOnSource is FALSE
// coming in we assume we've already sent on the specified source NTE and
// initialize data structures accordingly. This feature is used in routing
// datagrams.
//
// Entry: SrcNTE - NTE for source of send (unused if SendOnSource == TRUE).
// Destination - Destination address
// Packet - Prebuilt packet to broadcast.
// IPH - Pointer to header buffer
// Buffer - Buffer of data to be sent.
// DataSize - Size of data to be sent.
// Options - Pointer to options buffer.
// OptionSize - Size in bytes of options.
// SendOnSource - Indicator of whether or not this should be sent on the source net.
// Index - Pointer to opt index array; may be NULL;
//
// Returns: Status of attempt to send.
//
IP_STATUS
SendIPBCast(NetTableEntry * SrcNTE, IPAddr Destination, PNDIS_PACKET Packet,
IPHeader * IPH, PNDIS_BUFFER Buffer, uint DataSize, uchar * Options,
uint OptionSize, uchar SendOnSource, OptIndex * Index)
{
BufferReference *BR; // Buffer reference to use for this
// buffer.
PacketContext *PContext = (PacketContext *) Packet->ProtocolReserved;
NetTableEntry *TempNTE;
uint i, j;
uint NeedFragment; // TRUE if we think we'll need to
// fragment.
int Sent = 0; // Count of how many we've sent.
IP_STATUS Status;
uchar *NewOptions; // Options we'll use on each send.
IPHeader *NewHeader;
PNDIS_BUFFER NewUserBuffer;
PNDIS_PACKET NewPacket;
BCastSendList *SendList;
uint NetsToSend;
IPAddr SrcAddr;
Interface *SrcIF;
IPHeader *Temp = NULL;
FORWARD_ACTION Action;
PNDIS_BUFFER TempBuffer, PC_Firewall;
struct IPRcvBuf *PC_Firewall2;
PIPSEC_SEND_COMPLETE_CONTEXT pIpsecCtx;
BOOLEAN PC_reinject = FALSE;
PVOID PC_context;
void (*xmitdone) (void *, PNDIS_BUFFER, IP_STATUS);
uint mtu;
uchar *NewOptions2; // Options we'll use on each send.
IPHeader *NewHeader2;
PNDIS_BUFFER NewUserBuffer2;
PNDIS_PACKET NewPacket2;
CTELockHandle LockHandle;
uint SendListSize = sizeof(BCastSendList) * NumNTE;
uint k;
NetTableEntry *NetTableList;
PVOID pvBuffer;
SendList = CTEAllocMemN(SendListSize, 'riCT');
if (SendList == NULL) {
if (PContext->pc_hdrincl) {
NdisChainBufferAtBack(Packet,Buffer);
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
}
return IP_NO_RESOURCES;
}
RtlZeroMemory(SendList, SendListSize);
// If SendOnSource, initalize SrcAddr and SrcIF to be non-matching.
// Otherwise initialize them to the masked source address and source
// interface.
if (SendOnSource != DisableSendOnSource) {
SrcAddr = NULL_IP_ADDR;
SrcIF = NULL;
} else {
ASSERT(SrcNTE != NULL);
SrcAddr = (SrcNTE->nte_addr & SrcNTE->nte_mask);
SrcIF = SrcNTE->nte_if;
}
CTEGetLock(&RouteTableLock.Lock, &LockHandle);
NeedFragment = FALSE;
// Loop through the NTE table, making a list of interfaces and
// corresponding addresses to send on.
NetsToSend = 0;
for (k = 0; k < NET_TABLE_SIZE; k++) {
for (TempNTE = NewNetTableList[k]; TempNTE != NULL; TempNTE = TempNTE->nte_next) {
IPAddr TempAddr;
// Don't send through invalid or the loopback NTE.
if (!(TempNTE->nte_flags & NTE_VALID) || TempNTE == LoopNTE)
continue;
// If the broadcast-mode is source-only, skip all NTEs
// other than the source-NTE.
if (SendOnSource == OnlySendOnSource &&
!IP_ADDR_EQUAL(TempNTE->nte_addr, IPH->iph_src))
continue;
TempAddr = TempNTE->nte_addr & TempNTE->nte_mask;
// If he matches the source address or SrcIF, skip him.
if (IP_ADDR_EQUAL(TempAddr, SrcAddr) || TempNTE->nte_if == SrcIF)
continue;
// If the destination isn't a broadcast on this NTE, skip him.
if (!IS_BCAST_DEST(IsBCastOnNTE(Destination, TempNTE)))
continue;
// if this NTE is P2P then always add him to bcast list.
if ((TempNTE->nte_if)->if_flags & IF_FLAGS_P2P) {
j = NetsToSend;
} else {
//
// Go through the list we've already build, looking for a match.
//
for (j = 0; j < NetsToSend; j++) {
//
// if P2P NTE then skip it - we want to send bcasts to all
// P2P interfaces in addition to 1 non P2P interface even
// if they are on the same subnet.
//
if ((SendList[j].bsl_if)->if_flags & IF_FLAGS_P2P)
continue;
if ((SendList[j].bsl_if)->if_flags & IF_FLAGS_P2MP)
continue;
if (IP_ADDR_EQUAL(SendList[j].bsl_addr & TempNTE->nte_mask, TempAddr)
|| SendList[j].bsl_if == TempNTE->nte_if) {
// He matches this send list element. Shrink the MSS if
// we need to, and then break out.
SendList[j].bsl_mtu = MIN(SendList[j].bsl_mtu, TempNTE->nte_mss);
if ((DataSize + OptionSize) > SendList[j].bsl_mtu)
NeedFragment = TRUE;
break;
}
}
}
if (j == NetsToSend) {
// This is a new one. Fill him in, and bump NetsToSend.
SendList[j].bsl_addr = TempNTE->nte_addr;
SendList[j].bsl_if = TempNTE->nte_if;
SendList[j].bsl_mtu = TempNTE->nte_mss;
SendList[j].bsl_flags = TempNTE->nte_flags;
SendList[j].bsl_if_refs++;
ASSERT(SendList[j].bsl_if_refs <= 1);
LOCKED_REFERENCE_IF(TempNTE->nte_if);
if ((DataSize + OptionSize) > SendList[j].bsl_mtu)
NeedFragment = TRUE;
NetsToSend++;
}
}
}
CTEFreeLock(&RouteTableLock.Lock, LockHandle);
if (NetsToSend == 0) {
CTEFreeMem(SendList);
if (PContext->pc_hdrincl) {
NdisChainBufferAtBack(Packet,Buffer);
FreeIPPacket(Packet, TRUE, IP_SUCCESS);
}
return IP_SUCCESS; // Nothing to send on.
}
// OK, we've got the list. If we've got more than one interface to send
// on or we need to fragment, get a BufferReference.
if (NetsToSend > 1 || NeedFragment) {
if ((BR = CTEAllocMemN(sizeof(BufferReference), 'siCT')) ==
(BufferReference *) NULL) {
FreeBCastSendList(SendList, SendListSize);
if (PContext->pc_hdrincl) {
NdisChainBufferAtBack(Packet,Buffer);
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
}
return IP_NO_RESOURCES;
}
BR->br_buffer = Buffer;
BR->br_refcount = 0;
CTEInitLock(&BR->br_lock);
PContext->pc_br = BR;
BR->br_userbuffer = PContext->pc_hdrincl;
TempBuffer = BR->br_buffer;
PC_Firewall = PContext->pc_firewall;
PC_Firewall2 = PContext->pc_firewall2;
pIpsecCtx = PContext->pc_common.pc_IpsecCtx;
if (pIpsecCtx && (pIpsecCtx->Flags & SCF_FLUSH)) {
PC_reinject = TRUE;
PC_context = PContext->pc_context;
}
xmitdone = PContext->pc_pi->pi_xmitdone;
} else {
BR = NULL;
PContext->pc_br = NULL;
}
//
// We need to pass up the options and IP hdr in a contiguous buffer.
// Allocate the buffer once and re-use later.
//
if (ForwardFilterEnabled) {
if (Options == NULL) {
#if FWD_DBG
DbgPrint("Options==NULL\n");
#endif
Temp = IPH;
} else {
Temp = CTEAllocMemN(sizeof(IPHeader) + OptionSize, 'tiCT');
if (Temp == NULL) {
FreeBCastSendList(SendList, SendListSize);
if (PContext->pc_hdrincl) {
NdisChainBufferAtBack(Packet,Buffer);
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
}
return IP_NO_RESOURCES;
}
*Temp = *IPH;
#if FWD_DBG
DbgPrint("Options!=NULL : alloced temp @ %lx\n", Temp);
#endif
//
// done later...
// RtlCopyMemory((uchar *)(Temp + 1), Options, OptionSize);
}
}
// Now, loop through the list. For each entry, send.
// Header fixup is needed in FreeIPPacket called within this loop
// If number of nets is one
for (i = 0; i < NetsToSend; i++) {
//
// For all nets except the last one we're going to send on we need
// to make a copy of the header, packet, buffers, and any options.
// On the last net we'll use the user provided information.
//
if (i != (NetsToSend - 1)) {
PVOID CancelId;
if ((NewHeader = GetIPHeader(&NewPacket)) == (IPHeader *) NULL) {
IPSInfo.ipsi_outdiscards++;
continue; // Couldn't get a header, skip this send.
}
NewUserBuffer = IPCopyBuffer(Buffer, 0, DataSize);
if (NewUserBuffer == NULL) {
// Couldn't get user buffer copied.
FreeIPPacket(NewPacket, FALSE, IP_NO_RESOURCES);
IPSInfo.ipsi_outdiscards++;
continue;
}
*(PacketContext *) NewPacket->ProtocolReserved = *PContext;
*NewHeader = *IPH;
(*(PacketContext *) NewPacket->ProtocolReserved).pc_common.pc_flags |= PACKET_FLAG_IPBUF;
(*(PacketContext *) NewPacket->ProtocolReserved).pc_common.pc_flags &= ~PACKET_FLAG_FW;
if (Options) {
// We have options, make a copy.
if ((NewOptions = CTEAllocMemN(OptionSize, 'uiCT')) == (uchar *) NULL) {
FreeIPBufferChain(NewUserBuffer);
FreeIPPacket(NewPacket, FALSE, IP_NO_RESOURCES);
IPSInfo.ipsi_outdiscards++;
continue;
}
RtlCopyMemory(NewOptions, Options, OptionSize);
} else {
NewOptions = NULL;
}
#if !MILLEN
// Set the cancel requestID from parent packet.
CancelId = NDIS_GET_PACKET_CANCEL_ID(Packet);
NDIS_SET_PACKET_CANCEL_ID(NewPacket, CancelId);
#endif
} else {
NewHeader = IPH;
NewPacket = Packet;
NewOptions = Options;
NewUserBuffer = Buffer;
}
UpdateOptions(NewOptions, Index, SendList[i].bsl_addr);
// See if we need to filter this packet. If we
// do, call the filter routine to see if it's
// OK to send it.
if (ForwardFilterEnabled) {
//
// Copy over the options.
//
if (NewOptions) {
RtlCopyMemory((uchar *) (Temp + 1), NewOptions, OptionSize);
}
pvBuffer = TcpipBufferVirtualAddress(NewUserBuffer, NormalPagePriority);
if (pvBuffer == NULL) {
if (i != (NetsToSend - 1)) {
FreeIPBufferChain(NewUserBuffer);
IPSInfo.ipsi_outdiscards++;
if (NewOptions) {
CTEFreeMem(NewOptions);
}
}
FreeIPPacket(NewPacket, FALSE, IP_GENERAL_FAILURE);
continue;
}
if ((SendList[i].bsl_if)->if_flags & IF_FLAGS_P2MP) {
if ((SendList[i].bsl_if)->if_flags & IF_FLAGS_NOLINKBCST) {
// what filtercontext to use ?
#if FWD_DBG
DbgPrint("ForwardFilterPtr not called for IF %lx since IF_FLAGS_NOLINKBCST not set\n", SendList[i].bsl_if);
#endif
Action = FORWARD;
} else {
//scan all the links on this interface and deliver them to the forwardfilter
Interface *IF = SendList[i].bsl_if;
LinkEntry *tmpLink = IF->if_link;
// ASSERT(tmpLink);
while (tmpLink) {
tmpLink->link_Action = FORWARD;
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (Temp,
pvBuffer,
NdisBufferLength(NewUserBuffer),
INVALID_IF_INDEX,
IF->if_index,
NULL_IP_ADDR,
tmpLink->link_NextHop);
DerefFilterPtr();
tmpLink->link_Action = Action;
tmpLink = tmpLink->link_next;
}
}
} else {
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (Temp,
pvBuffer,
NdisBufferLength(NewUserBuffer),
INVALID_IF_INDEX,
SendList[i].bsl_if->if_index,
NULL_IP_ADDR, NULL_IP_ADDR);
DerefFilterPtr();
}
#if FWD_DBG
DbgPrint("ForwardFilterPtr: %lx, FORWARD is %lx\n", Action, FORWARD);
#endif
if (!(SendList[i].bsl_if->if_flags & IF_FLAGS_P2MP) ||
(SendList[i].bsl_if->if_flags & IF_FLAGS_P2MP) &&
(SendList[i].bsl_if->if_flags & IF_FLAGS_NOLINKBCST)) {
if (Action != FORWARD) {
if (i != (NetsToSend - 1)) {
FreeIPBufferChain(NewUserBuffer);
if (NewOptions) {
CTEFreeMem(NewOptions);
}
}
FreeIPPacket(NewPacket, FALSE, IP_GENERAL_FAILURE);
continue;
}
}
}
if ((SendList[i].bsl_if->if_flags & IF_FLAGS_P2MP) &&
(SendList[i].bsl_if->if_flags & IF_FLAGS_NOLINKBCST)) {
//Determine the minimum MTU
Interface *tmpIF = SendList[i].bsl_if;
LinkEntry *tmpLink = tmpIF->if_link;
// int mtu;
if (!tmpLink) {
if (i != (NetsToSend - 1)) {
FreeIPBufferChain(NewUserBuffer);
if (NewOptions) {
CTEFreeMem(NewOptions);
}
}
FreeIPPacket(NewPacket, FALSE, IP_GENERAL_FAILURE);
continue;
}
ASSERT(tmpLink);
mtu = tmpLink->link_mtu;
while (tmpLink) {
if (tmpLink->link_mtu < mtu)
mtu = tmpLink->link_mtu;
tmpLink = tmpLink->link_next;
}
if ((DataSize + OptionSize) > mtu) { // This is too big
//
// Don't need to update Sent when fragmenting, as IPFragment
// will update the br_refcount field itself. It will also free
// the option buffer.
//
Status = IPFragment(SendList[i].bsl_if, mtu,
Destination, NewPacket, NewHeader,
NewUserBuffer, DataSize, NewOptions,
OptionSize, &Sent, FALSE, NULL);
//
// IPFragment is done with the descriptor chain, so if this is
// a locally allocated chain free it now.
//
if (i != (NetsToSend - 1))
FreeIPBufferChain(NewUserBuffer);
} else {
NewHeader->iph_xsum = 0;
// Do not free the packet in SendIPPacket, as we may need
// to chain the buffer in case of IP_NO_RESOURCES
Status = SendIPPacket(SendList[i].bsl_if, Destination,
NewPacket, NewUserBuffer, NewHeader,
NewOptions, OptionSize, FALSE, NULL, TRUE);
if (Status == IP_PENDING) {
Sent++;
} else {
if (Status == IP_NO_RESOURCES) {
// SendIPPacket has not chained the buffer..
NdisChainBufferAtBack(NewPacket, NewUserBuffer);
}
if (NetsToSend == 1) {
FreeIPPacket(NewPacket, TRUE, Status);
} else {
FreeIPPacket(NewPacket, FALSE, Status);
}
}
}
} else if (SendList[i].bsl_if->if_flags & IF_FLAGS_P2MP) {
// broadcast on all the links
Interface *tmpIF = SendList[i].bsl_if;
LinkEntry *tmpLink = tmpIF->if_link;
ASSERT(!(SendList[i].bsl_if->if_flags & IF_FLAGS_NOLINKBCST));
if (!tmpLink) {
if (i != (NetsToSend - 1)) {
FreeIPBufferChain(NewUserBuffer);
if (NewOptions) {
CTEFreeMem(NewOptions);
}
}
FreeIPPacket(NewPacket, FALSE, IP_GENERAL_FAILURE);
continue;
}
ASSERT(tmpLink);
while (tmpLink) {
//
//Go thru the send motion for all the links
//Passing the link context and checking whether it was
//forward for that link. For all link except the last one
//we're going to send on we need to make a copy of the header,
//packet, buffers, and any options.
// On the last net we'll use the user provided information.
//
if (tmpLink->link_next) {
if ((NewHeader2 = GetIPHeader(&NewPacket2)) == (IPHeader *) NULL) {
IPSInfo.ipsi_outdiscards++;
// free the packet etc. we made for the interface
if (i != (NetsToSend - 1)) {
FreeIPBufferChain(NewUserBuffer);
if (NewOptions) {
CTEFreeMem(NewOptions);
}
}
FreeIPPacket(NewPacket, FALSE, IP_NO_RESOURCES);
continue; // Couldn't get a header, skip this send.
}
NewUserBuffer2 = IPCopyBuffer(Buffer, 0, DataSize);
if (NewUserBuffer2 == NULL) {
// Couldn't get user buffer copied.
FreeIPPacket(NewPacket2, FALSE, IP_NO_RESOURCES);
IPSInfo.ipsi_outdiscards++;
if (i != (NetsToSend - 1)) {
FreeIPBufferChain(NewUserBuffer);
if (NewOptions) {
CTEFreeMem(NewOptions);
}
}
continue;
}
*(PacketContext *) NewPacket2->ProtocolReserved = *PContext;
*NewHeader2 = *IPH;
(*(PacketContext *) NewPacket2->ProtocolReserved).pc_common.pc_flags |= PACKET_FLAG_IPBUF;
(*(PacketContext *) NewPacket2->ProtocolReserved).pc_common.pc_flags &= ~PACKET_FLAG_FW;
if (Options) {
// We have options, make a copy.
if ((NewOptions2 = CTEAllocMemN(OptionSize, 'viCT')) == (uchar *) NULL) {
FreeIPBufferChain(NewUserBuffer2);
FreeIPPacket(NewPacket2, FALSE, IP_NO_RESOURCES);
IPSInfo.ipsi_outdiscards++;
if (i != (NetsToSend - 1)) {
FreeIPBufferChain(NewUserBuffer);
if (NewOptions) {
CTEFreeMem(NewOptions);
}
}
continue;
}
RtlCopyMemory(NewOptions2, Options, OptionSize);
} else {
NewOptions2 = NULL;
}
} else { // last link
NewHeader2 = NewHeader;
NewPacket2 = NewPacket;
NewOptions2 = NewOptions;
NewUserBuffer2 = NewUserBuffer;
}
UpdateOptions(NewOptions2, Index, SendList[i].bsl_addr);
if (tmpLink->link_Action) {
if ((DataSize + OptionSize) > tmpLink->link_mtu) {
//
// This is too big
// Don't need to update Sent when fragmenting, as
// IPFragment will update the br_refcount field itself.
// It will also free the option buffer.
//
Status = IPFragment(SendList[i].bsl_if,
tmpLink->link_mtu,
Destination, NewPacket2,
NewHeader2, NewUserBuffer2,
DataSize,
NewOptions2, OptionSize, &Sent,
FALSE, tmpLink->link_arpctxt);
//
// IPFragment is done with the descriptor chain, so
// if this is a locally allocated chain free it now.
//
if ((i != (NetsToSend - 1)) || (tmpLink->link_next))
FreeIPBufferChain(NewUserBuffer2);
} else {
NewHeader2->iph_xsum = 0;
// Do not free the packet in SendIPPacket, as we may need
// to chain the buffer in case of IP_NO_RESOURCES
Status = SendIPPacket(SendList[i].bsl_if,
Destination, NewPacket2,
NewUserBuffer2, NewHeader2,
NewOptions2, OptionSize, FALSE,
tmpLink->link_arpctxt, TRUE);
if (Status == IP_PENDING) {
Sent++;
} else {
if (Status == IP_NO_RESOURCES) {
// SendIPPacket has not chained the buffer..
NdisChainBufferAtBack(NewPacket2, NewUserBuffer2);
}
if (NetsToSend == 1) {
FreeIPPacket(NewPacket2, TRUE, Status);
} else {
FreeIPPacket(NewPacket2, FALSE, Status);
}
}
}
} else { // Action != FORWARD
if ((i != (NetsToSend - 1)) || (tmpLink->link_next)) {
FreeIPBufferChain(NewUserBuffer2);
if (NewOptions2) {
CTEFreeMem(NewOptions2);
}
}
continue;
}
}
} else { // Normal path
if ((DataSize + OptionSize) > SendList[i].bsl_mtu) {
//
// This is too big
// Don't need to update Sent when fragmenting, as IPFragment
// will update the br_refcount field itself. It will also free
// the option buffer.
//
Status = IPFragment(SendList[i].bsl_if,
SendList[i].bsl_mtu,
Destination, NewPacket, NewHeader,
NewUserBuffer, DataSize,
NewOptions, OptionSize, &Sent, FALSE, NULL);
//
// IPFragment is done with the descriptor chain, so if this is
// a locally allocated chain free it now.
//
if (i != (NetsToSend - 1)) {
FreeIPBufferChain(NewUserBuffer);
}
} else {
NewHeader->iph_xsum = 0;
// Do not free the packet in SendIPPacket, as we may need
// to chain the buffer in case of IP_NO_RESOURCES
Status = SendIPPacket(SendList[i].bsl_if,
Destination, NewPacket,
NewUserBuffer, NewHeader, NewOptions,
OptionSize, FALSE, NULL, TRUE);
if (Status == IP_PENDING) {
Sent++;
} else {
if (Status == IP_NO_RESOURCES) {
// SendIPPacket has not chained the buffer..
NdisChainBufferAtBack(NewPacket, NewUserBuffer);
}
if (NetsToSend == 1) {
FreeIPPacket(NewPacket, TRUE, Status);
} else {
FreeIPPacket(NewPacket, FALSE, Status);
}
}
}
}
}
if (Temp && Temp != IPH) {
CTEFreeMem(Temp);
}
//
// Alright, we've sent everything we need to. We'll adjust the reference
// count by the number we've sent. IPFragment may also have put some
// references on it. If the reference count goes to 0, we're done and
// we'll free the BufferReference structure.
//
if (BR != NULL) {
if (ReferenceBuffer(BR, Sent) == 0) {
FreeBCastSendList(SendList, SendListSize);
// Need to undo ipsec/firewall/Hdrincl header munging
if (PC_reinject) {
//
// the only remaining way is calling xmitdone
// since ipsendcomplete won't have called xmit done as
// refcount would be -ve
//
(*IPSecSendCmpltPtr) (NULL, TempBuffer, pIpsecCtx,
IP_SUCCESS,&TempBuffer);
(*xmitdone) (PC_context, TempBuffer, IP_SUCCESS);
} else {
// Need to undo ipsec, firewall and then
// header include changes to the buffer list.
if (pIpsecCtx) {
(*IPSecSendCmpltPtr) (NULL, TempBuffer, pIpsecCtx,
IP_SUCCESS, &TempBuffer);
}
// If this is user header include packet,
// relink the original user buffer if necessary
if (PC_Firewall) {
BR->br_buffer = PC_Firewall;
}
if (BR->br_userbuffer) {
FreeIPPayloadBuffer(BR->br_buffer, BR->br_userbuffer);
}
}
CTEFreeMem(BR); // Reference is 0, free the BR structure.
return IP_SUCCESS;
} else {
FreeBCastSendList(SendList, SendListSize);
return IP_PENDING;
}
} else {
// Had only one I/F to send on. Just return the status.
FreeBCastSendList(SendList, SendListSize);
return Status;
}
}
//** IPCancelPacket - Cancels packets that are pending
//
// Called by upper layer, when a send request is cancelled.
// Check for validity of the interface and call link layer
// cancel routine, if it is registered.
//
// Entry: IPIF - Interface on which the cancel needs to be issued
// Ctxt - Pointer to the cancel ID.
//
// Returns: None
//
VOID
IPCancelPackets(void *IPIF, void * Ctxt)
{
Interface *IF;
CTELockHandle Handle;
BOOLEAN Done=FALSE;
CTEGetLock(&RouteTableLock.Lock, &Handle);
if ((Interface *)IPIF != NULL) {
IF = IFList;
if (IPIF != BCAST_IF_CTXT) {
while(IF && (IF != IPIF)) {
IF= IF->if_next;
}
if (IF && !(IF->if_flags & IF_FLAGS_DELETING) && IF->if_cancelpackets) {
LOCKED_REFERENCE_IF(IF);
CTEFreeLock(&RouteTableLock.Lock, Handle);
(*(IF->if_cancelpackets)) (IF->if_lcontext, Ctxt);
DerefIF(IF);
} else {
CTEFreeLock(&RouteTableLock.Lock, Handle);
}
} else {
//Bcast cancel!. Issue cancel on all interfaces
uint CancelListSize, CancelIFs,i=0;
Interface **CancelList;
CancelListSize = sizeof(Interface *)*(NumIF +1);
CancelList = CTEAllocMemN(CancelListSize, 'riCT');
if (!CancelList) {
CTEFreeLock(&RouteTableLock.Lock, Handle);
return;
}
//refcnt valid interfaces
while(IF){
if (IF->if_refcount && IF->if_cancelpackets) {
LOCKED_REFERENCE_IF(IF);
CancelList[++i] = IF;
}
IF = IF->if_next;
}
CTEFreeLock(&RouteTableLock.Lock, Handle);
//call cancel and deref if
CancelIFs = i;
while (i) {
(*(CancelList[i]->if_cancelpackets))(CancelList[i]->if_lcontext, Ctxt);
i--;
}
while (CancelIFs) {
DerefIF(CancelList[CancelIFs]);
CancelIFs--;
}
CTEFreeMem(CancelList);
}
} else {
CTEFreeLock(&RouteTableLock.Lock, Handle);
}
}
IP_STATUS
ARPResolve(IPAddr Dest, IPAddr Source, ARPControlBlock * controlBlock,
ArpRtn Callback)
{
NDIS_STATUS status;
Interface *DestIF;
IPAddr NextHop;
uint MTU, size;
status = IP_DEST_HOST_UNREACHABLE;
DestIF = LookupNextHop(Dest, Source, &NextHop, &MTU);
if (DestIF == &LoopInterface) {
Interface *IF = NULL;
NetTableEntry *NTE;
NetTableEntry *NetTableList = NewNetTableList[NET_TABLE_HASH(Dest)];
for (NTE = NetTableList; NTE != NULL; NTE = NTE->nte_next) {
if (NTE != LoopNTE && IP_ADDR_EQUAL(NTE->nte_addr, Dest)) {
// Found one. Save it and break out.
IF = NTE->nte_if;
break;
}
}
if (IF) {
if (controlBlock->PhyAddrLen < IF->if_addrlen) {
size = controlBlock->PhyAddrLen;
status = IP_NO_RESOURCES;
} else {
size = IF->if_addrlen;
status = IP_SUCCESS;
}
RtlCopyMemory(controlBlock->PhyAddr, IF->if_addr, size);
}
DerefIF(DestIF);
return status;
}
controlBlock->CompletionRtn = Callback;
if (DestIF != NULL) {
if (!DestIF->if_arpresolveip) {
DerefIF(DestIF);
return IP_GENERAL_FAILURE;
}
if (!IP_ADDR_EQUAL(NextHop, Dest)) {
//We do not arp on non local address(via gateway)
DerefIF(DestIF);
return IP_BAD_DESTINATION;
}
status = (*(DestIF->if_arpresolveip)) (DestIF->if_lcontext, Dest,
controlBlock);
if (NDIS_STATUS_PENDING == status) {
status = IP_PENDING;
} else if (NDIS_STATUS_SUCCESS == status) {
status = IP_SUCCESS;
} else {
status = IP_GENERAL_FAILURE;
}
DerefIF(DestIF);
}
return status;
}
//** IPLargeXmit - Large Send
//
// This is the main transmit routine called by the upper layer. Conceptually,
// we process any options, look up the route to the destination, fragment the
// packet if needed, and send it. In reality, we use an RCE to cache the best
// route, and we have special case code here for dealing with the common
// case of no options, with everything fitting into one buffer.
//
// Entry: Context - Pointer to ProtInfo struc for protocol.
// SendContext - User provided send context, passed back on send cmplt.
// Protocol - Protocol field for packet.
// Buffer - NDIS_BUFFER chain of data to be sent.
// DataSize - Size in bytes of data to be sent.
// OptInfo - Pointer to optinfo structure.
// Dest - Destination to send to.
// Source - Source address to use.
// RCE - Pointer to an RCE structure that caches info. about path.
// SentBytes - pointer to return the number of bytes xmited
//
// Returns: Status of transmit command.
//
IP_STATUS
IPLargeXmit(void *Context, void *SendContext, PNDIS_BUFFER Buffer, uint DataSize,
IPAddr Dest, IPAddr Source, IPOptInfo * OptInfo, RouteCacheEntry * RCE,
uchar Protocol, ulong * SentBytes, ulong mss)
{
ProtInfo *PInfo = (ProtInfo *) Context;
PacketContext *pc;
Interface *DestIF; // Outgoing interface to use.
IPAddr FirstHop; // First hop address of
// destination.
NDIS_STATUS Status = IP_GENERAL_FAILURE;
IPHeader *IPH;
PNDIS_PACKET Packet;
PNDIS_BUFFER HeaderBuffer;
PNDIS_BUFFER OptBuffer = NULL;
CTELockHandle LockHandle;
uchar *Options;
uint OptionSize = 0;
RouteTableEntry *RTE;
uchar DType;
IP_STATUS SendStatus;
uint FirewallMode = 0;
IPSInfo.ipsi_outrequests++;
//
// Allocate a packet that we need for all cases, and fill
// in the common stuff. If everything goes well, we'll send it
// here. Otherwise we'll break out into special case code for
// broadcasts, fragments, etc.
//
// Make sure that we have an RCE, that it's valid, etc.
FirewallMode = ProcessFirewallQ();
if (ForwardFilterEnabled || FirewallMode) {
return Status;
}
if (RCE != NULL) {
// We have an RCE. Make sure it's valid.
if ((Packet = GetIPPacket()) != (PNDIS_PACKET) NULL) { // Got a packet.
PNDIS_PACKET_EXTENSION PktExt;
pc = (PacketContext *) Packet->ProtocolReserved;
pc->pc_br = (BufferReference *) NULL;
pc->pc_pi = PInfo;
pc->pc_context = SendContext;
ASSERT(pc->pc_if == NULL);
ASSERT(pc->pc_iflink == NULL);
CTEGetLock(&RCE->rce_lock, &LockHandle);
if (RCE->rce_flags == RCE_ALL_VALID) {
// The RTE is valid.
CTEInterlockedIncrementLong(&RCE->rce_usecnt);
RTE = RCE->rce_rte;
FirstHop = ADDR_FROM_RTE(RTE, Dest);
DestIF = IF_FROM_RTE(RTE);
CTEFreeLock(&RCE->rce_lock, LockHandle);
if (RCE->rce_dtype != DEST_BCAST) {
if (!OptInfo->ioi_options) {
// Construct the IP header in the backfill space
// provided by the transport
NdisAdjustBufferLength(Buffer, NdisBufferLength(Buffer) + sizeof(IPHeader));
NdisChainBufferAtBack(Packet, Buffer);
IPH = (IPHeader *)TcpipBufferVirtualAddress(Buffer, NormalPagePriority);
} else {
// Allocate a separate buffer for the IP header
// and chain to it the packet, followed by a separate
// buffer allocated for the packet's IP options.
OptionSize = OptInfo->ioi_optlength;
HeaderBuffer = GetIPHdrBuffer(&IPH);
if (HeaderBuffer) {
pc->pc_common.pc_flags |= PACKET_FLAG_IPHDR;
NdisChainBufferAtBack(Packet, HeaderBuffer);
Options = CTEAllocMemN(OptionSize, 'xiCT');
if (!Options) {
IPH = NULL;
} else {
NDIS_STATUS Status;
// Copy the options to the allocated block
// and obtain an NDIS_BUFFER to map the block.
RtlCopyMemory(Options, OptInfo->ioi_options,
OptionSize);
NdisAllocateBuffer(&Status, &OptBuffer,
BufferPool, Options,
OptionSize);
if (Status != NDIS_STATUS_SUCCESS) {
CTEFreeMem(Options);
IPH = NULL;
} else {
uchar* ULData;
// Mark the packet as carrying options,
// and chain both the options-buffer and
// the application data to the packet.
pc->pc_common.pc_flags |=
PACKET_FLAG_OPTIONS;
NdisChainBufferAtBack(Packet, OptBuffer);
// Copy the upper layer data forward.
// Note that the upper-layer header is
// assumed to be in non-paged pool, so
// TcpipBufferVirtualAddress cannot fail.
ULData = TcpipBufferVirtualAddress(Buffer, NormalPagePriority);
RtlCopyMemory(ULData,
ULData + sizeof(IPHeader),
NdisBufferLength(Buffer));
NdisChainBufferAtBack(Packet, Buffer);
}
}
}
}
if (IPH == NULL) {
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
IPSInfo.ipsi_outdiscards++;
CTEInterlockedDecrementLong(&RCE->rce_usecnt);
return IP_NO_RESOURCES;
}
IPH->iph_protocol = Protocol;
IPH->iph_xsum = 0;
if (IP_ADDR_EQUAL(OptInfo->ioi_addr, NULL_IP_ADDR)) {
IPH->iph_dest = Dest;
} else {
IPH->iph_dest = OptInfo->ioi_addr;
}
IPH->iph_src = Source;
IPH->iph_ttl = OptInfo->ioi_ttl;
if (OptInfo->ioi_ttl == 0) {
NdisSetPacketFlags(Packet, NDIS_FLAGS_LOOPBACK_ONLY);
} else {
// Set DONT_LOOPBACK flags for unicast packets
// to save few cycles in ndis
NdisSetPacketFlags(Packet, NDIS_FLAGS_DONT_LOOPBACK);
}
IPH->iph_tos = OptInfo->ioi_tos;
IPH->iph_offset = net_short((OptInfo->ioi_flags & IP_FLAG_DF) << 13);
IPH->iph_id =
(ushort) InterlockedExchangeAdd(&IPIDCacheLine.Value,
(DataSize + mss - 1) / mss);
IPH->iph_id = net_short(IPH->iph_id);
IPH->iph_verlen =
IP_VERSION + ((OptionSize + sizeof(IPHeader)) >> 2);
IPH->iph_length =
net_short(DataSize + OptionSize + sizeof(IPHeader));
PktExt = NDIS_PACKET_EXTENSION_FROM_PACKET(Packet);
PktExt->NdisPacketInfo[TcpLargeSendPacketInfo] = UlongToPtr(mss);
Status = (*(DestIF->if_xmit)) (DestIF->if_lcontext,
&Packet, 1, FirstHop, RCE, NULL);
CTEInterlockedDecrementLong(&RCE->rce_usecnt);
if (Status != NDIS_STATUS_PENDING) {
*SentBytes = PtrToUlong(PktExt->NdisPacketInfo[TcpLargeSendPacketInfo]);
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,"Largesend status not pending!\n"));
FreeIPPacket(Packet, TRUE, Status);
if (Status == NDIS_STATUS_SUCCESS) {
return IP_SUCCESS;
} else {
return IP_GENERAL_FAILURE;
}
} else {
return IP_PENDING;
}
} else {
FreeIPPacket(Packet, TRUE, IP_GENERAL_FAILURE);
Status = IP_GENERAL_FAILURE;
}
} else {
// large send is not possible
CTEFreeLock(&RCE->rce_lock, LockHandle);
Status = IP_GENERAL_FAILURE;
}
} else {
//could not get the packet
Status = IP_NO_RESOURCES;
}
} //RCE NULL
return Status;
}
//** IPTransmit - Transmit a packet.
//
// This is the main transmit routine called by the upper layer. Conceptually,
// we process any options, look up the route to the destination, fragment the
// packet if needed, and send it. In reality, we use an RCE to cache the best
// route, and we have special case code here for dealing with the common
// case of no options, with everything fitting into one buffer.
//
// Entry: Context - Pointer to ProtInfo struc for protocol.
// SendContext - User provided send context, passed back on send cmplt.
// Protocol - Protocol field for packet.
// Buffer - NDIS_BUFFER chain of data to be sent.
// DataSize - Size in bytes of data to be sent.
// OptInfo - Pointer to optinfo structure.
// Dest - Destination to send to.
// Source - Source address to use.
// RCE - Pointer to an RCE structure that caches info. about path.
// Protocol - Transport layer protcol number
// Irp - Pointer to Irp which generated this request, used
// for cancellation purpose
//
// Returns: Status of transmit command.
//
IP_STATUS
IPTransmit(void *Context, void *SendContext, PNDIS_BUFFER Buffer, uint DataSize,
IPAddr Dest, IPAddr Source, IPOptInfo *OptInfo, RouteCacheEntry *RCE,
uchar Protocol, IRP *Irp)
{
ProtInfo *PInfo = (ProtInfo *) Context;
PacketContext *pc;
Interface *DestIF; // Outgoing interface to use.
IPAddr FirstHop; // First hop address of destination.
uint MTU; // MTU of route.
NDIS_STATUS Status;
IPHeader *IPH;
UCHAR saveIPH[MAX_IP_HDR_SIZE + ICMP_HEADER_SIZE];
IPAddr SrcRouteOrigDest;
IPAddr SrcRouteFirstHop;
BOOLEAN fSrcRoute = FALSE;
ULONG ipsecFlags = 0;
PNDIS_PACKET Packet;
PNDIS_BUFFER HeaderBuffer;
PNDIS_BUFFER OptBuffer = NULL;
CTELockHandle LockHandle;
uchar *Options;
uint OptionSize = 0;
BufferReference *BR;
RouteTableEntry *RTE;
uchar DType;
IP_STATUS SendStatus;
Interface *RoutedIF;
BOOLEAN fIpsec; // is this an IPSEC generated packet?
FORWARD_ACTION Action = FORWARD;
ULONG ipsecByteCount = 0;
ULONG ipsecMTU;
PNDIS_BUFFER newBuf = NULL;
IPRcvBuf *pInRcvBuf = NULL;
uint FirewallMode = 0;
uint FirewallRef;
Queue* FirewallQ;
uint BufferChanged = 0; // used by firewall
UINT HdrInclOptions = FALSE;
LinkEntry *Link = NULL;
IPAddr LinkNextHop;
void *ArpCtxt = NULL;
RouteCacheEntry *RoutedRCE = NULL;
void *pvTmpBuffer;
uint ConstrainIF;
IPSInfo.ipsi_outrequests++;
// Check the request length. If it is > max that can be sent
// in IP fail this request.
if ((int)DataSize >
(MAX_TOTAL_LENGTH - (sizeof(IPHeader) + (OptInfo->ioi_options ? OptInfo->ioi_optlength : 0)))) {
IPSInfo.ipsi_outdiscards++;
return IP_PACKET_TOO_BIG;
}
if ((DataSize == 0) && OptInfo->ioi_hdrincl) {
// There is nothing to send, not even just IP header!
IPSInfo.ipsi_outdiscards++;
return IP_SUCCESS;
}
FirewallMode = ProcessFirewallQ();
DEBUGMSG(DBG_TRACE && DBG_IP && DBG_TX,
(DTEXT("+IPTransmit(%x, %x, %x, %d, %x, %x, %x, %x, %x)\n"),
Context, SendContext, Buffer, DataSize, Dest, Source,
OptInfo, RCE, Protocol));
//
// fIpsec is set if and only if this is called by IPSec driver.
//
fIpsec = (OptInfo->ioi_flags & IP_FLAG_IPSEC);
//
// Allocate a packet that we need for all cases, and fill
// in the common stuff. If everything goes well, we'll send it
// here. Otherwise we'll break out into special case code for
// broadcasts, fragments, etc.
//
Packet = GetIPPacket();
if (Packet == NULL) {
// Need to call ipsec's xmitdone since it expects us to do so
if (fIpsec) {
(PInfo->pi_xmitdone)(SendContext, Buffer, IP_NO_RESOURCES);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
#if !MILLEN
//Enable this in Millennium when ndis5.1 is checked in
SET_CANCELID(Irp, Packet);
#endif
pc = (PacketContext *) Packet->ProtocolReserved;
ASSERT(pc->pc_firewall == NULL);
ASSERT(pc->pc_firewall2 == NULL);
pc->pc_br = (BufferReference *) NULL;
pc->pc_pi = PInfo;
pc->pc_context = SendContext;
ASSERT(pc->pc_if == NULL);
ASSERT(pc->pc_iflink == NULL);
pc->pc_firewall = NULL;
pc->pc_firewall2 = NULL;
pc->pc_ipsec_flags = 0;
pc->pc_hdrincl = NULL;
//
// This might be called from IPSEC also; in this case, Protocol will
// indicate so. The entire IP packet is in Buffer and all we need to
// do is find the best route and ship it.
//
if (fIpsec) {
ULONG len;
ASSERT(Context);
DEBUGMSG(DBG_INFO && DBG_IP && DBG_TX,
(DTEXT("IPTransmit: ipsec....\n")));
pc->pc_common.pc_IpsecCtx = SendContext;
pc->pc_common.pc_flags |= PACKET_FLAG_IPHDR;
FirstHop = NULL_IP_ADDR;
//
// IPH is at head of first buffer
//
TcpipQueryBuffer(Buffer, (PVOID) & IPH, &len, NormalPagePriority);
if (IPH == NULL) {
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
return IP_NO_RESOURCES;
}
NdisChainBufferAtBack(Packet, Buffer);
//
// Save packet header in the reinject case for potential
// Path MTU discovery use. We need to save the original IPH since
// the header can be modified when going through IPSEC again.
//
if (IPH->iph_offset & IP_DF_FLAG) {
PUCHAR pTpt;
ULONG tptLen;
ULONG HeaderLength;
*((IPHeader *) saveIPH) = *IPH;
HeaderLength = (IPH->iph_verlen & (uchar) ~ IP_VER_FLAG) << 2;
if (HeaderLength > sizeof(IPHeader)) {
TcpipQueryBuffer(NDIS_BUFFER_LINKAGE(NDIS_BUFFER_LINKAGE(Buffer)),
&pTpt,
&tptLen,
NormalPagePriority);
} else {
TcpipQueryBuffer(NDIS_BUFFER_LINKAGE(Buffer),
&pTpt,
&tptLen,
NormalPagePriority);
}
if (pTpt == NULL) {
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
return IP_NO_RESOURCES;
}
RtlCopyMemory((PUCHAR) saveIPH + HeaderLength,
pTpt,
ICMP_HEADER_SIZE);
}
//
// Attach the IPSecPktInfo and/or TcpipPktInfo passed in to Packet's
// NDIS extension structure.
//
if (OptInfo->ioi_options) {
PNDIS_PACKET_EXTENSION PktExt;
PktExt = NDIS_PACKET_EXTENSION_FROM_PACKET(Packet);
PktExt->NdisPacketInfo[IpSecPacketInfo] =
((PNDIS_PACKET_EXTENSION) OptInfo->ioi_options)->
NdisPacketInfo[IpSecPacketInfo];
PktExt->NdisPacketInfo[TcpIpChecksumPacketInfo] =
((PNDIS_PACKET_EXTENSION) OptInfo->ioi_options)->
NdisPacketInfo[TcpIpChecksumPacketInfo];
OptInfo->ioi_options = NULL;
}
goto ipsec_jump;
} else {
pc->pc_common.pc_IpsecCtx = NULL;
}
// Make sure that we have an RCE, that it's valid, etc.
#if GPC
// Check GPC handle
if (OptInfo->ioi_GPCHandle) {
IF_IPDBG(IP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL," IPXmit: gpc - setting CH on %x\n ", Packet));
NDIS_PER_PACKET_INFO_FROM_PACKET(Packet,
ClassificationHandlePacketInfo) = IntToPtr(OptInfo->ioi_GPCHandle);
//tos info is handled in protocol
}
#endif
if ((RCE != NULL) && !(RCE->rce_flags & RCE_LINK_DELETED)) {
DEBUGMSG(DBG_INFO && DBG_IP && DBG_TX,
(DTEXT("IPTransmit: RCE %x\n"), RCE));
// We have an RCE. Make sure it's valid.
CTEGetLock(&RCE->rce_lock, &LockHandle);
if (RCE->rce_flags == RCE_ALL_VALID) {
ASSERT(RCE->rce_cnt > 0);
// The RTE is valid.
CTEInterlockedIncrementLong(&RCE->rce_usecnt);
RTE = RCE->rce_rte;
FirstHop = ADDR_FROM_RTE(RTE, Dest);
DestIF = IF_FROM_RTE(RTE);
RoutedRCE = RCE;
if (DestIF->if_flags & IF_FLAGS_P2MP) {
Link = RTE->rte_link;
if (!Link) {
ASSERT(Link);
CTEFreeLock(&RCE->rce_lock, LockHandle);
FreeIPPacket(Packet, TRUE,IP_GENERAL_FAILURE);
CTEInterlockedDecrementLong(&RCE->rce_usecnt);
return IP_GENERAL_FAILURE;
}
ArpCtxt = Link->link_arpctxt;
MTU = MIN(Link->link_mtu, DestIF->if_mtu);
// pc_iflink stores a pointer to Link since sendcomplete
// has to deref it
//
pc->pc_iflink = Link;
CTEInterlockedIncrementLong(&Link->link_refcount);
} else {
MTU = MTU_FROM_RTE(RTE);
}
CTEFreeLock(&RCE->rce_lock, LockHandle);
//
// Check that we have no options, this isn't a broadcast, and
// that everything will fit into one link level MTU. If this
// is the case, we'll send it in a hurry.
// if FirewallMode is set, bail out to slow path. The reason
// is that if firewall hook adds options or increases the
// buffer size to more than MTU in fast path, we have to go to
// slow path and things becomes messy.
//
if ((OptInfo->ioi_options == (uchar *) NULL) &&
(!(*IPSecQueryStatusPtr)(OptInfo->ioi_GPCHandle)) &&
(!FirewallMode)) {
if (!IS_BCAST_DEST(RCE->rce_dtype)) {
if (DataSize <= MTU) {
// update mcast counters
if (IS_MCAST_DEST(RCE->rce_dtype)){
DestIF->if_OutMcastPkts++;
DestIF->if_OutMcastOctets += DataSize;
} else {
// Set DONT_LOOPBACK flags for unicast packets
// to save few cycles in ndis
if (OptInfo->ioi_ttl) {
NdisSetPacketFlags(Packet,
NDIS_FLAGS_DONT_LOOPBACK);
}
}
// Check if user is supplying the IP header
if (!OptInfo->ioi_hdrincl) {
NdisAdjustBufferLength(Buffer,
NdisBufferLength(Buffer) + sizeof(IPHeader));
NdisChainBufferAtBack(Packet, Buffer);
IPH = (IPHeader *) TcpipBufferVirtualAddress(Buffer,
NormalPagePriority);
if (IPH == NULL) {
FreeIPPacket(Packet, TRUE,IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
CTEInterlockedDecrementLong(&RCE->rce_usecnt);
return IP_NO_RESOURCES;
}
IPH->iph_protocol = Protocol;
IPH->iph_xsum = 0;
IPH->iph_dest = Dest;
IPH->iph_src = Source;
IPH->iph_ttl = OptInfo->ioi_ttl;
if (OptInfo->ioi_ttl == 0) {
NdisSetPacketFlags(Packet,
NDIS_FLAGS_LOOPBACK_ONLY);
}
IPH->iph_tos = OptInfo->ioi_tos;
IPH->iph_offset = net_short((OptInfo->ioi_flags & IP_FLAG_DF) << 13);
IPH->iph_id = (ushort) InterlockedExchangeAdd(&IPIDCacheLine.Value, 1);
IPH->iph_id = net_short(IPH->iph_id);
IPH->iph_verlen = DEFAULT_VERLEN;
IPH->iph_length = net_short(DataSize + sizeof(IPHeader));
if (!IPSecStatus) {
RCE->rce_OffloadFlags = DestIF->if_OffloadFlags;
} else {
RCE->rce_OffloadFlags = 0;
}
if (IPSecStatus ||
!(DestIF->if_OffloadFlags & IP_XMT_CHECKSUM_OFFLOAD)) {
IPH->iph_xsum = ~xsum(IPH, sizeof(IPHeader));
}
if (!IPSecStatus &&
((DestIF->if_OffloadFlags & IP_XMT_CHECKSUM_OFFLOAD) ||
(DestIF->if_OffloadFlags & TCP_XMT_CHECKSUM_OFFLOAD))) {
PNDIS_PACKET_EXTENSION PktExt;
NDIS_TCP_IP_CHECKSUM_PACKET_INFO ChksumPktInfo;
PktExt = NDIS_PACKET_EXTENSION_FROM_PACKET(Packet);
ChksumPktInfo.Value = 0;
ChksumPktInfo.Transmit.NdisPacketChecksumV4 = 1;
if (DestIF->if_OffloadFlags & IP_XMT_CHECKSUM_OFFLOAD) {
ChksumPktInfo.Transmit.NdisPacketIpChecksum = 1;
}
if (OptInfo->ioi_TcpChksum) {
ChksumPktInfo.Transmit.NdisPacketTcpChecksum = 1;
}
PktExt->NdisPacketInfo[TcpIpChecksumPacketInfo]
= UlongToPtr(ChksumPktInfo.Value);
#if DBG
DbgIPSendHwChkSum++;
#endif
}
} else { //hdrincl
PNDIS_BUFFER UserBuffer;
int len;
NdisChainBufferAtBack(Packet, Buffer);
UserBuffer = NDIS_BUFFER_LINKAGE(Buffer);
DataSize -= NdisBufferLength(Buffer);
ASSERT((long)DataSize >= 0);
NdisAdjustBufferLength(Buffer, 0);
ASSERT(UserBuffer != NULL);
IPH = (IPHeader *) TcpipBufferVirtualAddress(UserBuffer,
NormalPagePriority);
if (IPH == NULL ||
(DataSize < sizeof(IPHeader))) {
SendStatus = (IPH == NULL) ? IP_NO_RESOURCES
: IP_GENERAL_FAILURE;
FreeIPPacket(Packet, TRUE, SendStatus);
if (Link) {
DerefLink(Link);
}
CTEInterlockedDecrementLong(&RCE->rce_usecnt);
return SendStatus;
}
if (!IPH->iph_id) {
IPH->iph_id = (ushort)InterlockedExchangeAdd(&IPIDCacheLine.Value, 1);
IPH->iph_id = net_short(IPH->iph_id);
}
len = IPH->iph_verlen & 0xf;
IPH->iph_length = net_short(DataSize);
IPH->iph_tos = OptInfo->ioi_tos;
IPH->iph_xsum = 0;
IPH->iph_xsum = ~xsum(IPH, len * 4);
ASSERT(!dbg_hdrincl);
}
// See if we need to filter this packet. If we
// do, call the filter routine to see if it's
// OK to send it.
if (!ForwardFilterEnabled) {
// Set the cancellation context
// Once link level call is made,
// Irp can go away any time
SET_CANCEL_CONTEXT(Irp, DestIF);
Status = (*(DestIF->if_xmit)) (DestIF->if_lcontext,
&Packet, 1, FirstHop,
RCE, ArpCtxt);
CTEInterlockedDecrementLong(&RCE->rce_usecnt);
if (Status != NDIS_STATUS_PENDING) {
SendStatus = (Status == NDIS_STATUS_FAILURE)
? IP_GENERAL_FAILURE : IP_SUCCESS;
FreeIPPacket(Packet, TRUE, SendStatus);
if (Link) {
DerefLink(Link);
}
return SendStatus;
}
return IP_PENDING;
} else {
PNDIS_BUFFER pDataBuffer;
PVOID pvBuf = NULL;
ULONG cbBuf = 0;
if (DestIF->if_flags & IF_FLAGS_P2MP) {
LinkNextHop = Link->link_NextHop;
} else {
LinkNextHop = NULL_IP_ADDR;
}
//
// There are three cases which need to be
// taken care of here:
// 1) Normal path. Buffer contains both
// IPHeader and header from TCP/UDP, etc.
// 2) Raw. Buffer contains IPHeader only.
// Need to get next data in chain from
// linked buffer.
// 3) Raw - iphdrinclude. Buffer length is
// 0. Need to get IPHeader and next
// header from linked buffer.
//
// Use the byte count of the first buffer
// to determine the case to handle.
//
if (NdisBufferLength(Buffer) > sizeof(IPHeader)) {
// Case 1.
pvBuf = (PVOID) (IPH + 1);
cbBuf = NdisBufferLength(Buffer) - sizeof(IPHeader);
} else {
// Need to skip to the next buffer.
NdisGetNextBuffer(Buffer, &pDataBuffer);
if (pDataBuffer) {
if (NdisBufferLength(Buffer) == 0) {
// Case 3.
cbBuf = NdisBufferLength(pDataBuffer) - sizeof(IPHeader);
pvBuf = (PVOID) (IPH + 1);
} else {
// Case 2.
ASSERT(NdisBufferLength(Buffer)
== sizeof(IPHeader));
cbBuf = NdisBufferLength(pDataBuffer);
pvBuf = TcpipBufferVirtualAddress(
pDataBuffer,
NormalPagePriority);
}
} else {
// Should always have two buffers in
// chain at this point!
ASSERT(FALSE);
}
}
if (pvBuf == NULL) {
IPSInfo.ipsi_outdiscards++;
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
return IP_NO_RESOURCES;
}
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (IPH,
pvBuf, cbBuf,
INVALID_IF_INDEX,
DestIF->if_index,
NULL_IP_ADDR,
LinkNextHop);
DerefFilterPtr();
if (Action == FORWARD) {
// Set the cancellation context
// Once link level call is made,
// Irp can go away any time
SET_CANCEL_CONTEXT(Irp, DestIF);
Status = (*(DestIF->if_xmit)) (
DestIF->if_lcontext,
&Packet, 1, FirstHop,
RCE, ArpCtxt);
} else {
Status = NDIS_STATUS_SUCCESS;
IPSInfo.ipsi_outdiscards++;
} // if (Action == FORWARD)
CTEInterlockedDecrementLong(&RCE->rce_usecnt);
if (Status != NDIS_STATUS_PENDING) {
SendStatus = (Status == NDIS_STATUS_SUCCESS)
? IP_GENERAL_FAILURE : IP_SUCCESS;
FreeIPPacket(Packet, TRUE, SendStatus);
if (Link) {
DerefLink(Link);
}
return SendStatus;
}
return IP_PENDING;
}
}
}
}
if (RCE && IPSecStatus) {
RCE->rce_OffloadFlags = 0;
}
// CTEInterlockedDecrementLong(&RCE->rce_usecnt);
DType = RCE->rce_dtype;
} else {
uint IPHdrSize, BufLength;
IPHdrSize = sizeof(IPHeader);
//If user supplied header, account for it.
//This is to satisfy DoDcallout
//may not be necessary...
if (OptInfo->ioi_hdrincl) {
IPHdrSize = 0;
}
// We have an RCE, but there is no RTE for it. Call the
// routing code to fix this.
CTEFreeLock(&RCE->rce_lock, LockHandle);
BufLength = NdisBufferLength(Buffer);
if ((BufLength == 0) && DataSize) {
PNDIS_BUFFER NextBuffer = NULL;
// Get the virtual address of user buffer
// which is after null transport header
NdisGetNextBuffer(Buffer, &NextBuffer);
ASSERT(NextBuffer != NULL);
pvTmpBuffer = TcpipBufferVirtualAddress(NextBuffer, NormalPagePriority);
BufLength = NdisBufferLength(NextBuffer);
// Since this is raw socket, just pass the raw data
// to Dod Callout, instead of pointing beyond header
// size.
IPHdrSize = 0;
} else {
pvTmpBuffer = TcpipBufferVirtualAddress(Buffer, NormalPagePriority);
BufLength = NdisBufferLength(Buffer);
}
if (pvTmpBuffer == NULL) {
IPSInfo.ipsi_outdiscards++;
FreeIPPacket(Packet, TRUE,IP_NO_RESOURCES);
return IP_NO_RESOURCES;
}
if (!AttachRCEToRTE(RCE, Protocol,
(uchar *) pvTmpBuffer + IPHdrSize,
BufLength)) {
IPSInfo.ipsi_outnoroutes++;
FreeIPPacket(Packet, TRUE, IP_DEST_HOST_UNREACHABLE);
return IP_DEST_HOST_UNREACHABLE;
}
// See if the RCE is now valid.
CTEGetLock(&RCE->rce_lock, &LockHandle);
if (RCE->rce_flags == RCE_ALL_VALID) {
// The RCE is now valid, so use his info.
RTE = RCE->rce_rte;
FirstHop = ADDR_FROM_RTE(RTE, Dest);
DestIF = IF_FROM_RTE(RTE);
RoutedRCE = RCE;
CTEInterlockedIncrementLong(&RCE->rce_usecnt);
if (DestIF->if_flags & IF_FLAGS_P2MP) {
Link = RTE->rte_link;
if (!Link) {
ASSERT(Link);
CTEFreeLock(&RCE->rce_lock, LockHandle);
FreeIPPacket(Packet, TRUE, IP_GENERAL_FAILURE);
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return IP_GENERAL_FAILURE;
}
ArpCtxt = Link->link_arpctxt;
MTU = MIN(Link->link_mtu, DestIF->if_mtu);
pc->pc_iflink = Link;
CTEInterlockedIncrementLong(&Link->link_refcount);
} else {
MTU = MTU_FROM_RTE(RTE);
}
DType = RCE->rce_dtype;
if (RTE->rte_if) {
RCE->rce_TcpDelAckTicks = RTE->rte_if->if_TcpDelAckTicks;
RCE->rce_TcpAckFrequency = RTE->rte_if->if_TcpAckFrequency;
} else {
RCE->rce_TcpDelAckTicks = 0;
RCE->rce_TcpAckFrequency = 0;
}
if (!IPSecStatus) {
RCE->rce_OffloadFlags = RTE->rte_if->if_OffloadFlags;
} else {
RCE->rce_OffloadFlags = 0;
}
} else
FirstHop = NULL_IP_ADDR;
CTEFreeLock(&RCE->rce_lock, LockHandle);
}
} else {
// We had no RCE, so we'll have to look it up the hard way.
FirstHop = NULL_IP_ADDR;
}
DEBUGMSG(DBG_INFO && DBG_IP && DBG_TX,
(DTEXT("IPTransmit: Bailed to slow path.\n")));
// We bailed out of the fast path for some reason. Allocate a header
// buffer, and copy the data in the first buffer forward. Then figure
// out why we're off the fast path, and deal with it. If we don't have
// the next hop info, look it up now.
//If user has supplied the IP header, assume that he is taken care
//of options too.
NdisReinitializePacket(Packet);
if (!OptInfo->ioi_hdrincl) {
HeaderBuffer = GetIPHdrBuffer(&IPH);
if (HeaderBuffer == NULL) {
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
IPSInfo.ipsi_outdiscards++;
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
DEBUGMSG(DBG_WARN && DBG_IP && DBG_TX,
(DTEXT("IPTransmit: failure to allocate IP hdr.\n")));
return IP_NO_RESOURCES;
} else {
uchar *Temp1, *Temp2;
// Got a buffer, copy the upper layer data forward.
Temp1 = TcpipBufferVirtualAddress(Buffer, NormalPagePriority);
if (Temp1 == NULL) {
FreeIPHdrBuffer(HeaderBuffer);
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
IPSInfo.ipsi_outdiscards++;
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return IP_NO_RESOURCES;
}
Temp2 = Temp1 + sizeof(IPHeader);
RtlCopyMemory(Temp1, Temp2, NdisBufferLength(Buffer));
}
DEBUGMSG(DBG_INFO && DBG_IP && DBG_TX,
(DTEXT("IPTransmit: Pkt %x IPBuf %x IPH %x\n"),
Packet, HeaderBuffer, IPH));
NdisChainBufferAtBack(Packet, HeaderBuffer);
IPH->iph_protocol = Protocol;
IPH->iph_xsum = 0;
IPH->iph_src = Source;
IPH->iph_ttl = OptInfo->ioi_ttl;
if (OptInfo->ioi_ttl == 0) {
NdisSetPacketFlags(Packet, NDIS_FLAGS_LOOPBACK_ONLY);
}
IPH->iph_tos = OptInfo->ioi_tos;
IPH->iph_offset = net_short((OptInfo->ioi_flags & IP_FLAG_DF) << 13);
IPH->iph_id = (ushort) InterlockedExchangeAdd(&IPIDCacheLine.Value, 1);
IPH->iph_id = net_short(IPH->iph_id);
pc = (PacketContext *) Packet->ProtocolReserved;
pc->pc_common.pc_flags |= PACKET_FLAG_IPHDR;
if (IP_ADDR_EQUAL(OptInfo->ioi_addr, NULL_IP_ADDR)) {
IPH->iph_dest = Dest;
} else {
if (IPSecHandlerPtr) {
UCHAR Length;
ULONG Index = 0;
PUCHAR pOptions = OptInfo->ioi_options;
//
// Search for the last hop gateway address in strict
// or loose source routing option.
//
while (Index < OptInfo->ioi_optlength) {
switch (*pOptions) {
case IP_OPT_EOL:
Index = OptInfo->ioi_optlength;
break;
case IP_OPT_NOP:
Index++;
pOptions++;
break;
case IP_OPT_LSRR:
case IP_OPT_SSRR:
Length = pOptions[IP_OPT_LENGTH];
pOptions += Length;
fSrcRoute = TRUE;
SrcRouteOrigDest = *((IPAddr UNALIGNED *)(pOptions - sizeof(IPAddr)));
Index = OptInfo->ioi_optlength;
break;
case IP_OPT_RR:
case IP_OPT_TS:
case IP_OPT_ROUTER_ALERT:
case IP_OPT_SECURITY:
default:
Length = pOptions[IP_OPT_LENGTH];
Index += Length;
pOptions += Length;
break;
}
}
}
//
// We have a source route, so we need to redo the
// destination and first hop information.
//
Dest = OptInfo->ioi_addr;
IPH->iph_dest = Dest;
if (RCE != NULL) {
// We have an RCE. Make sure it's valid.
CTEGetLock(&RCE->rce_lock, &LockHandle);
if (RCE->rce_flags == RCE_ALL_VALID) {
// The RTE is valid.
RTE = RCE->rce_rte;
FirstHop = ADDR_FROM_RTE(RTE, Dest);
DestIF = IF_FROM_RTE(RTE);
if (!RoutedRCE) {
CTEInterlockedIncrementLong(&RCE->rce_usecnt);
RoutedRCE = RCE;
}
if (DestIF->if_flags & IF_FLAGS_P2MP) {
Link = RTE->rte_link;
if (!Link) {
ASSERT(Link);
CTEFreeLock(&RCE->rce_lock, LockHandle);
FreeIPPacket(Packet, TRUE, IP_GENERAL_FAILURE);
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return IP_GENERAL_FAILURE;
}
ArpCtxt = Link->link_arpctxt;
MTU = MIN(Link->link_mtu, DestIF->if_mtu);
pc->pc_iflink = Link;
CTEInterlockedIncrementLong(&Link->link_refcount);
} else {
MTU = MTU_FROM_RTE(RTE);
}
} else {
FirstHop = NULL_IP_ADDR;
}
CTEFreeLock(&RCE->rce_lock, LockHandle);
}
}
} else { //hdrincl option
PNDIS_BUFFER UserBuffer, NewBuffer, NextBuf;
uint len;
NDIS_STATUS NewStatus;
UserBuffer = NDIS_BUFFER_LINKAGE(Buffer);
ASSERT(UserBuffer != NULL);
HeaderBuffer = GetIPHdrBuffer(&IPH);
if (HeaderBuffer == NULL) {
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
IPSInfo.ipsi_outdiscards++;
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return IP_NO_RESOURCES;
} else {
uchar *UserData;
// Got a buffer, copy the upper layer data forward.
UserData = TcpipBufferVirtualAddress(UserBuffer, NormalPagePriority);
if (UserData == NULL || (DataSize < sizeof(IPHeader))) {
FreeIPHdrBuffer(HeaderBuffer);
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
IPSInfo.ipsi_outdiscards++;
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return IP_NO_RESOURCES;
}
RtlCopyMemory(IPH, UserData, sizeof(IPHeader));
NdisAdjustBufferLength(HeaderBuffer, sizeof(IPHeader));
}
pc = (PacketContext *) Packet->ProtocolReserved;
pc->pc_common.pc_flags |= PACKET_FLAG_IPHDR;
NdisChainBufferAtBack(Packet, HeaderBuffer);
// find the header length (in bytes) specified in IPHeader
len = (IPH->iph_verlen & 0xf) << 2;
if (len < sizeof(IPHeader)) {
// Fixup of headers is not needed as this is headerinclude
// packet and header include operation is not done yet
FreeIPPacket(Packet, FALSE, IP_GENERAL_FAILURE);
if (Link) {
DerefLink(Link);
}
IPSInfo.ipsi_outdiscards++;
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return IP_GENERAL_FAILURE;
}
if (len > sizeof(IPHeader)) {
uchar *Temp1, *Temp2;
// we have options in HDR_INCL
HdrInclOptions = TRUE;
// find the length of options.
OptionSize = len - sizeof(IPHeader);
Options = CTEAllocMemN(OptionSize, 'wiCT');
if (Options == (uchar *) NULL) {
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
IPSInfo.ipsi_outdiscards++;
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return IP_NO_RESOURCES;
}
// Got a buffer, copy the options in Options Buffer
Temp1 = TcpipBufferVirtualAddress(UserBuffer, NormalPagePriority);
// Assume first user buffer contains complete IP header
if (Temp1 == NULL ||
NdisBufferLength(UserBuffer) < len) {
SendStatus = (Temp1 == NULL) ? IP_NO_RESOURCES
: IP_GENERAL_FAILURE;
FreeIPPacket(Packet, TRUE, SendStatus);
if (Link) {
DerefLink(Link);
}
CTEFreeMem(Options);
IPSInfo.ipsi_outdiscards++;
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return SendStatus;
}
RtlCopyMemory(Options, Temp1 + sizeof(IPHeader), OptionSize);
}
DataSize -= NdisBufferLength(Buffer) + len;
//
// Map out the post-IP header portion
//
pvTmpBuffer = TcpipBufferVirtualAddress(UserBuffer, NormalPagePriority);
if (pvTmpBuffer == NULL) {
NewStatus = NDIS_STATUS_RESOURCES;
} else {
// If user header buffer is just the length of IP header
// check for NextBuf
NextBuf = NDIS_BUFFER_LINKAGE(UserBuffer);
if ((NdisBufferLength(UserBuffer) - len)) {
NdisAllocateBuffer(&NewStatus, &NewBuffer, BufferPool,
((uchar *) pvTmpBuffer) + len,
NdisBufferLength(UserBuffer) - len);
} else {
if (NextBuf) {
pvTmpBuffer = TcpipBufferVirtualAddress(NextBuf, NormalPagePriority);
if (!pvTmpBuffer) {
NewStatus = NDIS_STATUS_RESOURCES;
} else {
NdisAllocateBuffer(&NewStatus, &NewBuffer, BufferPool,
((uchar *) pvTmpBuffer),
NdisBufferLength(NextBuf));
}
} else {
NewStatus = NDIS_STATUS_FAILURE;
}
}
}
if (NewStatus != NDIS_STATUS_SUCCESS) {
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
if (HdrInclOptions) {
CTEFreeMem(Options);
}
IPSInfo.ipsi_outdiscards++;
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return IP_NO_RESOURCES;
}
// Remember the orignal usermdl
// Once this ip allocated mdl is chained,
// original chain needs to be restored
// in all the completion paths.
pc->pc_hdrincl = UserBuffer;
NDIS_BUFFER_LINKAGE(Buffer) = NewBuffer;
NDIS_BUFFER_LINKAGE(NewBuffer) = NextBuf;
NdisAdjustBufferLength(Buffer, 0);
if (!IPH->iph_id) {
IPH->iph_id = (ushort) InterlockedExchangeAdd(&IPIDCacheLine.Value, 1);
IPH->iph_id = net_short(IPH->iph_id);
}
IPH->iph_length = net_short(DataSize + len);
IPH->iph_tos = OptInfo->ioi_tos;
IPH->iph_xsum = 0;
if (OptInfo->ioi_ttl == 0) {
NdisSetPacketFlags(Packet, NDIS_FLAGS_LOOPBACK_ONLY);
}
ASSERT(!dbg_hdrincl);
}
ipsec_jump:
if (RCE) {
#if 0
//
//If we take slow path for TCP, offload is meaningless
//let this packet go with xsum error
//rexmitted packet will be okay, if it takes slow path again.
//
RCE->rce_OffloadFlags = 0;
#else
if (!fIpsec && OptInfo->ioi_TcpChksum &&
(RCE->rce_OffloadFlags & TCP_XMT_CHECKSUM_OFFLOAD)) {
PNDIS_PACKET_EXTENSION PktExt =
NDIS_PACKET_EXTENSION_FROM_PACKET(Packet);
PNDIS_TCP_IP_CHECKSUM_PACKET_INFO ChksumPktInfo =
(PNDIS_TCP_IP_CHECKSUM_PACKET_INFO)
&PktExt->NdisPacketInfo[TcpIpChecksumPacketInfo];
ChksumPktInfo->Value = 0;
ChksumPktInfo->Transmit.NdisPacketChecksumV4 = 1;
ChksumPktInfo->Transmit.NdisPacketTcpChecksum = 1;
}
#endif
}
if (IP_ADDR_EQUAL(FirstHop, NULL_IP_ADDR)) {
if (OptInfo->ioi_mcastif) {
//
// mcastif is set to unnumbered interface, we won't do any
// lookup in this case
//
CTELockHandle TableLock; // Lock handle for routing table.
Interface *pIf;
CTEGetLock(&RouteTableLock.Lock, &TableLock);
for (pIf = IFList; pIf != NULL; pIf = pIf->if_next) {
if ((pIf->if_refcount != 0) &&
(pIf->if_index == OptInfo->ioi_mcastif))
break;
}
if (pIf && !(pIf->if_iftype & DONT_ALLOW_MCAST)) {
LOCKED_REFERENCE_IF(pIf);
FirstHop = Dest;
MTU = pIf->if_mtu;
Link = NULL;
DestIF = pIf;
} else {
DestIF = NULL;
}
CTEFreeLock(&RouteTableLock.Lock, TableLock);
} else {
pvTmpBuffer = TcpipBufferVirtualAddress(Buffer, NormalPagePriority);
if (pvTmpBuffer == NULL) {
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (HdrInclOptions)
CTEFreeMem(Options);
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
// Decide whether to do a strong or weak host lookup
ConstrainIF = GetIfConstraint(Dest, Source, OptInfo, fIpsec);
DestIF = LookupNextHopWithBuffer(Dest, Source, &FirstHop, &MTU,
PInfo->pi_protocol,
(uchar *) NdisBufferVirtualAddress(Buffer),
NdisBufferLength(Buffer), NULL, &Link,
Source, ConstrainIF);
DEBUGMSG(DBG_INFO && DBG_IP && DBG_TX,
(DTEXT("IPTransmit: LookupNextHopWithBuffer returned %x\n"),
DestIF));
}
pc->pc_if = DestIF;
RoutedIF = DestIF;
if (DestIF == NULL) {
// Lookup failed. Return an error.
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_DEST_HOST_UNREACHABLE);
if (HdrInclOptions)
CTEFreeMem(Options);
IPSInfo.ipsi_outnoroutes++;
return IP_DEST_HOST_UNREACHABLE;
}
if (DestIF->if_flags & IF_FLAGS_P2MP) {
if (!Link) {
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_GENERAL_FAILURE);
if (HdrInclOptions)
CTEFreeMem(Options);
DerefIF(DestIF);
return IP_GENERAL_FAILURE;
}
// NextHopCtxt = Link->link_NextHop;
ArpCtxt = Link->link_arpctxt;
pc->pc_iflink = Link;
}
if (!OptInfo->ioi_hdrincl) {
if ((DestIF->if_flags & IF_FLAGS_NOIPADDR) &&
IP_ADDR_EQUAL(Source, NULL_IP_ADDR)) {
IPH->iph_src = g_ValidAddr;
if (IP_ADDR_EQUAL(g_ValidAddr, NULL_IP_ADDR)) {
FreeIPPacket(Packet, TRUE, IP_DEST_HOST_UNREACHABLE);
if (HdrInclOptions)
CTEFreeMem(Options);
if (Link) {
DerefLink(Link);
}
DerefIF(DestIF);
IPSInfo.ipsi_outnoroutes++;
return IP_DEST_HOST_UNREACHABLE;
}
} else {
IPH->iph_src = Source;
}
}
DType = GetAddrType(Dest);
ASSERT(DType != DEST_INVALID);
} else {
RoutedIF = NULL;
}
// Set DONT_LOOPBACK flags for unicast packets
// to save few cycles in ndis
if (DType == DEST_LOCAL) {
if (OptInfo->ioi_ttl) {
NdisSetPacketFlags(Packet, NDIS_FLAGS_DONT_LOOPBACK);
}
}
//
// See if we have any options. If we do, copy them now.
//
//
// If user is giving us IP hdr, just assume he has done Options too.
//
if ((!OptInfo->ioi_hdrincl &&
(OptInfo->ioi_options != NULL) &&
OptInfo->ioi_optlength) || HdrInclOptions) {
// if HdrInclOptions is TRUE we have already created Options Buffer
if (!HdrInclOptions) {
//
// If we have a SSRR, make sure that we're sending straight to
// the first hop.
//
if (OptInfo->ioi_flags & IP_FLAG_SSRR) {
if (!IP_ADDR_EQUAL(Dest, FirstHop)) {
FreeIPPacket(Packet, TRUE, IP_DEST_HOST_UNREACHABLE);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outnoroutes++;
return IP_DEST_HOST_UNREACHABLE;
}
}
Options = CTEAllocMemN(OptionSize = OptInfo->ioi_optlength, 'xiCT');
if (Options == (uchar *) NULL) {
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
RtlCopyMemory(Options, OptInfo->ioi_options, OptionSize);
}
//
// Allocate the MDL for options too
//
if (IPSecHandlerPtr) {
NdisAllocateBuffer(&Status, &OptBuffer, BufferPool, Options,
OptionSize);
if (Status != NDIS_STATUS_SUCCESS) { // Couldn't get the
// needed option buffer.
CTEFreeMem(Options);
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
}
} else {
Options = (uchar *) NULL;
OptionSize = 0;
}
if (!OptInfo->ioi_hdrincl) {
if (!fIpsec) {
//
// The options have been taken care of. Now see if it's some
// sort of broadcast.
//
IPH->iph_verlen = IP_VERSION + ((OptionSize + sizeof(IPHeader)) >> 2);
IPH->iph_length = net_short(DataSize + OptionSize + sizeof(IPHeader));
}
}
// Call the firewall hooks
if (FirewallMode) {
IPRcvBuf *pRcvBuf, *tmpRcvBuf;
IPRcvBuf *pOutRcvBuf;
FIREWALL_CONTEXT_T FrCtx;
PacketContext *pc2;
PNDIS_BUFFER pBuf;
Queue *CurrQ;
FIREWALL_HOOK *CurrHook;
uint SrcIFIndex = LOCAL_IF_INDEX;
uint DestIFIndex = DestIF->if_index;
uchar DestinationType = DType;
IPHeader *Temp;
KIRQL OldIrql;
PNDIS_PACKET_EXTENSION PktExt =
NDIS_PACKET_EXTENSION_FROM_PACKET(Packet);
PNDIS_TCP_IP_CHECKSUM_PACKET_INFO ChksumPktInfo =
(PNDIS_TCP_IP_CHECKSUM_PACKET_INFO)
&PktExt->NdisPacketInfo[TcpIpChecksumPacketInfo];
//
// Temp will be used to contain complete IPHeader (including
// options) When we pass the RcvBuf chain to Firewall hook, its
// assumed that whole IPHeader is contained in the first buffer
//
Temp = CTEAllocMemN(sizeof(IPHeader) + OptionSize, 'yiCT');
if (Temp == NULL) {
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
if (Options) {
CTEFreeMem(Options);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
*Temp = *IPH;
if (Options) {
RtlCopyMemory((uchar *) (Temp + 1), Options, OptionSize);
}
// the context we pass to the firewall hook
FrCtx.Direction = IP_TRANSMIT;
FrCtx.NTE = NULL; //not required
FrCtx.LinkCtxt = NULL;
//
// Convert MDL chain to IPRcvBuf chain
// and pass it to the firewall hook
//
// attach the IP header
pRcvBuf = (IPRcvBuf *) (CTEAllocMemN(sizeof(IPRcvBuf), 'ziCT'));
if (!pRcvBuf) {
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
if (Options) {
CTEFreeMem(Options);
}
CTEFreeMem(Temp);
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
RtlZeroMemory(pRcvBuf, sizeof(IPRcvBuf));
pRcvBuf->ipr_buffer = (uchar *) Temp;
pRcvBuf->ipr_size = sizeof(IPHeader) + OptionSize;
pRcvBuf->ipr_owner = IPR_OWNER_IP;
if (ChksumPktInfo->Value) {
pRcvBuf->ipr_flags |= IPR_FLAG_CHECKSUM_OFFLOAD;
}
pInRcvBuf = pRcvBuf;
// convert the MDL chain of buffers to RcvBuf chain
// firewall hook understands RcvBuf chain only
for (pBuf = Buffer; pBuf != NULL; pBuf = pBuf->Next) {
IPRcvBuf *tmpRcvBuf;
if (NdisBufferLength(pBuf) == 0)
continue;
tmpRcvBuf = (IPRcvBuf *) (CTEAllocMemN(sizeof(IPRcvBuf), '1iCT'));
if (!tmpRcvBuf) {
IPFreeBuff(pInRcvBuf);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
if (Options) {
CTEFreeMem(Options);
}
CTEFreeMem(Temp);
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
RtlZeroMemory(tmpRcvBuf, sizeof(IPRcvBuf));
tmpRcvBuf->ipr_buffer = TcpipBufferVirtualAddress(pBuf,
NormalPagePriority);
if (tmpRcvBuf->ipr_buffer == NULL) {
CTEFreeMem(tmpRcvBuf);
IPFreeBuff(pInRcvBuf);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
if (Options) {
CTEFreeMem(Options);
}
CTEFreeMem(Temp);
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
pRcvBuf->ipr_next = tmpRcvBuf;
tmpRcvBuf->ipr_size = NdisBufferLength(pBuf);
ASSERT(tmpRcvBuf->ipr_buffer != NULL);
ASSERT(tmpRcvBuf->ipr_size != 0);
tmpRcvBuf->ipr_owner = IPR_OWNER_IP;
if (ChksumPktInfo->Value) {
tmpRcvBuf->ipr_flags |= IPR_FLAG_CHECKSUM_OFFLOAD;
}
pRcvBuf = tmpRcvBuf;
}
pRcvBuf->ipr_next = NULL;
pOutRcvBuf = NULL;
pc = (PacketContext *) Packet->ProtocolReserved;
// scan the Queue from rear
// we scannned the Queue from front in rcv path
#if MILLEN
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);
#else // MILLEN
OldIrql = KeRaiseIrqlToDpcLevel();
#endif // MILLEN
FirewallRef = RefFirewallQ(&FirewallQ);
CurrQ = QPREV(FirewallQ);
while (CurrQ != QEND(FirewallQ)) {
CurrHook = QSTRUCT(FIREWALL_HOOK, CurrQ, hook_q);
// pOutRcvBuf has to be NULL before we call the firewallhook
// pInRcvBuf contains the input buffer chain
pOutRcvBuf = NULL;
Action = (*CurrHook->hook_Ptr) (&pInRcvBuf,
SrcIFIndex,
&DestIFIndex,
&DestinationType,
&FrCtx,
sizeof(FrCtx),
&pOutRcvBuf);
if (Action == DROP) {
DerefFirewallQ(FirewallRef);
KeLowerIrql(OldIrql);
IPSInfo.ipsi_outdiscards++;
if (pInRcvBuf != NULL) {
IPFreeBuff(pInRcvBuf);
}
if (pOutRcvBuf != NULL) {
IPFreeBuff(pOutRcvBuf);
}
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_DEST_HOST_UNREACHABLE);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
if (Options) {
CTEFreeMem(Options);
}
CTEFreeMem(Temp);
IPSInfo.ipsi_outdiscards++;
return IP_DEST_HOST_UNREACHABLE;
} else {
ASSERT(Action == FORWARD);
if (pOutRcvBuf != NULL) {
// free the old buffer if non NULL
if (pInRcvBuf != NULL) {
IPFreeBuff(pInRcvBuf);
}
pInRcvBuf = pOutRcvBuf;
BufferChanged = 1;
}
} // Action == FORWARD
CurrQ = QPREV(CurrQ);
}
DerefFirewallQ(FirewallRef);
KeLowerIrql(OldIrql);
ASSERT(Action == FORWARD);
if (BufferChanged) {
// At least one of the firewall hook touched the buffer
PNDIS_BUFFER CurrentBuffer;
PNDIS_BUFFER tmpBuffer;
int Status;
uint hlen;
//
// It is assumed that if first buffer contained just ipheader
// before the hook is called, this holds after firewall also
//
ASSERT(pInRcvBuf->ipr_buffer != NULL);
RtlCopyMemory((uchar *) IPH, pInRcvBuf->ipr_buffer, sizeof(IPHeader));
//
// we recompute it later on anyway: so if firewall has
// recomputed make it 0
//
IPH->iph_xsum = 0;
//
// find the header length (in bytes) specified in IPHeader
//
hlen = (IPH->iph_verlen & 0xf) << 2;
ASSERT(pInRcvBuf->ipr_size == hlen);
OptionSize = hlen - sizeof(IPHeader);
if (Options) {
// we will allocate a new one anyway
CTEFreeMem(Options);
if (IPSecHandlerPtr) {
// ipsec allocated the option buffer also
NdisFreeBuffer(OptBuffer);
OptBuffer = NULL;
}
}
if (OptionSize) {
Options = CTEAllocMemN(OptionSize, '2iCT');
if (Options == NULL) {
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
CTEFreeMem(Temp);
IPFreeBuff(pInRcvBuf);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
RtlCopyMemory(Options, pInRcvBuf->ipr_buffer + sizeof(IPHeader),
OptionSize);
if (IPSecHandlerPtr) {
NdisAllocateBuffer(&Status, &OptBuffer,
BufferPool, Options, OptionSize);
//
// If we couldn't get the needed options buffer
//
if (Status != NDIS_STATUS_SUCCESS) {
CTEFreeMem(Options);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
CTEFreeMem(Temp);
IPFreeBuff(pInRcvBuf);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
}
} else {
Options = NULL;
}
// if packet touched compute the new length: DataSize
DataSize = 0;
tmpRcvBuf = pInRcvBuf->ipr_next; // First buffer contains
// header + options
while (tmpRcvBuf != NULL) {
ASSERT(tmpRcvBuf->ipr_buffer != NULL);
DataSize += tmpRcvBuf->ipr_size;
tmpRcvBuf = tmpRcvBuf->ipr_next;
}
// Convert the IPRcvBuf chain to MDL chain
// form the buffer chain again
tmpRcvBuf = pInRcvBuf->ipr_next; // first buffer contains
// just IP Header +
// options, if any
ASSERT(tmpRcvBuf->ipr_buffer != NULL);
ASSERT(tmpRcvBuf->ipr_size != 0);
NdisAllocateBuffer(&Status, &tmpBuffer, BufferPool,
tmpRcvBuf->ipr_buffer, tmpRcvBuf->ipr_size);
if (Status != NDIS_STATUS_SUCCESS) {
if (Options) {
// option buffer.
CTEFreeMem(Options);
if (IPSecHandlerPtr) {
NdisFreeBuffer(OptBuffer);
}
}
IPFreeBuff(pInRcvBuf);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
CTEFreeMem(Temp);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
tmpBuffer->Next = (PNDIS_BUFFER) NULL;
//
// save these 2 in the packet context: will be used in
// freeippacket/ipsendcomplete
//
pc->pc_firewall = Buffer;
pc->pc_firewall2 = pInRcvBuf;
// Convert the RcvBuf chain back to MDL chain
Buffer = tmpBuffer;
CurrentBuffer = Buffer;
for (tmpRcvBuf = tmpRcvBuf->ipr_next;
tmpRcvBuf != NULL;
tmpRcvBuf = tmpRcvBuf->ipr_next) {
ASSERT(tmpRcvBuf->ipr_buffer != NULL);
ASSERT(tmpRcvBuf->ipr_size != 0);
if (tmpRcvBuf->ipr_size == 0)
continue;
NdisAllocateBuffer(&Status, &tmpBuffer, BufferPool,
tmpRcvBuf->ipr_buffer, tmpRcvBuf->ipr_size);
if (Status != NDIS_STATUS_SUCCESS) {
if (Options) {
// option buffer.
CTEFreeMem(Options);
if (IPSecHandlerPtr) {
NdisFreeBuffer(OptBuffer);
}
}
CTEFreeMem(Temp);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
FreeIPBufferChain(Buffer);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
CurrentBuffer->Next = tmpBuffer;
CurrentBuffer = tmpBuffer;
CurrentBuffer->Next = (PNDIS_BUFFER) NULL;
}
ASSERT(CurrentBuffer->Next == NULL);
if (DestinationType == DEST_INVALID) {
// recompute DestIF by doing a lookup again
Dest = IPH->iph_dest;
// Decide whether to do a strong or weak host lookup
ConstrainIF = GetIfConstraint(Dest, Source, OptInfo, fIpsec);
if (!ConstrainIF) {
//
// if this option is set, we want to send on the
// address we are bound to so don't recompute the
// Source address from IP header
//
Source = IPH->iph_src;
}
DType = GetAddrType(Dest);
if (Link) {
DerefLink(Link);
// Make sure that pc_iflink is also initialized
pc->pc_iflink = NULL;
Link = NULL;
}
if (RoutedIF != NULL) {
DerefIF(DestIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
RoutedRCE = NULL;
}
pvTmpBuffer = TcpipBufferVirtualAddress(Buffer,
NormalPagePriority);
if (pvTmpBuffer == NULL) {
if (Options) {
CTEFreeMem(Options);
}
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (BufferChanged) {
FreeIPBufferChain(Buffer);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
// Decide whether to do a strong or weak host lookup
ConstrainIF = GetIfConstraint(Dest, Source, OptInfo, fIpsec);
DestIF = LookupNextHopWithBuffer(Dest, Source, &FirstHop, &MTU,
PInfo->pi_protocol,
(uchar *) NdisBufferVirtualAddress(Buffer),
NdisBufferLength(Buffer), NULL, &Link,
Source, ConstrainIF);
pc->pc_if = DestIF;
RoutedIF = DestIF;
if (DestIF == NULL) {
// Lookup failed. Return an error.
if (Options)
CTEFreeMem(Options);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_DEST_HOST_UNREACHABLE);
if (BufferChanged) {
FreeIPBufferChain(Buffer);
}
IPSInfo.ipsi_outnoroutes++;
return IP_DEST_HOST_UNREACHABLE;
}
if (DestIF->if_flags & IF_FLAGS_P2MP) {
if (!Link) {
ASSERT(Link);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_GENERAL_FAILURE);
if (HdrInclOptions) {
CTEFreeMem(Options);
}
DerefIF(DestIF);
return IP_GENERAL_FAILURE;
}
// NextHopCtxt = Link->link_NextHop;
ArpCtxt = Link->link_arpctxt;
pc->pc_iflink = Link;
}
}
// Finally, clear the checksum-request option in the packet,
// if it was set. The firewall-hook is responsible for ensuring
// that the checksum has now been computed correctly.
ChksumPktInfo->Value = 0;
} // BufferChanged
else { // Buffer not changed
if (pInRcvBuf != NULL) {
IPFreeBuff(pInRcvBuf);
}
}
CTEFreeMem(Temp);
}
if (ForwardFilterEnabled) {
IPHeader *Temp;
PNDIS_BUFFER pDataBuffer;
PVOID pvBuf = NULL;
ULONG cbBuf = 0;
//
// See if we need to filter this packet. If we
// do, call the filter routine to see if it's
// OK to send it.
//
if (Options == NULL) {
Temp = IPH;
} else {
Temp = CTEAllocMemN(sizeof(IPHeader) + OptionSize, '3iCT');
if (Temp == NULL) {
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (BufferChanged) {
FreeIPBufferChain(Buffer);
}
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
CTEFreeMem(Options);
if (IPSecHandlerPtr) {
NdisFreeBuffer(OptBuffer);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
*Temp = *IPH;
RtlCopyMemory((uchar *) (Temp + 1), Options, OptionSize);
}
if (DestIF->if_flags & IF_FLAGS_P2MP) {
LinkNextHop = Link->link_NextHop;
} else {
LinkNextHop = NULL_IP_ADDR;
}
//
// There are some cases where the first buffer in the chain
// of data does not contain any data. This includes ICMP,
// and iphdrinclude. If the first buffer is zero length,
// then we skip and give the second buffer. Really the
// filter api should take an MDL chain.
//
if (NdisBufferLength(Buffer) == 0) {
NdisGetNextBuffer(Buffer, &pDataBuffer);
if (pDataBuffer) {
cbBuf = NdisBufferLength(pDataBuffer);
pvBuf = TcpipBufferVirtualAddress(pDataBuffer,
NormalPagePriority);
}
} else {
pvBuf = TcpipBufferVirtualAddress(Buffer, NormalPagePriority);
cbBuf = NdisBufferLength(Buffer);
}
if (pvBuf == NULL) {
if (Options)
CTEFreeMem(Options);
// Need to chain buffers correctly to packet before calling
// FreeIPPacket.
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (BufferChanged) {
FreeIPBufferChain(Buffer);
}
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (Temp,
pvBuf,
cbBuf,
INVALID_IF_INDEX,
DestIF->if_index,
NULL_IP_ADDR, LinkNextHop);
DerefFilterPtr();
if (Options != NULL) {
CTEFreeMem(Temp);
}
if (Action != FORWARD) {
//
// If this is a bcast pkt, dont fail the send here since we might
// send this pkt over some other NTE; instead, let SendIPBCast
// deal with the Filtering for broadcast pkts.
//
// NOTE: We shd actually not call into ForwardFilterPtr here at
// all since we deal with it in BCast, but we do so in order to
// avoid a check above and hence
// take a double call hit in the bcast case.
//
if (DType != DEST_BCAST) {
if (Options)
CTEFreeMem(Options);
// Need to chain buffers correctly to packet before calling
// FreeIPPacket.
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_DEST_HOST_UNREACHABLE);
if (BufferChanged) {
FreeIPBufferChain(Buffer);
}
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_DEST_HOST_UNREACHABLE;
}
#if FWD_DBG
else {
DbgPrint("IPTransmit: ignoring return %lx\n", Action);
}
#endif
}
}
if (IPSecHandlerPtr) {
//
// See if IPSEC is enabled, see if it needs to do anything with this
// packet - we need to construct the full IP header in the first MDL
// before we call out to IPSEC.
//
IPSEC_ACTION Action;
ulong csum;
ushort savecsum;
PacketContext *pc = (PacketContext *) Packet->ProtocolReserved;
//
// dont re-xsum if this came from IPSEC.
//
if (fIpsec) {
HeaderBuffer = Buffer;
} else {
IPH->iph_xsum = 0;
csum = xsum(IPH, sizeof(IPHeader));
//
// Link the header buffer to the options buffer before we
// indicate to IPSEC
//
if (OptBuffer) {
NDIS_BUFFER_LINKAGE(HeaderBuffer) = OptBuffer;
NDIS_BUFFER_LINKAGE(OptBuffer) = Buffer;
//
// update the xsum in the IP header
//
pc->pc_common.pc_flags |= PACKET_FLAG_OPTIONS;
csum += xsum(Options, OptionSize);
csum = (csum >> 16) + (csum & 0xffff);
csum += (csum >> 16);
} else {
NDIS_BUFFER_LINKAGE(HeaderBuffer) = Buffer;
}
IPH->iph_xsum = ~(ushort) csum;
}
if ((DataSize + OptionSize) < MTU) {
ipsecByteCount = MTU - (DataSize + OptionSize);
}
ipsecMTU = MTU;
//
// Pass the original dest address if source routing.
//
if (fSrcRoute) {
SrcRouteFirstHop = IPH->iph_dest;
IPH->iph_dest = SrcRouteOrigDest;
ipsecFlags |= IPSEC_FLAG_SSRR;
}
if (DestIF == &LoopInterface) {
ipsecFlags |= IPSEC_FLAG_LOOPBACK;
}
Action = (*IPSecHandlerPtr) ((PUCHAR) IPH,
(PVOID) HeaderBuffer,
DestIF,
Packet,
&ipsecByteCount,
&ipsecMTU,
(PVOID) & newBuf,
&ipsecFlags,
DType);
//
// Put back the dest address for source routing.
//
if (fSrcRoute) {
IPH->iph_dest = SrcRouteFirstHop;
}
if (Action != eFORWARD) {
IP_STATUS ipStatus;
//
// If this is a bcast pkt, dont fail the send here since we
// might send this pkt over some other NTE; instead, let
// SendIPBCast deal with the Filtering
// for broadcast pkts.
// Since Options are linked already, FreeIPPacket will do
// the right thing.
//
FreeIPPacket(Packet, TRUE, IP_DEST_HOST_UNREACHABLE);
if (ipsecMTU) {
ipStatus = IP_PACKET_TOO_BIG;
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,"IPTransmit: MTU %lx, ipsecMTU %lx\n", MTU, ipsecMTU));
if (fIpsec) {
SendICMPIPSecErr(DestIF->if_nte->nte_addr,
(IPHeader *) saveIPH,
ICMP_DEST_UNREACH,
FRAG_NEEDED,
net_long(ipsecMTU + sizeof(IPHeader)));
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,"IPTransmit: Sent ICMP frag_needed to %lx, "
"from src: %lx\n",
((IPHeader *) saveIPH)->iph_src,
DestIF->if_nte->nte_addr));
} else if (RCE) {
RCE->rce_newmtu = ipsecMTU;
}
} else {
if (Action == eABSORB && Protocol == PROTOCOL_ICMP) {
ipStatus = IP_NEGOTIATING_IPSEC;
} else {
ipStatus = IP_DEST_HOST_UNREACHABLE;
}
}
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
} else {
ASSERT(RoutedRCE);
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return ipStatus;
} else {
//
// Reset newmtu if we don't need IPSec. Otherwise if this RCE
// was applied IPSec previously but not now and link MTU gets
// changed, we won't be able to adjust MTU anymore in TCPSend.
//
if (!pc->pc_common.pc_IpsecCtx && RCE) {
RCE->rce_newmtu = 0;
}
//
// Use the new buffer chain - IPSEC will restore the old one
// on send complete
//
if (newBuf) {
NdisReinitializePacket(Packet);
NdisChainBufferAtBack(Packet, newBuf);
}
DataSize += ipsecByteCount;
}
}
//
// If this is a broadcast address, call our broadcast send handler
// to deal with this. The broadcast address handler will free the
// option buffer for us, if needed. Otherwise if it's a fragment, call
// the fragmentation handler.
//
if (DType == DEST_BCAST) {
DEBUGMSG(DBG_INFO && DBG_IP && DBG_TX,
(DTEXT("IPTransmit: DEST_BCAST, source %x\n"), Source));
//Note the fact that this is bcast pkt,in the irp,
//used for cancelling the requests
//Irp can go away any time
SET_CANCEL_CONTEXT(Irp, BCAST_IF_CTXT);
if (IP_ADDR_EQUAL(Source, NULL_IP_ADDR)) {
SendStatus = SendDHCPPacket(Dest, Packet, Buffer, IPH, ArpCtxt);
if ((Link) && (SendStatus != IP_PENDING)) {
DerefLink(Link);
}
if (SendStatus != IP_PENDING && RoutedIF != NULL) {
DerefIF(RoutedIF);
}
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
return SendStatus;
} else {
SendStatus = SendIPBCast(NULL, Dest, Packet, IPH, Buffer, DataSize,
Options, OptionSize,
OptInfo->ioi_limitbcasts, NULL);
if ((Link) && (SendStatus != IP_PENDING)) {
DerefLink(Link);
}
if (SendStatus != IP_PENDING && RoutedIF != NULL) {
DerefIF(RoutedIF);
}
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
// In the case of header include, SendIPBcast will handle
// the cleanup.
return SendStatus;
}
}
// Not a broadcast. If it needs to be fragmented, call our
// fragmenter to do it. The fragmentation routine needs a
// BufferReference structure, so we'll need one of those first.
if ((DataSize + OptionSize) > MTU) {
DEBUGMSG(DBG_INFO && DBG_IP && DBG_TX,
(DTEXT("IPTransmit: fragmentation needed.\n")));
BR = CTEAllocMemN(sizeof(BufferReference), '4iCT');
if (BR == (BufferReference *) NULL) {
// Couldn't get a BufferReference
//
// If options are already linked in, dont free them.
// FreeIPPacket will.
//
if (Options) {
if (!(pc->pc_common.pc_flags & PACKET_FLAG_OPTIONS)) {
CTEFreeMem(Options);
} else if (newBuf) {
//
// Option has been copied by IPSEC (in the tunneling
// case); free the original option and clear the
// FLAG_OPTIONS so that FreeIPPacket will not try to
// free options again.
//
ASSERT(IPSecHandlerPtr);
NdisFreeBuffer(OptBuffer);
CTEFreeMem(Options);
pc->pc_common.pc_flags &= ~PACKET_FLAG_OPTIONS;
}
}
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
if (BufferChanged) {
FreeIPBufferChain(Buffer);
}
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
}
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
BR->br_buffer = Buffer;
BR->br_refcount = 0;
CTEInitLock(&BR->br_lock);
pc->pc_br = BR;
BR->br_userbuffer = pc->pc_hdrincl;
//
// setup so IPSEC headers appear just as first part of the data.
//
if (IPSecHandlerPtr) {
//
// If this is a reinjected packet from IPSEC, then, allocate
// another IP header here.
//
// This is to ensure that in fragmented packets, the send
// completes happen properly vis-a-vis IPSEC.
//
// When packet comes in it looks like this: [IP]->[ULP]
// We allocate another IP header [IP'] and nuke [IP] length
// to 0 so that it is ignored and [IP'] is used instead.
//
if (fIpsec) {
PNDIS_BUFFER UserBuffer;
int len;
NDIS_STATUS NewStatus;
int hdrLen;
UserBuffer = Buffer;
HeaderBuffer = GetIPHdrBuffer(&IPH);
if (HeaderBuffer == NULL) {
pc->pc_common.pc_flags &= ~PACKET_FLAG_IPHDR;
pc->pc_ipsec_flags |= (IPSEC_FLAG_FRAG_DONE |
IPSEC_FLAG_FLUSH);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
CTEFreeMem(BR);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
}
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
} else {
uchar *UserData;
// Got a buffer, copy the upper layer data forward.
UserData = TcpipBufferVirtualAddress(UserBuffer,
NormalPagePriority);
if (UserData == NULL) {
FreeIPHdrBuffer(HeaderBuffer);
pc->pc_common.pc_flags &= ~PACKET_FLAG_IPHDR;
pc->pc_ipsec_flags |= (IPSEC_FLAG_FRAG_DONE |
IPSEC_FLAG_FLUSH);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
CTEFreeMem(BR);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
}
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
RtlCopyMemory(IPH, UserData, sizeof(IPHeader));
NdisAdjustBufferLength(HeaderBuffer, sizeof(IPHeader));
}
pc = (PacketContext *) Packet->ProtocolReserved;
pc->pc_common.pc_flags |= PACKET_FLAG_IPHDR;
NdisAdjustBufferLength(Buffer, 0);
//
// Handle options by using the same method as above:
// i.e. link our own options buffer; copy out the input
// options and nuke the input buffer.
//
hdrLen = (IPH->iph_verlen & (uchar) ~ IP_VER_FLAG) << 2;
if (hdrLen > sizeof(IPHeader)) {
PNDIS_BUFFER InOptionBuf;
ULONG InOptionSize;
PUCHAR InOptions;
InOptionBuf = NDIS_BUFFER_LINKAGE(UserBuffer);
ASSERT(InOptionBuf);
TcpipQueryBuffer(InOptionBuf, &InOptions,
&InOptionSize, NormalPagePriority);
Options = CTEAllocMemN(InOptionSize, '5iCT');
if (Options == NULL || InOptions == NULL) {
pc->pc_common.pc_flags &= ~PACKET_FLAG_IPHDR;
if (Options) {
CTEFreeMem(Options);
}
pc->pc_ipsec_flags |= (IPSEC_FLAG_FRAG_DONE |
IPSEC_FLAG_FLUSH);
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
CTEFreeMem(BR);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
}
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
//
// Got a buffer, copy the options.
//
OptionSize = InOptionSize;
RtlCopyMemory(Options, InOptions, OptionSize);
NdisAdjustBufferLength(InOptionBuf, 0);
}
} else {
Buffer = NDIS_BUFFER_LINKAGE(HeaderBuffer);
//
// This is to ensure that options are freed appropriately.
// In the fragment code, the first fragment inherits the
// options of the entire packet; but these packets have
// no IPSEC context, hence cannot be freed appropriately.
// So, we allocate temporary options here and use these to
// represent the real options.
// These are freed when the first fragment is freed and
// the real options are freed here.
//
if (Options) {
PUCHAR tmpOptions;
if (newBuf) {
//
// if a new buffer chain was returned above by
// IPSEC, then it is most prob. a tunnel =>
// options were copied, hence get rid of ours.
//
NdisFreeBuffer(OptBuffer);
CTEFreeMem(Options);
Options = NULL;
OptionSize = 0;
} else {
Buffer = NDIS_BUFFER_LINKAGE(OptBuffer);
tmpOptions = CTEAllocMemN(OptionSize, '6iCT');
if (!tmpOptions) {
if (pc->pc_hdrincl) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, IP_NO_RESOURCES);
CTEFreeMem(BR);
if (Link) {
DerefLink(Link);
}
if (RoutedIF != NULL) {
DerefIF(RoutedIF);
}
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
IPSInfo.ipsi_outdiscards++;
return IP_NO_RESOURCES;
}
NdisFreeBuffer(OptBuffer);
RtlCopyMemory(tmpOptions, Options, OptionSize);
CTEFreeMem(Options);
Options = tmpOptions;
}
pc->pc_common.pc_flags &= ~PACKET_FLAG_OPTIONS;
}
}
NDIS_BUFFER_LINKAGE(HeaderBuffer) = NULL;
NdisReinitializePacket(Packet);
NdisChainBufferAtBack(Packet, HeaderBuffer);
IPH->iph_xsum = 0;
}
// Mark Irp with the destif
// Once link level call is made,
// Irp can go away any time
SET_CANCEL_CONTEXT(Irp, DestIF);
SendStatus = IPFragment(DestIF, MTU, FirstHop, Packet, IPH,
Buffer, DataSize, Options, OptionSize,
NULL, FALSE, ArpCtxt);
//
// If IPFragment returns IP_PACKET_TOO_BIG (meaning DF bit is set)
// and we are in the IPSEC reinject path, send an ICMP error
// message including the MTU back so the source host can perform
// Path MTU discovery.
//
if ((SendStatus == IP_PACKET_TOO_BIG) && fIpsec) {
ASSERT(IPSecHandlerPtr);
SendICMPIPSecErr(DestIF->if_nte->nte_addr,
(IPHeader *) saveIPH,
ICMP_DEST_UNREACH,
FRAG_NEEDED,
net_long(MTU + sizeof(IPHeader)));
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,"IPTransmit: Sent ICMP frag_needed to %lx, "
"from src: %lx\n",
((IPHeader *) saveIPH)->iph_src,
DestIF->if_nte->nte_addr));
}
if ((Link) && (SendStatus != IP_PENDING)) {
DerefLink(Link);
}
if (SendStatus != IP_PENDING && RoutedIF != NULL) {
DerefIF(RoutedIF);
}
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
// If this is a headerinclude packet and status != pending, IPFragment takes
// care of clean up.
return SendStatus;
}
DEBUGMSG(DBG_INFO && DBG_IP && DBG_TX,
(DTEXT("IPTransmit: Calling SendIPPacket...\n")));
//
// If we've reached here, we aren't sending a broadcast and don't
// need to fragment anything. Presumably we got here because we have
// options. In any case, we're ready now.
//
// Mark Irp with outgoing interface
// Once link level call is made,
// Irp can go away any time
SET_CANCEL_CONTEXT(Irp, DestIF);
// Do not free the packet in SendIPPacket, as we may need
// to chain the buffer in case of IP_NO_RESOURCES
SendStatus = SendIPPacket(DestIF, FirstHop, Packet, Buffer, IPH,
Options, OptionSize, (BOOLEAN) (IPSecHandlerPtr != NULL),
ArpCtxt, TRUE);
if ((Link) && (SendStatus != IP_PENDING)) {
DerefLink(Link);
}
if (SendStatus != IP_PENDING && RoutedIF != NULL) {
DerefIF(RoutedIF);
}
if (RoutedRCE) {
CTEInterlockedDecrementLong(&RoutedRCE->rce_usecnt);
}
if (SendStatus != IP_PENDING) {
if (SendStatus == IP_NO_RESOURCES) {
NdisChainBufferAtBack(Packet, Buffer);
}
FreeIPPacket(Packet, TRUE, SendStatus);
}
return SendStatus;
}