windows-nt/Source/XPSP1/NT/sdktools/perfmon/counters.c
2020-09-26 16:20:57 +08:00

1794 lines
71 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++ BUILD Version: 0001 // Increment this if a change has global effects
Copyright (c) 1992-1993 Microsoft Corporation
Module Name:
counters.c
Abstract:
This module contains the routines to calculate "DataPoint" values from
the registry data.
The algoritms were lifted from RussBls's "Data.C" in winmeter.
All the math is done in floating point to get the correct results, at
the sacrifice of efficiency on a 386 with not 387. We can always
revisit these routines later.
Revision History:
Bob Watson 11/04/92
-- modified calculations to use more integer math and "early
exits" to improve efficiency on slower & non-coprocessor
machines
--*/
//==========================================================================//
// Includes //
//==========================================================================//
#include "perfmon.h" // perfmon include files
#include "counters.h" // Exported declarations for this file
#include "perfmsg.h" // message file definitions
//==========================================================================//
// Constants //
//==========================================================================//
#ifdef DBG_COUNTER_DATA
#undef DBG_COUNTER_DATA
#endif
//#define DBG_COUNTER_DATA
#define INVERT PERF_COUNTER_TIMER_INV
#define NS100_INVERT PERF_100NSEC_TIMER_INV
#define NS100 PERF_100NSEC_TIMER
#define TIMER_MULTI PERF_COUNTER_MULTI_TIMER
#define TIMER_MULTI_INVERT PERF_COUNTER_MULTI_TIMER_INV
#define NS100_MULTI PERF_100NSEC_MULTI_TIMER
#define NS100_MULTI_INVERT PERF_100NSEC_MULTI_TIMER_INV
#define FRACTION 1
#define BULK 1
#define TOO_BIG (FLOAT)1500000000
//==========================================================================//
// Local Functions //
//==========================================================================//
#define eLIntToFloat(LI) (FLOAT)( ((LARGE_INTEGER *)(LI))->QuadPart )
static LPTSTR cszSpace = TEXT(" ");
FLOAT
eGetTimeInterval(
IN PLARGE_INTEGER pliCurrentTime,
IN PLARGE_INTEGER pliPreviousTime,
IN PLARGE_INTEGER pliFreq
)
/*++
Routine Description:
Get the difference between the current and previous time counts,
then divide by the frequency.
Arguments:
IN pCurrentTime
IN pPreviousTime
used to compute the duration of this sample (the time between
samples
IN pliFreq
# of counts (clock ticks) per second
Return Value:
Floating point representation of Time Interval (seconds)
--*/
{
FLOAT eTimeDifference;
FLOAT eFreq;
FLOAT eTimeInterval ;
LARGE_INTEGER liDifference;
// Get the number of counts that have occured since the last sample
liDifference.QuadPart = pliCurrentTime->QuadPart -
pliPreviousTime->QuadPart;
if (liDifference.QuadPart <= 0) {
return (FLOAT) 0.0f;
} else {
eTimeDifference = eLIntToFloat(&liDifference);
// Get the counts per second
eFreq = eLIntToFloat(pliFreq) ;
if (eFreq <= 0.0f)
return (FLOAT) 0.0f;
// Get the time since the last sample.
eTimeInterval = eTimeDifference / eFreq ;
return (eTimeInterval) ;
}
} // eGetTimeInterval
FLOAT
Counter_Counter_Common(
IN PLINESTRUCT pLineStruct,
IN INT iType
)
/*++
Routine Description:
Take the difference between the current and previous counts
then divide by the time interval
Arguments:
IN pLineStruct
Line structure containing data to perform computations on
IN iType
Counter Type
Return Value:
Floating point representation of outcome
--*/
{
FLOAT eTimeInterval;
FLOAT eDifference;
FLOAT eCount ;
BOOL bValueDrop = FALSE ;
LARGE_INTEGER liDifference;
if (iType != BULK) {
pLineStruct->lnaCounterValue[0].HighPart = 0;
}
liDifference.QuadPart = pLineStruct->lnaCounterValue[0].QuadPart -
pLineStruct->lnaOldCounterValue[0].QuadPart;
if (liDifference.QuadPart <= 0) {
if (bReportEvents && (liDifference.QuadPart < 0)) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
if (iType != BULK) {
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
} else { // 8 byte counter values
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].HighPart;
}
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_VALUE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
return (FLOAT) 0.0f;
} else {
eTimeInterval = eGetTimeInterval(&pLineStruct->lnNewTime,
&pLineStruct->lnOldTime,
&pLineStruct->lnPerfFreq) ;
if (eTimeInterval <= 0.0f) {
if ((eTimeInterval < 0.0f) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnNewTime.LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnNewTime.HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnOldTime.LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnOldTime.HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_TIME, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
return (FLOAT) 0.0f;
}
} else {
eDifference = eLIntToFloat (&liDifference);
eCount = eDifference / eTimeInterval ;
if (bValueDrop && (eCount > ((FLOAT)TOO_BIG))) {
// ignore this bogus data since it is too big for
// the wrap-around case
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
liDifference.LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
liDifference.HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_VALUE_OUT_OF_BOUNDS, // event
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
eCount = (FLOAT) 0.0f ;
}
return(eCount) ;
}
}
return (FLOAT) 0.0f;
} // Counter_Counter_Common
FLOAT
Counter_Average_Timer(
IN PLINESTRUCT pLineStruct
)
/*++
Routine Description:
Take the differences between the current and previous times and counts
divide the time interval by the counts multiply by 10,000,000 (convert
from 100 nsec to sec)
Arguments:
IN pLineStruct
Line structure containing data to perform computations on
Return Value:
Floating point representation of outcome
--*/
{
FLOAT eTimeInterval;
FLOAT eCount;
LARGE_INTEGER liDifference;
// Get the current and previous counts.
pLineStruct->lnaCounterValue[1].HighPart = 0;
liDifference.QuadPart = pLineStruct->lnaCounterValue[1].QuadPart -
pLineStruct->lnaOldCounterValue[1].QuadPart;
if ( liDifference.QuadPart <= 0) {
if ((liDifference.QuadPart < 0) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[1].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[1].LowPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_VALUE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
return (FLOAT) 0.0f;
} else {
// Get the amount of time that has passed since the last sample
eTimeInterval = eGetTimeInterval(&pLineStruct->lnaCounterValue[0],
&pLineStruct->lnaOldCounterValue[0],
&pLineStruct->lnPerfFreq) ;
if (eTimeInterval <= 0.0f) { // return 0 if negative time has passed
if ((eTimeInterval < 0.0f) & bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_TIME, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
return (0.0f);
} else {
// Get the number of counts in this time interval.
eCount = eTimeInterval / eLIntToFloat (&liDifference);
return(eCount) ;
}
}
} //Counter_Average_Timer
FLOAT
Counter_Average_Bulk(
IN PLINESTRUCT pLineStruct
)
/*++
Routine Description:
Take the differences between the current and previous byte counts and
operation counts divide the bulk count by the operation counts
Arguments:
IN pLineStruct
Line structure containing data to perform computations on
Return Value:
Floating point representation of outcome
--*/
{
FLOAT eBulkDelta;
FLOAT eDifference;
FLOAT eCount;
LARGE_INTEGER liDifference;
LARGE_INTEGER liBulkDelta;
// Get the bulk count increment since the last sample
liBulkDelta.QuadPart = pLineStruct->lnaCounterValue[0].QuadPart -
pLineStruct->lnaOldCounterValue[0].QuadPart;
if (liBulkDelta.QuadPart <= 0) {
if ((liBulkDelta.QuadPart < 0) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_VALUE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
return (FLOAT) 0.0f;
} else {
// Get the current and previous counts.
pLineStruct->lnaCounterValue[1].HighPart = 0;
liDifference.QuadPart = pLineStruct->lnaCounterValue[1].QuadPart -
pLineStruct->lnaOldCounterValue[1].QuadPart;
// Get the number of counts in this time interval.
if ( liDifference.QuadPart <= 0) {
if ((liDifference.QuadPart < 0) && bReportEvents) {
// Counter value invalid
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[1].LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[1].HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[1].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[1].HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_VALUE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
return (FLOAT) 0.0f;
} else {
eBulkDelta = eLIntToFloat (&liBulkDelta);
eDifference = eLIntToFloat (&liDifference);
eCount = eBulkDelta / eDifference ;
// Scale the value to up to 1 second
return(eCount) ;
}
}
} // Counter_Average_Bulk
FLOAT
Counter_Timer_Common(
IN PLINESTRUCT pLineStruct,
IN INT iType
)
/*++
Routine Description:
Take the difference between the current and previous counts,
Normalize the count (counts per interval)
divide by the time interval (count = % of interval)
if (invert)
subtract from 1 (the normalized size of an interval)
multiply by 100 (convert to a percentage)
this value from 100.
Arguments:
IN pLineStruct
Line structure containing data to perform computations on
IN iType
Counter Type
Return Value:
Floating point representation of outcome
--*/
{
FLOAT eTimeInterval;
FLOAT eDifference;
FLOAT eFreq;
FLOAT eFraction;
FLOAT eMultiBase;
FLOAT eCount ;
LARGE_INTEGER liTimeInterval;
LARGE_INTEGER liDifference;
LARGE_INTEGER liFreq;
// test to see if the previous sample was 0, if so, return 0 since
// the difference between a "valid" value and 0 will likely exceed
// 100%. It's better to keep the value at 0 until a valid one can
// be displayed, rather than display a 100% spike, then a valid value.
if (pLineStruct->lnaOldCounterValue[0].QuadPart == 0) {
return (FLOAT)0.0f;
}
// Get the amount of time that has passed since the last sample
if (iType == NS100 ||
iType == NS100_INVERT ||
iType == NS100_MULTI ||
iType == NS100_MULTI_INVERT) {
liTimeInterval.QuadPart = pLineStruct->lnNewTime100Ns.QuadPart -
pLineStruct->lnOldTime100Ns.QuadPart;
eTimeInterval = eLIntToFloat (&liTimeInterval);
} else {
liTimeInterval.QuadPart = pLineStruct->lnNewTime.QuadPart -
pLineStruct->lnOldTime.QuadPart;
eTimeInterval = eGetTimeInterval(&pLineStruct->lnNewTime,
&pLineStruct->lnOldTime,
&pLineStruct->lnPerfFreq) ;
}
if (liTimeInterval.QuadPart <= 0) {
if ((liTimeInterval.QuadPart < 0) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnNewTime.LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnNewTime.HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnOldTime.LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnOldTime.HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_TIME, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
return (FLOAT) 0.0f;
}
// Get the current and previous counts.
liDifference.QuadPart = pLineStruct->lnaCounterValue[0].QuadPart -
pLineStruct->lnaOldCounterValue[0].QuadPart;
// Get the number of counts in this time interval.
// (1, 2, 3 or any number of seconds could have gone by since
// the last sample)
eDifference = eLIntToFloat (&liDifference) ;
if (iType == 0 || iType == INVERT)
{
// Get the counts per interval (second)
liFreq.QuadPart = pLineStruct->lnPerfFreq.QuadPart;
if ((liFreq.QuadPart <= 0) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = liFreq.LowPart;
dwMessageData[dwMessageDataBytes++] = liFreq.HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_BAD_FREQUENCY, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
return (FLOAT) 0.0f;
} else {
eFreq = eLIntToFloat(&pLineStruct->lnPerfFreq) ;
}
// Calculate the fraction of the counts that are used by whatever
// we are measuring to convert to units per second
eFraction = eDifference / eFreq ;
}
else
{
// for 100 NS counters, the frequency is not included since it
// would cancel out since both numerator & denominator are returned
// in 100 NS units. Non "100 NS" counter types are normalized to
// seconds.
eFraction = eDifference ;
liFreq.QuadPart = 10000000;
}
// Calculate the fraction of time used by what were measuring.
if (eTimeInterval > 0.0)
eCount = eFraction / eTimeInterval ;
else
eCount = 0.0;
// If this is an inverted count take care of the inversion.
if (iType == INVERT || iType == NS100_INVERT)
eCount = (FLOAT) 1.0 - eCount ;
if (eCount <= (FLOAT)0.0f) {
// the threshold for reporting an error is -.1 since some timers
// have a small margin of error that should never exceed this value
// but can fall below 0 at times. Typically this error is no more
// than -0.01
if ((eCount < (FLOAT)-0.1f) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_VALUE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
// don't just return here, since 0 is possibly a valid value
eCount = (FLOAT)0.0f;
}
// If this is a multi count take care of the base
if (iType == TIMER_MULTI || iType == NS100_MULTI ||
iType == TIMER_MULTI_INVERT || iType == NS100_MULTI_INVERT) {
if (pLineStruct->lnaCounterValue[1].LowPart <= 0) {
#if 0
if ((pLineStruct->lnaCounterValue[1].LowPart < 0) &&
bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[1].LowPart;
dwMessageDataBytes *= sizeof (DWORD);
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_INVALID_BASE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
#endif
return (FLOAT) 0.0f;
} else {
eMultiBase = (FLOAT)pLineStruct->lnaCounterValue[1].LowPart ;
}
// If this is an inverted multi count take care of the inversion.
if (iType == TIMER_MULTI_INVERT || iType == NS100_MULTI_INVERT) {
eCount = (FLOAT) eMultiBase - eCount ;
}
eCount /= eMultiBase;
}
// Scale the value to up to 100.
eCount *= 100.0f ;
if (((eCount > 100.0f) && (bCapPercentsAt100)) &&
iType != NS100_MULTI &&
iType != NS100_MULTI_INVERT &&
iType != TIMER_MULTI &&
iType != TIMER_MULTI_INVERT) {
if (bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnaCounterValue[0].HighPart;
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnaOldCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnaOldCounterValue[0].HighPart;
dwMessageData[dwMessageDataBytes++] = liTimeInterval.LowPart;
dwMessageData[dwMessageDataBytes++] = liTimeInterval.HighPart;
dwMessageData[dwMessageDataBytes++] = liFreq.LowPart;
dwMessageData[dwMessageDataBytes++] = liFreq.HighPart;
dwMessageDataBytes *= sizeof(DWORD);
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_VALUE_OUT_OF_RANGE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
eCount = 100.0f; // limit value to 100.0%
}
return(eCount) ;
} // Counter_Timer_Common
FLOAT
Counter_Raw_Fraction(
IN PLINESTRUCT pLineStruct,
IN BOOL bLargeValue
)
/*++
Routine Description:
Evaluate a raw fraction (no time, just two values: Numerator and
Denominator) and multiply by 100 (to make a percentage;
Arguments:
IN pLineStruct
Line structure containing data to perform computations on
Return Value:
Floating point representation of outcome
--*/
{
FLOAT eCount ;
LARGE_INTEGER liNumerator;
if (pLineStruct->lnaCounterValue[0].LowPart == 0) {
// numerator is 0 so just bail here
return (FLOAT)0.0f;
} else {
if (!bLargeValue) {
liNumerator.QuadPart =
pLineStruct->lnaCounterValue[0].LowPart * 100L;
} else {
liNumerator.QuadPart =
pLineStruct->lnaCounterValue[0].QuadPart * 100L;
}
}
// now test and compute base (denominator)
if (pLineStruct->lnaCounterValue[1].QuadPart == 0 ) {
// invalid value for denominator
if (bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[1].LowPart;
dwMessageDataBytes *= sizeof (DWORD);
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_INVALID_BASE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
return (0.0f);
} else {
// if base is OK, then get fraction
eCount = eLIntToFloat(&liNumerator) /
(FLOAT) pLineStruct->lnaCounterValue[1].QuadPart;
return(eCount) ;
}
} // Counter_Raw_Fraction
FLOAT
eElapsedTime(
PLINESTRUCT pLineStruct,
INT iType
)
/*++
Routine Description:
Converts 100NS elapsed time to fractional seconds
Arguments:
IN pLineStruct
Line structure containing data to perform computations on
IN iType
Unused.
Return Value:
Floating point representation of elapsed time in seconds
--*/
{
FLOAT eSeconds ;
LARGE_INTEGER liDifference;
if (pLineStruct->lnaCounterValue[0].QuadPart <= 0) {
// no data [start time = 0] so return 0
// this really doesn't warrant an error message
return (FLOAT) 0.0f;
} else {
// otherwise compute difference between current time and start time
liDifference.QuadPart =
pLineStruct->lnNewTime.QuadPart - // sample time in obj. units
pLineStruct->lnaCounterValue[0].QuadPart; // start time in obj. units
if ((liDifference.QuadPart <= 0) ||
(pLineStruct->lnObject.PerfFreq.QuadPart <= 0)) {
if ((bReportEvents) && ((liDifference.QuadPart < 0) ||
(pLineStruct->lnObject.PerfFreq.QuadPart < 0))) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
if (liDifference.QuadPart < 0) {
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnNewTime.LowPart;
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnNewTime.HighPart;
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnaCounterValue[0].HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_TIME, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
} else {
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnObject.PerfFreq.LowPart;
dwMessageData[dwMessageDataBytes++] =
pLineStruct->lnObject.PerfFreq.HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_BAD_FREQUENCY, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
}
return (FLOAT) 0.0f;
} else {
// convert to fractional seconds using object counter
eSeconds = eLIntToFloat (&liDifference);
eSeconds /= eLIntToFloat (&pLineStruct->lnObject.PerfFreq);
return (eSeconds);
}
}
} // eElapsedTime
FLOAT
Sample_Common(
PLINESTRUCT pLineStruct,
INT iType
)
/*++
Routine Description:
Divites "Top" differenced by Base Difference
Arguments:
IN pLineStruct
Line structure containing data to perform computations on
IN iType
Counter Type
Return Value:
Floating point representation of outcome
--*/
{
double eCount ;
LONG lDifference;
LONG lBaseDifference;
double dReturn;
lDifference = pLineStruct->lnaCounterValue[0].LowPart -
pLineStruct->lnaOldCounterValue[0].LowPart ;
if (lDifference <= 0) {
if ((lDifference < 0) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_VALUE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
dReturn = (double) 0.0f;
} else {
lBaseDifference = pLineStruct->lnaCounterValue[1].LowPart -
pLineStruct->lnaOldCounterValue[1].LowPart ;
if ( lBaseDifference <= 0 ) {
// invalid value
if ((lBaseDifference < 0 ) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[1].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[1].LowPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_INVALID_BASE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
dReturn = (0.0f);
} else {
eCount = lDifference / lBaseDifference ;
if (iType == FRACTION) {
eCount *= 100.0f ;
}
dReturn = eCount;
}
}
return (FLOAT)dReturn;
} // Sample_Common
//==========================================================================//
// Exported Functions //
//==========================================================================//
/*****************************************************************************
* Counter_Counter - Take the difference between the current and previous
* counts then divide by the time interval
****************************************************************************/
#define Counter_Counter(pLineStruct) \
Counter_Counter_Common(pLineStruct, 0)
/*****************************************************************************
* Counter_Bulk - Take the difference between the current and previous
* counts then divide by the time interval
* Same as a Counter_counter except it uses large_ints
****************************************************************************/
#define Counter_Bulk(pLineStruct) \
Counter_Counter_Common(pLineStruct, BULK)
/*****************************************************************************
* Counter_Timer100Ns -
*
* Need to review with RussBl exactly what he is doing here.
****************************************************************************/
#define Counter_Timer100Ns(pLineStruct) \
Counter_Timer_Common(pLineStruct, NS100)
/*****************************************************************************
* Counter_Timer100Ns_Inv -
*
* Need to review with RussBl exactly what he is doing here.
****************************************************************************/
#define Counter_Timer100Ns_Inv(pLineStruct) \
Counter_Timer_Common(pLineStruct, NS100_INVERT)
/*****************************************************************************
* Counter_Timer_Multi -
*
* Need to review with RussBl exactly what he is doing here.
****************************************************************************/
#define Counter_Timer_Multi(pLineStruct) \
Counter_Timer_Common(pLineStruct, TIMER_MULTI)
/*****************************************************************************
* Counter_Timer_Multi_Inv -
*
* Need to review with RussBl exactly what he is doing here.
****************************************************************************/
#define Counter_Timer_Multi_Inv(pLineStruct) \
Counter_Timer_Common(pLineStruct, TIMER_MULTI_INVERT)
/*****************************************************************************
* Counter_Timer100Ns_Multi -
*
* Need to review with RussBl exactly what he is doing here.
****************************************************************************/
#define Counter_Timer100Ns_Multi(pLineStruct) \
Counter_Timer_Common(pLineStruct, NS100_MULTI)
/*****************************************************************************
* Counter_Timer100Ns_Multi_Inv -
*
* Need to review with RussBl exactly what he is doing here.
****************************************************************************/
#define Counter_Timer100Ns_Multi_Inv(pLineStruct) \
Counter_Timer_Common(pLineStruct, NS100_MULTI_INVERT)
/*****************************************************************************
* Counter_Timer - Take the difference between the current and previous
* counts,
* Normalize the count (counts per interval)
* divide by the time interval (count = % of interval)
* multiply by 100 (convert to a percentage)
* this value from 100.
****************************************************************************/
#define Counter_Timer(pLineStruct) \
Counter_Timer_Common(pLineStruct, 0)
/*****************************************************************************
* Counter_Timer_Inv - Take the difference between the current and previous
* counts,
* Normalize the count (counts per interval)
* divide by the time interval (count = % of interval)
* subtract from 1 (the normalized size of an interval)
* multiply by 100 (convert to a percentage)
* this value from 100.
****************************************************************************/
#define Counter_Timer_Inv(pLineStruct) \
Counter_Timer_Common(pLineStruct, INVERT)
/*****************************************************************************
* Sample_Counter -
****************************************************************************/
#define Sample_Counter(pLineStruct) \
Sample_Common(pLineStruct, 0)
/*****************************************************************************
* Sample_Fraction -
****************************************************************************/
#define Sample_Fraction(pLineStruct) \
Sample_Common(pLineStruct, FRACTION)
/*****************************************************************************
* Counter_Rawcount - This is just a raw count.
****************************************************************************/
#define Counter_Rawcount(pLineStruct) \
((FLOAT) (pLineStruct->lnaCounterValue[0].LowPart))
/*****************************************************************************
* Counter_Large_Rawcount - This is just a raw count.
****************************************************************************/
#define Counter_Large_Rawcount(pLineStruct) \
((FLOAT) eLIntToFloat(&(pLineStruct->lnaCounterValue[0])))
/*****************************************************************************
* Counter_Elapsed_Time -
****************************************************************************/
#define Counter_Elapsed_Time(pLineStruct) \
eElapsedTime (pLineStruct, 0)
#define CQLFLAGS_LARGE ((DWORD)0x00000001)
#define CQLFLAGS_100NS ((DWORD)0x00000002)
FLOAT Counter_Queuelen(PLINESTRUCT pLineStruct, DWORD dwFlags)
/*++
Routine Description:
Take the difference between the current and previous counts,
divide by the time interval (count = decimal fraction of interval)
Value can exceed 1.00.
Arguments:
IN pLineStruct
Line structure containing data to perform computations on
IN iType
Counter Type
Return Value:
Floating point representation of outcome
--*/
{
FLOAT eTimeDiff;
FLOAT eDifference;
FLOAT eCount;
LONGLONG llDifference;
LONGLONG llTimeDiff;
// Get the amount of time that has passed since the last sample
if (dwFlags & CQLFLAGS_100NS) {
llTimeDiff = pLineStruct->lnNewTime100Ns.QuadPart -
pLineStruct->lnOldTime100Ns.QuadPart;
} else {
llTimeDiff = pLineStruct->lnNewTime.QuadPart -
pLineStruct->lnOldTime.QuadPart;
}
if (llTimeDiff <= 0) {
if ((llTimeDiff < 0 ) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnNewTime.LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnNewTime.HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnOldTime.LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnOldTime.HighPart;
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_TIME, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
return (FLOAT)0.0f;
} else {
eTimeDiff = (FLOAT)llTimeDiff;
}
// Get the current and previous counts.
if (dwFlags & CQLFLAGS_LARGE) {
llDifference = pLineStruct->lnaCounterValue[0].QuadPart -
pLineStruct->lnaOldCounterValue[0].QuadPart;
} else {
llDifference = (LONGLONG)(pLineStruct->lnaCounterValue[0].LowPart -
pLineStruct->lnaOldCounterValue[0].LowPart);
}
eDifference = (FLOAT)llDifference;
if (eDifference < 0.0f) {
if (bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
if (!(dwFlags & CQLFLAGS_LARGE)) {
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
} else { // 8 byte counter values
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].HighPart;
}
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_VALUE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
eCount = 0.0f ;
} else {
eCount = eDifference / eTimeDiff;
}
return(eCount) ;
}
FLOAT Counter_Delta(PLINESTRUCT pLineStruct, BOOL bLargeData)
/*++
Routine Description:
Take the difference between the current and previous counts,
Arguments:
IN pLineStruct
Line structure containing data to perform computations on
Return Value:
Floating point representation of outcome
--*/
{
FLOAT eDifference;
LONGLONG llDifference;
ULONGLONG ullThisValue, ullPrevValue;
// Get the current and previous counts.
if (!bLargeData) {
// then clear the high part of the word
ullThisValue = (ULONGLONG)pLineStruct->lnaCounterValue[0].LowPart;
ullPrevValue = (ULONGLONG)pLineStruct->lnaOldCounterValue[0].LowPart;
} else {
ullThisValue = (ULONGLONG)pLineStruct->lnaCounterValue[0].QuadPart;
ullPrevValue = (ULONGLONG)pLineStruct->lnaOldCounterValue[0].QuadPart;
}
if (ullThisValue > ullPrevValue) {
llDifference = (LONGLONG)(ullThisValue - ullPrevValue);
eDifference = (FLOAT)llDifference;
} else {
// the new value is smaller than or equal to the old value
// and negative numbers are not allowed.
if ((ullThisValue < ullPrevValue) && bReportEvents) {
wMessageIndex = 0;
dwMessageDataBytes = 0;
szMessageArray[wMessageIndex++] = pLineStruct->lnSystemName;
szMessageArray[wMessageIndex++] = pLineStruct->lnObjectName;
szMessageArray[wMessageIndex++] = pLineStruct->lnCounterName;
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
szMessageArray[wMessageIndex++] = pLineStruct->lnPINName;
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
} else {
szMessageArray[wMessageIndex++] = pLineStruct->lnInstanceName;
szMessageArray[wMessageIndex++] = cszSpace;
}
} else {
szMessageArray[wMessageIndex++] = cszSpace;
szMessageArray[wMessageIndex++] = cszSpace;
}
if (!bLargeData) {
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
} else { // 8 byte counter values
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // recent data
pLineStruct->lnaCounterValue[0].HighPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].LowPart;
dwMessageData[dwMessageDataBytes++] = // previous data
pLineStruct->lnaOldCounterValue[0].HighPart;
}
dwMessageDataBytes *= sizeof(DWORD); // convert index to size
ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, // error type
0, // category (not used)
(DWORD)PERFMON_ERROR_NEGATIVE_VALUE, // event,
NULL, // SID (not used),
wMessageIndex, // number of strings
dwMessageDataBytes, // sizeof raw data
szMessageArray, // message text array
(LPVOID)&dwMessageData[0]); // raw data
}
eDifference = 0.0f;
}
return(eDifference) ;
}
/*****************************************************************************
* Counter_Null - The counters that return nothing go here.
****************************************************************************/
#define Counter_Null(pline) \
((FLOAT) 0.0)
FLOAT
CounterEntry (
PLINESTRUCT pLine
)
{
FLOAT fReturn;
#ifdef DBG_COUNTER_DATA
PLINESTRUCT pLineStruct = pLine;
WCHAR szBuffer[512];
WCHAR szBuffer2[512];
swprintf (szBuffer2, L"\nPERFMON:CALC\t%s\\%s",
pLineStruct->lnSystemName,
pLineStruct->lnObjectName);
lstrcpyW (szBuffer, szBuffer2);
if (pLineStruct->lnInstanceName != NULL){
if (pLineStruct->lnPINName != NULL) {
swprintf (szBuffer2, L"\\(%s/%s)",
pLineStruct->lnPINName,
pLineStruct->lnInstanceName);
} else {
swprintf (szBuffer2, L"\\(%s)",
pLineStruct->lnInstanceName);
}
lstrcatW (szBuffer, szBuffer2);
}
swprintf (szBuffer2, L"\\%s\t%u\t%I64u\t%I64u\t%I64u",
pLineStruct->lnCounterName,
pLineStruct->lnCounterType,
pLineStruct->lnNewTime100Ns,
pLineStruct->lnaCounterValue[0].QuadPart,
pLineStruct->lnaCounterValue[1].QuadPart);
lstrcatW (szBuffer, szBuffer2);
#endif
switch (pLine->lnCounterType) {
case PERF_COUNTER_COUNTER:
fReturn = Counter_Counter (pLine);
break;
case PERF_COUNTER_TIMER:
case PERF_PRECISION_SYSTEM_TIMER: // precision value is not used
fReturn = Counter_Timer (pLine);
break;
case PERF_COUNTER_QUEUELEN_TYPE:
fReturn = Counter_Queuelen(pLine, 0);
break;
case PERF_COUNTER_LARGE_QUEUELEN_TYPE:
fReturn = Counter_Queuelen(pLine, CQLFLAGS_LARGE);
break;
case PERF_COUNTER_100NS_QUEUELEN_TYPE:
fReturn = Counter_Queuelen(pLine, CQLFLAGS_LARGE | CQLFLAGS_100NS);
break;
case PERF_COUNTER_BULK_COUNT:
fReturn = Counter_Bulk (pLine);
break;
case PERF_COUNTER_RAWCOUNT:
case PERF_COUNTER_RAWCOUNT_HEX:
fReturn = Counter_Rawcount(pLine);
break;
case PERF_COUNTER_LARGE_RAWCOUNT:
case PERF_COUNTER_LARGE_RAWCOUNT_HEX:
fReturn = Counter_Large_Rawcount(pLine);
break;
case PERF_SAMPLE_FRACTION:
fReturn = Sample_Fraction(pLine);
break;
case PERF_SAMPLE_COUNTER:
fReturn = Sample_Counter (pLine);
break;
case PERF_COUNTER_TIMER_INV:
fReturn = Counter_Timer_Inv (pLine);
break;
case PERF_AVERAGE_TIMER:
fReturn = Counter_Average_Timer (pLine);
break;
case PERF_AVERAGE_BULK:
fReturn = Counter_Average_Bulk (pLine);
break;
case PERF_100NSEC_TIMER:
case PERF_PRECISION_100NS_TIMER: // precision value is not used
fReturn = Counter_Timer100Ns (pLine);
break;
case PERF_100NSEC_TIMER_INV:
fReturn = Counter_Timer100Ns_Inv (pLine);
break;
case PERF_COUNTER_MULTI_TIMER:
fReturn = Counter_Timer_Multi (pLine);
break;
case PERF_COUNTER_MULTI_TIMER_INV:
fReturn = Counter_Timer_Multi_Inv (pLine);
break;
case PERF_100NSEC_MULTI_TIMER:
fReturn = Counter_Timer100Ns_Multi (pLine);
break;
case PERF_100NSEC_MULTI_TIMER_INV:
fReturn = Counter_Timer100Ns_Multi_Inv (pLine);
break;
case PERF_RAW_FRACTION:
fReturn = Counter_Raw_Fraction (pLine, FALSE);
break;
case PERF_LARGE_RAW_FRACTION:
fReturn = Counter_Raw_Fraction (pLine, TRUE);
break;
case PERF_ELAPSED_TIME:
fReturn = Counter_Elapsed_Time (pLine);
break;
case PERF_COUNTER_DELTA:
fReturn = Counter_Delta(pLine, FALSE);
break;
case PERF_COUNTER_LARGE_DELTA:
fReturn = Counter_Delta(pLine, TRUE);
break;
case PERF_COUNTER_TEXT:
case PERF_COUNTER_NODATA:
case PERF_RAW_BASE:
case PERF_LARGE_RAW_BASE:
case PERF_COUNTER_MULTI_BASE:
// case PERF_SAMPLE_BASE:
// case PERF_AVERAGE_BASE:
default:
fReturn = Counter_Null (pLine);
break;
}
#ifdef DBG_COUNTER_DATA
swprintf (szBuffer2, L"\t%g", fReturn);
lstrcatW (szBuffer, szBuffer2);
OutputDebugStringW(szBuffer);
#endif
return fReturn;
}
BOOL
IsCounterSupported (
DWORD dwCounterType
)
{
switch (dwCounterType) {
// supported counters
case PERF_COUNTER_COUNTER:
case PERF_COUNTER_TIMER:
case PERF_COUNTER_QUEUELEN_TYPE:
case PERF_COUNTER_LARGE_QUEUELEN_TYPE:
case PERF_COUNTER_100NS_QUEUELEN_TYPE:
case PERF_COUNTER_BULK_COUNT:
case PERF_COUNTER_RAWCOUNT:
case PERF_COUNTER_RAWCOUNT_HEX:
case PERF_COUNTER_LARGE_RAWCOUNT:
case PERF_COUNTER_LARGE_RAWCOUNT_HEX:
case PERF_SAMPLE_FRACTION:
case PERF_SAMPLE_COUNTER:
case PERF_COUNTER_TIMER_INV:
case PERF_AVERAGE_TIMER:
case PERF_AVERAGE_BULK:
case PERF_100NSEC_TIMER:
case PERF_100NSEC_TIMER_INV:
case PERF_COUNTER_MULTI_TIMER:
case PERF_COUNTER_MULTI_TIMER_INV:
case PERF_100NSEC_MULTI_TIMER:
case PERF_100NSEC_MULTI_TIMER_INV:
case PERF_RAW_FRACTION:
case PERF_ELAPSED_TIME:
case PERF_COUNTER_DELTA:
case PERF_COUNTER_LARGE_DELTA:
case PERF_PRECISION_100NS_TIMER:
case PERF_PRECISION_SYSTEM_TIMER:
case PERF_LARGE_RAW_FRACTION:
return TRUE;
// unsupported counters
case PERF_COUNTER_TEXT:
case PERF_COUNTER_NODATA:
case PERF_RAW_BASE:
case PERF_LARGE_RAW_BASE:
// case PERF_SAMPLE_BASE:
// case PERF_AVERAGE_BASE:
case PERF_COUNTER_MULTI_BASE:
// case PERF_PRECISION_TIMESTAMP:
default:
return FALSE;
}
}