windows-nt/Source/XPSP1/NT/net/tcpip/tpipv6/tcpip6/tcp/tcb.c
2020-09-26 16:20:57 +08:00

1602 lines
51 KiB
C

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil -*- (for GNU Emacs)
//
// Copyright (c) 1985-2000 Microsoft Corporation
//
// This file is part of the Microsoft Research IPv6 Network Protocol Stack.
// You should have received a copy of the Microsoft End-User License Agreement
// for this software along with this release; see the file "license.txt".
// If not, please see http://www.research.microsoft.com/msripv6/license.htm,
// or write to Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399.
//
// Abstract:
//
// Code for TCP Control Block management.
//
#include "oscfg.h"
#include "ndis.h"
#include "ip6imp.h"
#include "ip6def.h"
#include "tdi.h"
#include "tdint.h"
#include "tdistat.h"
#include "queue.h"
#include "transprt.h"
#include "tcp.h"
#include "tcb.h"
#include "tcpconn.h"
#include "tcpsend.h"
#include "tcprcv.h"
#include "info.h"
#include "tcpcfg.h"
#include "tcpdeliv.h"
#include "route.h"
KSPIN_LOCK TCBTableLock;
uint TCPTime;
uint TCBWalkCount;
TCB **TCBTable;
TCB *LastTCB;
TCB *PendingFreeList;
SLIST_HEADER FreeTCBList;
KSPIN_LOCK FreeTCBListLock; // Lock to protect TCB free list.
extern KSPIN_LOCK AddrObjTableLock;
extern SeqNum ISNMonotonicPortion;
extern int ISNCredits;
extern int ISNMaxCredits;
extern uint GetDeltaTime();
uint CurrentTCBs = 0;
uint FreeTCBs = 0;
uint MaxTCBs = 0xffffffff;
#define MAX_FREE_TCBS 1000
#define NUM_DEADMAN_TICKS MS_TO_TICKS(1000)
uint MaxFreeTCBs = MAX_FREE_TCBS;
uint DeadmanTicks;
KTIMER TCBTimer;
KDPC TCBTimeoutDpc;
//
// All of the init code can be discarded.
//
#ifdef ALLOC_PRAGMA
int InitTCB(void);
#pragma alloc_text(INIT, InitTCB)
#endif // ALLOC_PRAGMA
//* ReadNextTCB - Read the next TCB in the table.
//
// Called to read the next TCB in the table. The needed information
// is derived from the incoming context, which is assumed to be valid.
// We'll copy the information, and then update the context value with
// the next TCB to be read.
//
uint // Returns: TRUE if more data is available to be read, FALSE is not.
ReadNextTCB(
void *Context, // Pointer to a TCPConnContext.
void *Buffer) // Pointer to a TCPConnTableEntry structure.
{
TCPConnContext *TCContext = (TCPConnContext *)Context;
TCP6ConnTableEntry *TCEntry = (TCP6ConnTableEntry *)Buffer;
KIRQL OldIrql;
TCB *CurrentTCB;
uint i;
CurrentTCB = TCContext->tcc_tcb;
CHECK_STRUCT(CurrentTCB, tcb);
KeAcquireSpinLock(&CurrentTCB->tcb_lock, &OldIrql);
if (CLOSING(CurrentTCB))
TCEntry->tct_state = TCP_CONN_CLOSED;
else
TCEntry->tct_state = (uint)CurrentTCB->tcb_state + TCB_STATE_DELTA;
TCEntry->tct_localaddr = CurrentTCB->tcb_saddr;
TCEntry->tct_localscopeid = CurrentTCB->tcb_sscope_id;
TCEntry->tct_localport = CurrentTCB->tcb_sport;
TCEntry->tct_remoteaddr = CurrentTCB->tcb_daddr;
TCEntry->tct_remotescopeid = CurrentTCB->tcb_dscope_id;
TCEntry->tct_remoteport = CurrentTCB->tcb_dport;
TCEntry->tct_owningpid = (CurrentTCB->tcb_conn) ?
CurrentTCB->tcb_conn->tc_owningpid : 0;
KeReleaseSpinLock(&CurrentTCB->tcb_lock, OldIrql);
// We've filled it in. Now update the context.
if (CurrentTCB->tcb_next != NULL) {
TCContext->tcc_tcb = CurrentTCB->tcb_next;
return TRUE;
} else {
// NextTCB is NULL. Loop through the TCBTable looking for a new one.
i = TCContext->tcc_index + 1;
while (i < TcbTableSize) {
if (TCBTable[i] != NULL) {
TCContext->tcc_tcb = TCBTable[i];
TCContext->tcc_index = i;
return TRUE;
break;
} else
i++;
}
TCContext->tcc_index = 0;
TCContext->tcc_tcb = NULL;
return FALSE;
}
}
//* ValidateTCBContext - Validate the context for reading a TCB table.
//
// Called to start reading the TCB table sequentially. We take in
// a context, and if the values are 0 we return information about the
// first TCB in the table. Otherwise we make sure that the context value
// is valid, and if it is we return TRUE.
// We assume the caller holds the TCB table lock.
//
// Upon return, *Valid is set to true if the context is valid.
//
uint // Returns: TRUE if data in table, FALSE if not.
ValidateTCBContext(
void *Context, // Pointer to a TCPConnContext.
uint *Valid) // Where to return infoformation about context being valid.
{
TCPConnContext *TCContext = (TCPConnContext *)Context;
uint i;
TCB *TargetTCB;
TCB *CurrentTCB;
i = TCContext->tcc_index;
TargetTCB = TCContext->tcc_tcb;
//
// If the context values are 0 and NULL, we're starting from the beginning.
//
if (i == 0 && TargetTCB == NULL) {
*Valid = TRUE;
do {
if ((CurrentTCB = TCBTable[i]) != NULL) {
CHECK_STRUCT(CurrentTCB, tcb);
break;
}
i++;
} while (i < TcbTableSize);
if (CurrentTCB != NULL) {
TCContext->tcc_index = i;
TCContext->tcc_tcb = CurrentTCB;
return TRUE;
} else
return FALSE;
} else {
//
// We've been given a context. We just need to make sure that it's
// valid.
//
if (i < TcbTableSize) {
CurrentTCB = TCBTable[i];
while (CurrentTCB != NULL) {
if (CurrentTCB == TargetTCB) {
*Valid = TRUE;
return TRUE;
break;
} else {
CurrentTCB = CurrentTCB->tcb_next;
}
}
}
// If we get here, we didn't find the matching TCB.
*Valid = FALSE;
return FALSE;
}
}
//* FindNextTCB - Find the next TCB in a particular chain.
//
// This routine is used to find the 'next' TCB in a chain. Since we keep
// the chain in ascending order, we look for a TCB which is greater than
// the input TCB. When we find one, we return it.
//
// This routine is mostly used when someone is walking the table and needs
// to free the various locks to perform some action.
//
TCB * // Returns: Pointer to the next TCB, or NULL.
FindNextTCB(
uint Index, // Index into TCBTable.
TCB *Current) // Current TCB - we find the one after this one.
{
TCB *Next;
ASSERT(Index < TcbTableSize);
Next = TCBTable[Index];
while (Next != NULL && (Next <= Current))
Next = Next->tcb_next;
return Next;
}
//* ResetSendNext - Set the sendnext value of a TCB.
//
// Called to set the send next value of a TCB. We do that, and adjust all
// pointers to the appropriate places. We assume the caller holds the lock
// on the TCB.
//
void // Returns: Nothing.
ResetSendNext(
TCB *SeqTCB, // TCB to be updated.
SeqNum NewSeq) // Sequence number to set.
{
TCPSendReq *SendReq;
uint AmtForward;
Queue *CurQ;
PNDIS_BUFFER Buffer;
uint Offset;
CHECK_STRUCT(SeqTCB, tcb);
ASSERT(SEQ_GTE(NewSeq, SeqTCB->tcb_senduna));
//
// The new seq must be less than send max, or NewSeq, senduna, sendnext,
// and sendmax must all be equal (the latter case happens when we're
// called exiting TIME_WAIT, or possibly when we're retransmitting
// during a flow controlled situation).
//
ASSERT(SEQ_LT(NewSeq, SeqTCB->tcb_sendmax) ||
(SEQ_EQ(SeqTCB->tcb_senduna, SeqTCB->tcb_sendnext) &&
SEQ_EQ(SeqTCB->tcb_senduna, SeqTCB->tcb_sendmax) &&
SEQ_EQ(SeqTCB->tcb_senduna, NewSeq)));
AmtForward = NewSeq - SeqTCB->tcb_senduna;
if ((AmtForward == 1) && (SeqTCB->tcb_flags & FIN_SENT) &&
!((SeqTCB->tcb_sendnext - SeqTCB->tcb_senduna) > 1) &&
(SEQ_EQ(SeqTCB->tcb_sendnext,SeqTCB->tcb_sendmax))) {
KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_RARE,
"tcpip6: trying to set sendnext for FIN_SENT\n"));
SeqTCB->tcb_sendnext = NewSeq;
SeqTCB->tcb_flags &= ~FIN_OUTSTANDING;
return;
}
if((SeqTCB->tcb_flags & FIN_SENT) &&
(SEQ_EQ(SeqTCB->tcb_sendnext,SeqTCB->tcb_sendmax)) &&
((SeqTCB->tcb_sendnext - NewSeq) == 1) ){
//
// There is only FIN that is left beyond sendnext.
//
SeqTCB->tcb_sendnext = NewSeq;
SeqTCB->tcb_flags &= ~FIN_OUTSTANDING;
return;
}
SeqTCB->tcb_sendnext = NewSeq;
//
// If we're backing off send next, turn off the FIN_OUTSTANDING flag to
// maintain a consistent state.
//
if (!SEQ_EQ(NewSeq, SeqTCB->tcb_sendmax))
SeqTCB->tcb_flags &= ~FIN_OUTSTANDING;
if (SYNC_STATE(SeqTCB->tcb_state) && SeqTCB->tcb_state != TCB_TIME_WAIT) {
//
// In these states we need to update the send queue.
//
if (!EMPTYQ(&SeqTCB->tcb_sendq)) {
CurQ = QHEAD(&SeqTCB->tcb_sendq);
SendReq = (TCPSendReq *)CONTAINING_RECORD(CurQ, TCPReq, tr_q);
//
// SendReq points to the first send request on the send queue.
// Move forward AmtForward bytes on the send queue, and set the
// TCB pointers to the resultant SendReq, buffer, offset, size.
//
while (AmtForward) {
CHECK_STRUCT(SendReq, tsr);
if (AmtForward >= SendReq->tsr_unasize) {
//
// We're going to move completely past this one. Subtract
// his size from AmtForward and get the next one.
//
AmtForward -= SendReq->tsr_unasize;
CurQ = QNEXT(CurQ);
ASSERT(CurQ != QEND(&SeqTCB->tcb_sendq));
SendReq = (TCPSendReq *)CONTAINING_RECORD(CurQ, TCPReq,
tr_q);
} else {
//
// We're pointing at the proper send req now. Break out
// of this loop and save the information. Further down
// we'll need to walk down the buffer chain to find
// the proper buffer and offset.
//
break;
}
}
//
// We're pointing at the proper send req now. We need to go down
// the buffer chain here to find the proper buffer and offset.
//
SeqTCB->tcb_cursend = SendReq;
SeqTCB->tcb_sendsize = SendReq->tsr_unasize - AmtForward;
Buffer = SendReq->tsr_buffer;
Offset = SendReq->tsr_offset;
while (AmtForward) {
// Walk the buffer chain.
uint Length;
//
// We'll need the length of this buffer. Use the portable
// macro to get it. We have to adjust the length by the offset
// into it, also.
//
ASSERT((Offset < NdisBufferLength(Buffer)) ||
((Offset == 0) && (NdisBufferLength(Buffer) == 0)));
Length = NdisBufferLength(Buffer) - Offset;
if (AmtForward >= Length) {
//
// We're moving past this one. Skip over him, and 0 the
// Offset we're keeping.
//
AmtForward -= Length;
Offset = 0;
Buffer = NDIS_BUFFER_LINKAGE(Buffer);
ASSERT(Buffer != NULL);
} else
break;
}
//
// Save the buffer we found, and the offset into that buffer.
//
SeqTCB->tcb_sendbuf = Buffer;
SeqTCB->tcb_sendofs = Offset + AmtForward;
} else {
ASSERT(SeqTCB->tcb_cursend == NULL);
ASSERT(AmtForward == 0);
}
}
CheckTCBSends(SeqTCB);
}
//* TCPAbortAndIndicateDisconnect
//
// Abortively closes a TCB and issues a disconnect indication up the the
// transport user. This function is used to support cancellation of
// TDI send and receive requests.
//
void // Returns: Nothing.
TCPAbortAndIndicateDisconnect(
CONNECTION_CONTEXT ConnectionContext // Connection ID to find a TCB for.
)
{
TCB *AbortTCB;
KIRQL Irql0, Irql1; // One per lock nesting level.
TCPConn *Conn;
Conn = GetConnFromConnID(PtrToUlong(ConnectionContext), &Irql0);
if (Conn != NULL) {
CHECK_STRUCT(Conn, tc);
AbortTCB = Conn->tc_tcb;
if (AbortTCB != NULL) {
//
// If it's CLOSING or CLOSED, skip it.
//
if ((AbortTCB->tcb_state != TCB_CLOSED) && !CLOSING(AbortTCB)) {
CHECK_STRUCT(AbortTCB, tcb);
KeAcquireSpinLock(&AbortTCB->tcb_lock, &Irql1);
KeReleaseSpinLock(&Conn->tc_ConnBlock->cb_lock, Irql1);
if (AbortTCB->tcb_state == TCB_CLOSED || CLOSING(AbortTCB)) {
KeReleaseSpinLock(&AbortTCB->tcb_lock, Irql0);
return;
}
AbortTCB->tcb_refcnt++;
AbortTCB->tcb_flags |= NEED_RST; // send a reset if connected
TryToCloseTCB(AbortTCB, TCB_CLOSE_ABORTED, Irql0);
RemoveTCBFromConn(AbortTCB);
IF_TCPDBG(TCP_DEBUG_IRP) {
KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_TCPDBG,
"TCPAbortAndIndicateDisconnect, indicating discon\n"));
}
NotifyOfDisc(AbortTCB, TDI_CONNECTION_ABORTED);
KeAcquireSpinLock(&AbortTCB->tcb_lock, &Irql0);
DerefTCB(AbortTCB, Irql0);
// TCB lock freed by DerefTCB.
return;
} else
KeReleaseSpinLock(&Conn->tc_ConnBlock->cb_lock, Irql0);
} else
KeReleaseSpinLock(&Conn->tc_ConnBlock->cb_lock, Irql0);
}
}
//* TCBTimeout - Do timeout events on TCBs.
//
// Called every MS_PER_TICKS milliseconds to do timeout processing on TCBs.
// We run throught the TCB table, decrementing timers. If one goes to zero
// we look at its state to decide what to do.
//
void // Returns: Nothing.
TCBTimeout(
PKDPC MyDpcObject, // The DPC object describing this routine.
void *Context, // The argument we asked to be called with.
void *Unused1,
void *Unused2)
{
uint i;
TCB *CurrentTCB;
uint Delayed = FALSE;
uint CallRcvComplete;
int Delta;
UNREFERENCED_PARAMETER(Context);
UNREFERENCED_PARAMETER(Unused1);
UNREFERENCED_PARAMETER(Unused2);
//
// Update our free running counter.
//
TCPTime++;
ExInterlockedAddUlong(&TCBWalkCount, 1, &TCBTableLock);
//
// Set credits so that some more connections can increment the
// Initial Sequence Number, during the next 100 ms.
//
InterlockedExchange(&ISNCredits, ISNMaxCredits);
Delta = GetDeltaTime();
//
// The increment made is (256)*(Time in milliseconds). This is really close
// to 25000 increment made originally every 100 ms.
//
if (Delta > 0) {
Delta *= 0x100;
InterlockedExchangeAdd(&ISNMonotonicPortion, Delta);
}
//
// Loop through each bucket in the table, going down the chain of
// TCBs on the bucket.
//
for (i = 0; i < TcbTableSize; i++) {
TCB *TempTCB;
uint maxRexmitCnt;
CurrentTCB = TCBTable[i];
while (CurrentTCB != NULL) {
CHECK_STRUCT(CurrentTCB, tcb);
KeAcquireSpinLockAtDpcLevel(&CurrentTCB->tcb_lock);
//
// If it's CLOSING or CLOSED, skip it.
//
if (CurrentTCB->tcb_state == TCB_CLOSED || CLOSING(CurrentTCB)) {
TempTCB = CurrentTCB->tcb_next;
KeReleaseSpinLockFromDpcLevel(&CurrentTCB->tcb_lock);
CurrentTCB = TempTCB;
continue;
}
CheckTCBSends(CurrentTCB);
CheckTCBRcv(CurrentTCB);
//
// First check the rexmit timer.
//
if (TCB_TIMER_RUNNING(CurrentTCB->tcb_rexmittimer)) {
//
// The timer is running.
//
if (--(CurrentTCB->tcb_rexmittimer) == 0) {
//
// And it's fired. Figure out what to do now.
//
if (CurrentTCB->tcb_state == TCB_SYN_SENT) {
maxRexmitCnt = MaxConnectRexmitCount;
} else {
maxRexmitCnt = MaxDataRexmitCount;
}
//
// If we've run out of retransmits or we're in FIN_WAIT2,
// time out.
//
CurrentTCB->tcb_rexmitcnt++;
if (CurrentTCB->tcb_rexmitcnt > maxRexmitCnt) {
ASSERT(CurrentTCB->tcb_state > TCB_LISTEN);
//
// This connection has timed out. Abort it. First
// reference him, then mark as closed, notify the
// user, and finally dereference and close him.
//
TimeoutTCB:
CurrentTCB->tcb_refcnt++;
TryToCloseTCB(CurrentTCB, TCB_CLOSE_TIMEOUT,
DISPATCH_LEVEL);
RemoveTCBFromConn(CurrentTCB);
NotifyOfDisc(CurrentTCB, TDI_TIMED_OUT);
KeAcquireSpinLockAtDpcLevel(&CurrentTCB->tcb_lock);
DerefTCB(CurrentTCB, DISPATCH_LEVEL);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
}
//
// Stop round trip time measurement.
//
CurrentTCB->tcb_rtt = 0;
//
// Figure out what our new retransmit timeout should be.
// We double it each time we get a retransmit, and reset it
// back when we get an ack for new data.
//
CurrentTCB->tcb_rexmit = MIN(CurrentTCB->tcb_rexmit << 1,
MAX_REXMIT_TO);
//
// Reset the sequence number, and reset the congestion
// window.
//
ResetSendNext(CurrentTCB, CurrentTCB->tcb_senduna);
if (!(CurrentTCB->tcb_flags & FLOW_CNTLD)) {
//
// Don't let the slow start threshold go below 2
// segments.
//
CurrentTCB->tcb_ssthresh =
MAX(MIN(CurrentTCB->tcb_cwin,
CurrentTCB->tcb_sendwin) / 2,
(uint) CurrentTCB->tcb_mss * 2);
CurrentTCB->tcb_cwin = CurrentTCB->tcb_mss;
} else {
//
// We're probing, and the probe timer has fired. We
// need to set the FORCE_OUTPUT bit here.
//
CurrentTCB->tcb_flags |= FORCE_OUTPUT;
}
//
// See if we need to probe for a PMTU black hole.
//
if (PMTUBHDetect &&
CurrentTCB->tcb_rexmitcnt == ((maxRexmitCnt+1)/2)) {
//
// We may need to probe for a black hole. If we're
// doing MTU discovery on this connection and we
// are retransmitting more than a minimum segment
// size, or we are probing for a PMTU BH already, turn
// off the DF flag and bump the probe count. If the
// probe count gets too big we'll assume it's not
// a PMTU black hole, and we'll try to switch the
// router.
//
if ((CurrentTCB->tcb_flags & PMTU_BH_PROBE) ||
(CurrentTCB->tcb_sendmax - CurrentTCB->tcb_senduna
> 8)) {
//
// May need to probe. If we haven't exceeded our
// probe count, do so, otherwise restore those
// values.
//
if (CurrentTCB->tcb_bhprobecnt++ < 2) {
//
// We're going to probe. Turn on the flag,
// drop the MSS, and turn off the don't
// fragment bit.
//
if (!(CurrentTCB->tcb_flags & PMTU_BH_PROBE)) {
CurrentTCB->tcb_flags |= PMTU_BH_PROBE;
CurrentTCB->tcb_slowcount++;
CurrentTCB->tcb_fastchk |= TCP_FLAG_SLOW;
//
// Drop the MSS to the minimum.
//
CurrentTCB->tcb_mss =
MIN(DEFAULT_MSS,
CurrentTCB->tcb_remmss);
ASSERT(CurrentTCB->tcb_mss > 0);
CurrentTCB->tcb_cwin = CurrentTCB->tcb_mss;
}
//
// Drop the rexmit count so we come here again,
// and don't retrigger DeadGWDetect.
//
CurrentTCB->tcb_rexmitcnt--;
} else {
//
// Too many probes. Stop probing, and allow
// fallover to the next gateway.
//
// Currently this code won't do BH probing on
// the 2nd gateway. The MSS will stay at the
// minimum size. This might be a little
// suboptimal, but it's easy to implement for
// the Sept. 95 service pack and will keep
// connections alive if possible.
//
// In the future we should investigate doing
// dead g/w detect on a per-connection basis,
// and then doing PMTU probing for each
// connection.
//
if (CurrentTCB->tcb_flags & PMTU_BH_PROBE) {
CurrentTCB->tcb_flags &= ~PMTU_BH_PROBE;
if (--(CurrentTCB->tcb_slowcount) == 0)
CurrentTCB->tcb_fastchk &=
~TCP_FLAG_SLOW;
}
CurrentTCB->tcb_bhprobecnt = 0;
}
}
}
//
// Since we're retransmitting, our first-hop router
// may be down. Tell IP we're suspicious if this
// is the first retransmit.
//
if (CurrentTCB->tcb_rexmitcnt == 1 &&
CurrentTCB->tcb_rce != NULL) {
ForwardReachabilityInDoubt(CurrentTCB->tcb_rce);
}
//
// Now handle the various cases.
//
switch (CurrentTCB->tcb_state) {
case TCB_SYN_SENT:
case TCB_SYN_RCVD:
//
// In SYN-SENT or SYN-RCVD we'll need to retransmit
// the SYN.
//
SendSYN(CurrentTCB, DISPATCH_LEVEL);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
case TCB_FIN_WAIT1:
case TCB_CLOSING:
case TCB_LAST_ACK:
//
// The call to ResetSendNext (above) will have
// turned off the FIN_OUTSTANDING flag.
//
CurrentTCB->tcb_flags |= FIN_NEEDED;
case TCB_CLOSE_WAIT:
case TCB_ESTAB:
//
// In this state we have data to retransmit, unless
// the window is zero (in which case we need to
// probe), or we're just sending a FIN.
//
CheckTCBSends(CurrentTCB);
Delayed = TRUE;
DelayAction(CurrentTCB, NEED_OUTPUT);
break;
case TCB_TIME_WAIT:
//
// If it's fired in TIME-WAIT, we're all done and
// can clean up. We'll call TryToCloseTCB even
// though he's already sort of closed. TryToCloseTCB
// will figure this out and do the right thing.
//
TryToCloseTCB(CurrentTCB, TCB_CLOSE_SUCCESS,
DISPATCH_LEVEL);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
default:
break;
}
}
}
//
// Now check the SWS deadlock timer..
//
if (TCB_TIMER_RUNNING(CurrentTCB->tcb_swstimer)) {
//
// The timer is running.
//
if (--(CurrentTCB->tcb_swstimer) == 0) {
//
// And it's fired. Force output now.
//
CurrentTCB->tcb_flags |= FORCE_OUTPUT;
Delayed = TRUE;
DelayAction(CurrentTCB, NEED_OUTPUT);
}
}
//
// Check the push data timer.
//
if (TCB_TIMER_RUNNING(CurrentTCB->tcb_pushtimer)) {
//
// The timer is running. Decrement it.
//
if (--(CurrentTCB->tcb_pushtimer) == 0) {
//
// It's fired.
//
PushData(CurrentTCB);
Delayed = TRUE;
}
}
//
// Check the delayed ack timer.
//
if (TCB_TIMER_RUNNING(CurrentTCB->tcb_delacktimer)) {
//
// The timer is running.
//
if (--(CurrentTCB->tcb_delacktimer) == 0) {
//
// And it's fired. Set up to send an ACK.
//
Delayed = TRUE;
DelayAction(CurrentTCB, NEED_ACK);
}
}
//
// Finally check the keepalive timer.
//
if (CurrentTCB->tcb_state == TCB_ESTAB) {
if ((CurrentTCB->tcb_flags & KEEPALIVE) &&
(CurrentTCB->tcb_conn != NULL)) {
uint Delta;
Delta = TCPTime - CurrentTCB->tcb_alive;
if (Delta > CurrentTCB->tcb_conn->tc_tcbkatime) {
Delta -= CurrentTCB->tcb_conn->tc_tcbkatime;
if (Delta > (CurrentTCB->tcb_kacount * CurrentTCB->tcb_conn->tc_tcbkainterval)) {
if (CurrentTCB->tcb_kacount < MaxDataRexmitCount) {
SendKA(CurrentTCB, DISPATCH_LEVEL);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
} else
goto TimeoutTCB;
}
} else
CurrentTCB->tcb_kacount = 0;
}
}
//
// If this is an active open connection in SYN-SENT or SYN-RCVD,
// or we have a FIN pending, check the connect timer.
//
if (CurrentTCB->tcb_flags &
(ACTIVE_OPEN | FIN_NEEDED | FIN_SENT)) {
TCPConnReq *ConnReq = CurrentTCB->tcb_connreq;
ASSERT(ConnReq != NULL);
if (TCB_TIMER_RUNNING(ConnReq->tcr_timeout)) {
// Timer is running.
if (--(ConnReq->tcr_timeout) == 0) {
// The connection timer has timed out.
TryToCloseTCB(CurrentTCB, TCB_CLOSE_TIMEOUT,
DISPATCH_LEVEL);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
}
}
}
//
// Timer isn't running, or didn't fire.
//
TempTCB = CurrentTCB->tcb_next;
KeReleaseSpinLockFromDpcLevel(&CurrentTCB->tcb_lock);
CurrentTCB = TempTCB;
}
}
//
// See if we need to call receive complete as part of deadman processing.
// We do this now because we want to restart the timer before calling
// receive complete, in case that takes a while. If we make this check
// while the timer is running we'd have to lock, so we'll check and save
// the result now before we start the timer.
//
if (DeadmanTicks == TCPTime) {
CallRcvComplete = TRUE;
DeadmanTicks += NUM_DEADMAN_TICKS;
} else
CallRcvComplete = FALSE;
//
// Now check the pending free list. If it's not null, walk down the
// list and decrement the walk count. If the count goes below 2, pull it
// from the list. If the count goes to 0, free the TCB. If the count is
// at 1 it'll be freed by whoever called RemoveTCB.
//
KeAcquireSpinLockAtDpcLevel(&TCBTableLock);
if (PendingFreeList != NULL) {
TCB *PrevTCB;
PrevTCB = CONTAINING_RECORD(&PendingFreeList, TCB, tcb_delayq.q_next);
do {
CurrentTCB = (TCB *)PrevTCB->tcb_delayq.q_next;
CHECK_STRUCT(CurrentTCB, tcb);
CurrentTCB->tcb_walkcount--;
if (CurrentTCB->tcb_walkcount <= 1) {
*(TCB **)&PrevTCB->tcb_delayq.q_next =
(TCB *)CurrentTCB->tcb_delayq.q_next;
if (CurrentTCB->tcb_walkcount == 0) {
FreeTCB(CurrentTCB);
}
} else {
PrevTCB = CurrentTCB;
}
} while (PrevTCB->tcb_delayq.q_next != NULL);
}
TCBWalkCount--;
KeReleaseSpinLockFromDpcLevel(&TCBTableLock);
//
// Do AddrCheckTable cleanup.
//
if (AddrCheckTable) {
TCPAddrCheckElement *Temp;
KeAcquireSpinLockAtDpcLevel(&AddrObjTableLock);
for (Temp = AddrCheckTable;Temp < AddrCheckTable + NTWMaxConnectCount;
Temp++) {
if (Temp->TickCount > 0) {
if ((--(Temp->TickCount)) == 0) {
Temp->SourceAddress = UnspecifiedAddr;
}
}
}
KeReleaseSpinLockFromDpcLevel(&AddrObjTableLock);
}
if (Delayed)
ProcessTCBDelayQ();
if (CallRcvComplete)
TCPRcvComplete();
}
#if 0 // We update PMTU lazily to avoid exactly this.
//* SetTCBMTU - Set TCB MTU values.
//
// A function called by TCBWalk to set the MTU values of all TCBs using
// a particular path.
//
uint // Returns: TRUE.
SetTCBMTU(
TCB *CheckTCB, // TCB to be checked.
void *DestPtr, // Destination address.
void *SrcPtr, // Source address.
void *MTUPtr) // New MTU.
{
IPv6Addr *DestAddr = (IPv6Addr *)DestPtr;
IPv6Addr *SrcAddr = (IPv6Addr *)SrcPtr;
KIRQL OldIrql;
CHECK_STRUCT(CheckTCB, tcb);
KeAcquireSpinLock(&CheckTCB->tcb_lock, &OldIrql);
if (IP6_ADDR_EQUAL(&CheckTCB->tcb_daddr, DestAddr) &&
IP6_ADDR_EQUAL(&CheckTCB->tcb_saddr, SrcAddr)) {
uint MTU = *(uint *)MTUPtr;
CheckTCB->tcb_mss = (ushort)MIN(MTU, (uint)CheckTCB->tcb_remmss);
ASSERT(CheckTCB->tcb_mss > 0);
//
// Reset the Congestion Window if necessary.
//
if (CheckTCB->tcb_cwin < CheckTCB->tcb_mss) {
CheckTCB->tcb_cwin = CheckTCB->tcb_mss;
//
// Make sure the slow start threshold is at least 2 segments.
//
if (CheckTCB->tcb_ssthresh < ((uint) CheckTCB->tcb_mss*2)) {
CheckTCB->tcb_ssthresh = CheckTCB->tcb_mss * 2;
}
}
}
KeReleaseSpinLock(&CheckTCB->tcb_lock, OldIrql);
return TRUE;
}
#endif
//* DeleteTCBWithSrc - Delete tcbs with a particular src address.
//
// A function called by TCBWalk to delete all TCBs with a particular source
// address.
//
uint // Returns: FALSE if CheckTCB is to be deleted, TRUE otherwise.
DeleteTCBWithSrc(
TCB *CheckTCB, // TCB to be checked.
void *AddrPtr, // Pointer to address.
void *Unused1, // Go figure.
void *Unused3) // What happened to Unused2?
{
IPv6Addr *Addr = (IPv6Addr *)AddrPtr;
CHECK_STRUCT(CheckTCB, tcb);
if (IP6_ADDR_EQUAL(&CheckTCB->tcb_saddr, Addr))
return FALSE;
else
return TRUE;
}
//* TCBWalk - Walk the TCBs in the table, and call a function for each of them.
//
// Called when we need to repetively do something to each TCB in the table.
// We call the specified function with a pointer to the TCB and the input
// context for each TCB in the table. If the function returns FALSE, we
// delete the TCB.
//
void // Returns: Nothing.
TCBWalk(
uint (*CallRtn)(struct TCB *, void *, void *, void *), // Routine to call.
void *Context1, // Context to pass to CallRtn.
void *Context2, // Second context to pass to call routine.
void *Context3) // Third context to pass to call routine.
{
uint i;
TCB *CurTCB;
KIRQL Irql0, Irql1;
//
// Loop through each bucket in the table, going down the chain of
// TCBs on the bucket. For each one call CallRtn.
//
KeAcquireSpinLock(&TCBTableLock, &Irql0);
for (i = 0; i < TcbTableSize; i++) {
CurTCB = TCBTable[i];
//
// Walk down the chain on this bucket.
//
while (CurTCB != NULL) {
if (!(*CallRtn)(CurTCB, Context1, Context2, Context3)) {
//
// Call failed on this one.
// Notify the client and close the TCB.
//
KeAcquireSpinLock(&CurTCB->tcb_lock, &Irql1);
if (!CLOSING(CurTCB)) {
CurTCB->tcb_refcnt++;
KeReleaseSpinLock(&TCBTableLock, Irql1);
TryToCloseTCB(CurTCB, TCB_CLOSE_ABORTED, Irql0);
RemoveTCBFromConn(CurTCB);
if (CurTCB->tcb_state != TCB_TIME_WAIT)
NotifyOfDisc(CurTCB, TDI_CONNECTION_ABORTED);
KeAcquireSpinLock(&CurTCB->tcb_lock, &Irql0);
DerefTCB(CurTCB, Irql0);
KeAcquireSpinLock(&TCBTableLock, &Irql0);
} else
KeReleaseSpinLock(&CurTCB->tcb_lock, Irql1);
CurTCB = FindNextTCB(i, CurTCB);
} else {
CurTCB = CurTCB->tcb_next;
}
}
}
KeReleaseSpinLock(&TCBTableLock, Irql0);
}
//* FindTCB - Find a TCB in the tcb table.
//
// Called when we need to find a TCB in the TCB table. We take a quick
// look at the last TCB we found, and if it matches we return it. Otherwise
// we hash into the TCB table and look for it. We assume the TCB table lock
// is held when we are called.
//
TCB * // Returns: Pointer to TCB found, or NULL if none.
FindTCB(
IPv6Addr *Src, // Source IP address of TCB to be found.
IPv6Addr *Dest, // Destination IP address of TCB to be found.
uint SrcScopeId, // Source address scope identifier.
uint DestScopeId, // Destination address scope identifier.
ushort SrcPort, // Source port of TCB to be found.
ushort DestPort) // Destination port of TCB to be found.
{
TCB *FoundTCB;
if (LastTCB != NULL) {
CHECK_STRUCT(LastTCB, tcb);
if (IP6_ADDR_EQUAL(&LastTCB->tcb_daddr, Dest) &&
LastTCB->tcb_dscope_id == DestScopeId &&
LastTCB->tcb_dport == DestPort &&
IP6_ADDR_EQUAL(&LastTCB->tcb_saddr, Src) &&
LastTCB->tcb_sscope_id == SrcScopeId &&
LastTCB->tcb_sport == SrcPort)
return LastTCB;
}
//
// Didn't find it in our 1 element cache.
//
FoundTCB = TCBTable[TCB_HASH(*Dest, *Src, DestPort, SrcPort)];
while (FoundTCB != NULL) {
CHECK_STRUCT(FoundTCB, tcb);
if (IP6_ADDR_EQUAL(&FoundTCB->tcb_daddr, Dest) &&
FoundTCB->tcb_dscope_id == DestScopeId &&
FoundTCB->tcb_dport == DestPort &&
IP6_ADDR_EQUAL(&FoundTCB->tcb_saddr, Src) &&
FoundTCB->tcb_sscope_id == SrcScopeId &&
FoundTCB->tcb_sport == SrcPort) {
//
// Found it. Update the cache for next time, and return.
//
LastTCB = FoundTCB;
return FoundTCB;
} else
FoundTCB = FoundTCB->tcb_next;
}
return FoundTCB;
}
//* InsertTCB - Insert a TCB in the tcb table.
//
// This routine inserts a TCB in the TCB table. No locks need to be held
// when this routine is called. We insert TCBs in ascending address order.
// Before inserting we make sure that the TCB isn't already in the table.
//
uint // Returns: TRUE if we inserted, false if we didn't.
InsertTCB(
TCB *NewTCB) // TCB to be inserted.
{
uint TCBIndex;
KIRQL OldIrql;
TCB *PrevTCB, *CurrentTCB;
TCB *WhereToInsert;
ASSERT(NewTCB != NULL);
CHECK_STRUCT(NewTCB, tcb);
TCBIndex = TCB_HASH(NewTCB->tcb_daddr, NewTCB->tcb_saddr,
NewTCB->tcb_dport, NewTCB->tcb_sport);
KeAcquireSpinLock(&TCBTableLock, &OldIrql);
KeAcquireSpinLockAtDpcLevel(&NewTCB->tcb_lock);
//
// Find the proper place in the table to insert him. While
// we're walking we'll check to see if a dupe already exists.
// When we find the right place to insert, we'll remember it, and
// keep walking looking for a duplicate.
//
PrevTCB = CONTAINING_RECORD(&TCBTable[TCBIndex], TCB, tcb_next);
WhereToInsert = NULL;
while (PrevTCB->tcb_next != NULL) {
CurrentTCB = PrevTCB->tcb_next;
if (IP6_ADDR_EQUAL(&CurrentTCB->tcb_daddr, &NewTCB->tcb_daddr) &&
IP6_ADDR_EQUAL(&CurrentTCB->tcb_saddr, &NewTCB->tcb_saddr) &&
(CurrentTCB->tcb_sport == NewTCB->tcb_sport) &&
(CurrentTCB->tcb_dport == NewTCB->tcb_dport)) {
KeReleaseSpinLockFromDpcLevel(&NewTCB->tcb_lock);
KeReleaseSpinLock(&TCBTableLock, OldIrql);
return FALSE;
} else {
if (WhereToInsert == NULL && CurrentTCB > NewTCB) {
WhereToInsert = PrevTCB;
}
CHECK_STRUCT(PrevTCB->tcb_next, tcb);
PrevTCB = PrevTCB->tcb_next;
}
}
if (WhereToInsert == NULL) {
WhereToInsert = PrevTCB;
}
NewTCB->tcb_next = WhereToInsert->tcb_next;
WhereToInsert->tcb_next = NewTCB;
NewTCB->tcb_flags |= IN_TCB_TABLE;
TStats.ts_numconns++;
KeReleaseSpinLockFromDpcLevel(&NewTCB->tcb_lock);
KeReleaseSpinLock(&TCBTableLock, OldIrql);
return TRUE;
}
//* RemoveTCB - Remove a TCB from the tcb table.
//
// Called when we need to remove a TCB from the TCB table. We assume the
// TCB table lock and the TCB lock are held when we are called. If the
// TCB isn't in the table we won't try to remove him.
//
uint // Returns: TRUE if it's OK to free it, FALSE otherwise.
RemoveTCB(
TCB *RemovedTCB) // TCB to be removed.
{
uint TCBIndex;
TCB *PrevTCB;
#if DBG
uint Found = FALSE;
#endif
CHECK_STRUCT(RemovedTCB, tcb);
if (RemovedTCB->tcb_flags & IN_TCB_TABLE) {
TCBIndex = TCB_HASH(RemovedTCB->tcb_daddr, RemovedTCB->tcb_saddr,
RemovedTCB->tcb_dport, RemovedTCB->tcb_sport);
PrevTCB = CONTAINING_RECORD(&TCBTable[TCBIndex], TCB, tcb_next);
do {
if (PrevTCB->tcb_next == RemovedTCB) {
// Found him.
PrevTCB->tcb_next = RemovedTCB->tcb_next;
RemovedTCB->tcb_flags &= ~IN_TCB_TABLE;
TStats.ts_numconns--;
#if DBG
Found = TRUE;
#endif
break;
}
PrevTCB = PrevTCB->tcb_next;
#if DBG
if (PrevTCB != NULL)
CHECK_STRUCT(PrevTCB, tcb);
#endif
} while (PrevTCB != NULL);
ASSERT(Found);
}
if (LastTCB == RemovedTCB)
LastTCB = NULL;
if (TCBWalkCount == 0) {
return TRUE;
} else {
RemovedTCB->tcb_walkcount = TCBWalkCount + 1;
*(TCB **)&RemovedTCB->tcb_delayq.q_next = PendingFreeList;
PendingFreeList = RemovedTCB;
return FALSE;
}
}
//* ScavengeTCB - Scavenge a TCB that's in the TIME_WAIT state.
//
// Called when we're running low on TCBs, and need to scavenge one from
// TIME_WAIT state. We'll walk through the TCB table, looking for the oldest
// TCB in TIME_WAIT. We'll remove and return a pointer to that TCB. If we
// don't find any TCBs in TIME_WAIT, we'll return NULL.
//
TCB * // Returns: Pointer to a reusable TCB, or NULL.
ScavengeTCB(
void)
{
KIRQL Irql0, Irql1, IrqlSave;
uint Now = SystemUpTime();
uint Delta = 0;
uint i;
TCB *FoundTCB = NULL, *PrevFound;
TCB *CurrentTCB, *PrevTCB;
KeAcquireSpinLock(&TCBTableLock, &Irql0);
if (TCBWalkCount != 0) {
KeReleaseSpinLock(&TCBTableLock, Irql0);
return NULL;
}
for (i = 0; i < TcbTableSize; i++) {
PrevTCB = CONTAINING_RECORD(&TCBTable[i], TCB, tcb_next);
CurrentTCB = PrevTCB->tcb_next;
while (CurrentTCB != NULL) {
CHECK_STRUCT(CurrentTCB, tcb);
KeAcquireSpinLock(&CurrentTCB->tcb_lock, &Irql1);
if (CurrentTCB->tcb_state == TCB_TIME_WAIT &&
(CurrentTCB->tcb_refcnt == 0) && !CLOSING(CurrentTCB)){
if (FoundTCB == NULL ||
((Now - CurrentTCB->tcb_alive) > Delta)) {
//
// Found a new 'older' TCB. If we already have one, free
// the lock on him and get the lock on the new one.
//
if (FoundTCB != NULL)
KeReleaseSpinLock(&FoundTCB->tcb_lock, Irql1);
else
IrqlSave = Irql1;
PrevFound = PrevTCB;
FoundTCB = CurrentTCB;
Delta = Now - FoundTCB->tcb_alive;
} else
KeReleaseSpinLock(&CurrentTCB->tcb_lock, Irql1);
} else
KeReleaseSpinLock(&CurrentTCB->tcb_lock, Irql1);
//
// Look at the next one.
//
PrevTCB = CurrentTCB;
CurrentTCB = PrevTCB->tcb_next;
}
}
//
// If we have one, pull him from the list.
//
if (FoundTCB != NULL) {
PrevFound->tcb_next = FoundTCB->tcb_next;
FoundTCB->tcb_flags &= ~IN_TCB_TABLE;
//
// REVIEW: Is the right place to drop the reference on our RCE?
// REVIEW: IPv4 called down to IP to close the RCE here.
//
if (FoundTCB->tcb_rce != NULL)
ReleaseRCE(FoundTCB->tcb_rce);
TStats.ts_numconns--;
if (LastTCB == FoundTCB) {
LastTCB = NULL;
}
KeReleaseSpinLock(&FoundTCB->tcb_lock, IrqlSave);
}
KeReleaseSpinLock(&TCBTableLock, Irql0);
return FoundTCB;
}
//* AllocTCB - Allocate a TCB.
//
// Called whenever we need to allocate a TCB. We try to pull one off the
// free list, or allocate one if we need one. We then initialize it, etc.
//
TCB * // Returns: Pointer to the new TCB, or NULL if we couldn't get one.
AllocTCB(
void)
{
TCB *NewTCB;
//
// First, see if we have one on the free list.
//
PSLIST_ENTRY BufferLink;
BufferLink = ExInterlockedPopEntrySList(&FreeTCBList, &FreeTCBListLock);
if (BufferLink != NULL) {
NewTCB = CONTAINING_RECORD(BufferLink, TCB, tcb_next);
CHECK_STRUCT(NewTCB, tcb);
ExInterlockedAddUlong(&FreeTCBs, -1, &FreeTCBListLock);
} else {
//
// We have none on the free list. If the total number of TCBs
// outstanding is more than we like to keep on the free list, try
// to scavenge a TCB from time wait.
//
if (CurrentTCBs < MaxFreeTCBs || ((NewTCB = ScavengeTCB()) == NULL)) {
if (CurrentTCBs < MaxTCBs) {
NewTCB = ExAllocatePool(NonPagedPool, sizeof(TCB));
if (NewTCB == NULL) {
return NewTCB;
} else {
ExInterlockedAddUlong(&CurrentTCBs, 1, &FreeTCBListLock);
}
} else
return NULL;
}
}
ASSERT(NewTCB != NULL);
RtlZeroMemory(NewTCB, sizeof(TCB));
#if DBG
NewTCB->tcb_sig = tcb_signature;
#endif
INITQ(&NewTCB->tcb_sendq);
NewTCB->tcb_cursend = NULL;
NewTCB->tcb_alive = TCPTime;
NewTCB->tcb_hops = -1;
//
// Initially we're not on the fast path because we're not established. Set
// the slowcount to one and set up the fastchk fields so we don't take the
// fast path.
//
NewTCB->tcb_slowcount = 1;
NewTCB->tcb_fastchk = TCP_FLAG_ACK | TCP_FLAG_SLOW;
KeInitializeSpinLock(&NewTCB->tcb_lock);
return NewTCB;
}
//* FreeTCB - Free a TCB.
//
// Called whenever we need to free a TCB.
//
// Note: This routine may be called with the TCBTableLock held.
//
void // Returns: Nothing.
FreeTCB(
TCB *FreedTCB) // TCB to be freed.
{
PSLIST_ENTRY BufferLink;
CHECK_STRUCT(FreedTCB, tcb);
#if defined(_WIN64)
if (CurrentTCBs > 2 * MaxFreeTCBs) {
#else
if ((CurrentTCBs > 2 * MaxFreeTCBs) || (FreeTCBList.Depth > 65000)) {
#endif
ExInterlockedAddUlong(&CurrentTCBs, (ulong) - 1, &FreeTCBListLock);
ExFreePool(FreedTCB);
return;
}
BufferLink = CONTAINING_RECORD(&(FreedTCB->tcb_next),
SLIST_ENTRY, Next);
ExInterlockedPushEntrySList(&FreeTCBList, BufferLink, &FreeTCBListLock);
ExInterlockedAddUlong(&FreeTCBs, 1, &FreeTCBListLock);
}
#pragma BEGIN_INIT
//* InitTCB - Initialize our TCB code.
//
// Called during init time to initialize our TCB code. We initialize
// the TCB table, etc, then return.
//
int // Returns: TRUE if we did initialize, false if we didn't.
InitTCB(
void)
{
LARGE_INTEGER InitialWakeUp;
uint i;
TCBTable = ExAllocatePool(NonPagedPool, TcbTableSize * sizeof(TCB*));
if (TCBTable == NULL) {
return FALSE;
}
for (i = 0; i < TcbTableSize; i++)
TCBTable[i] = NULL;
LastTCB = NULL;
ExInitializeSListHead(&FreeTCBList);
KeInitializeSpinLock(&TCBTableLock);
KeInitializeSpinLock(&FreeTCBListLock);
TCPTime = 0;
TCBWalkCount = 0;
DeadmanTicks = NUM_DEADMAN_TICKS;
//
// Set up our timer to call TCBTimeout once every MS_PER_TICK milliseconds.
//
// REVIEW: Switch this to be driven off the IPv6Timeout routine instead
// REVIEW: of having two independent timers?
//
KeInitializeDpc(&TCBTimeoutDpc, TCBTimeout, NULL);
KeInitializeTimer(&TCBTimer);
InitialWakeUp.QuadPart = -(LONGLONG) MS_PER_TICK * 10000;
KeSetTimerEx(&TCBTimer, InitialWakeUp, MS_PER_TICK, &TCBTimeoutDpc);
return TRUE;
}
#pragma END_INIT
//* UnloadTCB
//
// Called during shutdown to uninitialize
// in preparation for unloading the stack.
//
// There are no open sockets (or else we wouldn't be unloading).
// Because UnloadTCPSend has already been called,
// we are no longer receiving packets from the IPv6 layer.
//
void
UnloadTCB(void)
{
PSLIST_ENTRY BufferLink;
TCB *CurrentTCB;
uint i;
KIRQL OldIrql;
//
// First stop TCBTimeout from being called.
//
KeCancelTimer(&TCBTimer);
//
// Traverse the buckets looking for TCBs.
// REVIEW - Can we have TCBs in states other than time-wait?
//
for (i = 0; i < TcbTableSize; i++) {
while ((CurrentTCB = TCBTable[i]) != NULL) {
KeAcquireSpinLock(&CurrentTCB->tcb_lock, &OldIrql);
KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_STATE,
"UnloadTCB(%p): state %x flags %x refs %x "
"reason %x pend %x walk %x\n",
CurrentTCB,
CurrentTCB->tcb_state,
CurrentTCB->tcb_flags,
CurrentTCB->tcb_refcnt,
CurrentTCB->tcb_closereason,
CurrentTCB->tcb_pending,
CurrentTCB->tcb_walkcount));
CurrentTCB->tcb_flags |= NEED_RST;
TryToCloseTCB(CurrentTCB, TCB_CLOSE_ABORTED, OldIrql);
}
}
//
// Now pull TCBs off the free list and really free them.
//
while ((BufferLink = ExInterlockedPopEntrySList(&FreeTCBList, &FreeTCBListLock)) != NULL) {
CurrentTCB = CONTAINING_RECORD(BufferLink, TCB, tcb_next);
CHECK_STRUCT(CurrentTCB, tcb);
ExFreePool(CurrentTCB);
}
ExFreePool(TCBTable);
TCBTable = NULL;
}
//* CleanupTCBWithIF
//
// Helper function for TCBWalk, to remove
// TCBs that reference the specified interface.
//
// Returns FALSE if CheckTCB should be deleted, TRUE otherwise.
//
uint
CleanupTCBWithIF(
TCB *CheckTCB,
void *Context1,
void *Context2,
void *Context3)
{
Interface *IF = (Interface *) Context1;
RouteCacheEntry *RCE;
KIRQL OldIrql;
CHECK_STRUCT(CheckTCB, tcb);
RCE = CheckTCB->tcb_rce;
if (RCE != NULL) {
ASSERT(RCE->NTE->IF == RCE->NCE->IF);
if (RCE->NTE->IF == IF)
return FALSE; // Delete this TCB.
}
return TRUE; // Do not delete this TCB.
}
//* TCPRemoveIF
//
// Remove TCP's references to the specified interface.
//
void
TCPRemoveIF(Interface *IF)
{
//
// Currently, only TCBs hold onto references.
//
TCBWalk(CleanupTCBWithIF, IF, NULL, NULL);
}