windows-nt/Source/XPSP1/NT/base/wow64/mscpu/math/fpexcept.c
2020-09-26 16:20:57 +08:00

894 lines
20 KiB
C

/*++
Copyright (c) 1999 Microsoft Corporation
Module Name:
fpexcept.c
Abstract:
This module handle boundary conditions while doing math operation.
Need to reimplement or remove if not required.
Author:
Revision History:
29-sept-1999 ATM Shafiqul Khalid [askhalid] copied from rtl library.
--*/
#if defined(_NTSUBSET_) || defined (_POSIX_)
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#define _KERNEL32_ // Don't Export RaiseException
#endif // _NTSUBSET_
#define DEFINE_EXTERN_HERE
#include <trans.h>
#undef DEFINE_EXTERN_HERE
#include <errno.h>
#include <math.h>
#include <windows.h>
VOID ProxyRaiseException(
IN DWORD dwExceptionCode,
IN DWORD dwExceptionFlags,
IN DWORD nNumberOfArguments,
IN CONST ULONG_PTR *lpArguments
);
//
// copy a double without generating floating point instructions
// (avoid invalid operation on x87)
//
#define COPY_DOUBLE(pdest, psrc) \
( *(unsigned int *)pdest = *(unsigned int *)psrc, \
*((unsigned int *)pdest+1) = *((unsigned int *)psrc+1) )
//
// _matherr_flag is a communal variable. It is equal to zero
// if the user has redefined matherr(). Otherwise it has a
// non zero value. The default matherr routine does nothing
// and returns 0.
//
int _matherr_flag;
//
// a routine for artificially setting the fp status bits in order
// to signal a software generated masked fp exception.
//
extern void _set_statfp(unsigned int);
void _raise_exc(_FPIEEE_RECORD *prec,unsigned int *pcw,
int flags, int opcode, double *parg1, double *presult);
double _umatherr(int type, unsigned int opcode,
double arg1, double arg2, double presult,
unsigned int cw);
static char *_get_fname(unsigned int opcode);
/***
* _handle_qnan1, _handle_qnan2 - handle quiet NaNs as function arguments
*
*Purpose:
* Do all necessary work for handling the case where the argument
* or one of the arguments of a floating point function is a quiet NaN
*
*Entry:
* unsigned int opcode: The operation code of the fp function
* double x: the fp function argument
* double y: the fp function second argument (_handle_qnan2 only)
* unsigned int savedcw: the user's control word
*
*Exit:
* restore the user's control word, and
* return the suggested return value for the fp function
*
*Exceptions:
*
*******************************************************************************/
double _handle_qnan1(unsigned int opcode,
double x,
unsigned int savedcw)
{
if (! _matherr_flag) {
//
// QNaN arguments are treated as domain errors
// invoke the user's matherr routine
// _umatherr will take care of restoring the
// user's control word
//
return _umatherr(_DOMAIN,opcode,x,0.0,x,savedcw);
}
else {
SetMathError ( EDOM );
_rstorfp(savedcw);
return x;
}
}
double _handle_qnan2(unsigned int opcode,
double x,
double y,
unsigned int savedcw)
{
double result;
//
// NaN propagation should be handled by the underlying fp h/w
//
result = x+y;
if (! _matherr_flag) {
return _umatherr(_DOMAIN,opcode,x,y,result,savedcw);
}
else {
SetMathError ( EDOM );
_rstorfp(savedcw);
return result;
}
}
/***
* _except1 - exception handling shell for fp functions with one argument
*
*Purpose:
*
*Entry:
* int flags: the exception flags
* int opcode: the operation code of the fp function that faulted
* double arg: the argument of the fp function
* double result: default result
* unsigned int cw: user's fp control word
*
*Exit:
* restore user's fp control word
* and return the (possibly modified) result of the fp function
*
*Exceptions:
*
*******************************************************************************/
double _except1(int flags,
int opcode,
double arg,
double result,
unsigned int cw)
{
int type;
if (_handle_exc(flags, &result, cw) == 0) {
//
// At this point _handle_exception has failed to deal
// with the error
// An IEEE exception should be raised
//
_FPIEEE_RECORD rec;
// The rec structure will be filled in by _raise_exc,
// except for the Operand2 information
rec.Operand2.OperandValid = 0;
_raise_exc(&rec, &cw, flags, opcode, &arg, &result);
}
//
// At this point we have either the masked response of the
// exception, or a value supplied by the user's IEEE exception
// handler. The _matherr mechanism is supported for backward
// compatibility.
//
type = _errcode(flags);
// Inexact result fp exception does not have a matherr counterpart;
// in that case type is 0.
if (! _matherr_flag && type) {
return _umatherr(type, opcode, arg, 0.0, result, cw);
}
else {
_set_errno(type);
}
RETURN(cw,result);
}
/***
* _except2 - exception handling shell for fp functions with two arguments
*
*Purpose:
*
*Entry:
* int flags: the exception flags
* int opcode: the operation code of the fp function that faulted
* double arg1: the first argument of the fp function
* double arg2: the second argument of the fp function
* double result: default result
* unsigned int cw: user's fp control word
*
*Exit:
* restore user's fp control word
* and return the (possibly modified) result of the fp function
*
*Exceptions:
*
*******************************************************************************/
double _except2(int flags,
int opcode,
double arg1,
double arg2,
double result,
unsigned int cw)
{
int type;
if (_handle_exc(flags, &result, cw) == 0) {
//
// trap should be taken
//
_FPIEEE_RECORD rec;
//
// fill in operand2 info. The rest of rec will be
// filled in by _raise_exc
//
rec.Operand2.OperandValid = 1;
rec.Operand2.Format = _FpFormatFp64;
rec.Operand2.Value.Fp64Value = arg2;
_raise_exc(&rec, &cw, flags, opcode, &arg1, &result);
}
type = _errcode(flags);
if (! _matherr_flag && type) {
return _umatherr(type, opcode, arg1, arg2, result, cw);
}
else {
_set_errno(type);
}
RETURN(cw,result);
}
/***
* _raise_exc - raise fp IEEE exception
*
*Purpose:
* fill in an fp IEEE record struct and raise a fp exception
*
*
*Entry / Exit:
* IN _FPIEEE_RECORD prec pointer to an IEEE record
* IN OUT unsigned int *pcw pointer to user's fp control word
* IN int flags, exception flags
* IN int opcode, fp operation code
* IN double *parg1, pointer to first argument
* IN double *presult) pointer to result
*
*Exceptions:
*
*******************************************************************************/
void _raise_exc( _FPIEEE_RECORD *prec,
unsigned int *pcw,
int flags,
int opcode,
double *parg1,
double *presult)
{
DWORD exc_code;
unsigned int sw;
//
// reset all control bits
//
*(int *)&(prec->Cause) = 0;
*(int *)&(prec->Enable) = 0;
*(int *)&(prec->Status) = 0;
//
// Precision exception may only coincide with overflow
// or underflow. If this is the case, overflow (or
// underflow) take priority over precision exception.
// The order of checks is from the least important
// to the most important exception
//
if (flags & FP_P) {
exc_code = (DWORD) STATUS_FLOAT_INEXACT_RESULT;
prec->Cause.Inexact = 1;
}
if (flags & FP_U) {
exc_code = (DWORD) STATUS_FLOAT_UNDERFLOW;
prec->Cause.Underflow = 1;
}
if (flags & FP_O) {
exc_code = (DWORD) STATUS_FLOAT_OVERFLOW;
prec->Cause.Overflow = 1;
}
if (flags & FP_Z) {
exc_code = (DWORD) STATUS_FLOAT_DIVIDE_BY_ZERO;
prec->Cause.ZeroDivide = 1;
}
if (flags & FP_I) {
exc_code = (DWORD) STATUS_FLOAT_INVALID_OPERATION;
prec->Cause.InvalidOperation = 1;
}
//
// Set exception enable bits
//
prec->Enable.InvalidOperation = (*pcw & IEM_INVALID) ? 0 : 1;
prec->Enable.ZeroDivide = (*pcw & IEM_ZERODIVIDE) ? 0 : 1;
prec->Enable.Overflow = (*pcw & IEM_OVERFLOW) ? 0 : 1;
prec->Enable.Underflow = (*pcw & IEM_UNDERFLOW) ? 0 : 1;
prec->Enable.Inexact = (*pcw & IEM_INEXACT) ? 0 : 1;
//
// Set status bits
//
sw = _statfp();
if (sw & ISW_INVALID) {
prec->Status.InvalidOperation = 1;
}
if (sw & ISW_ZERODIVIDE) {
prec->Status.ZeroDivide = 1;
}
if (sw & ISW_OVERFLOW) {
prec->Status.Overflow = 1;
}
if (sw & ISW_UNDERFLOW) {
prec->Status.Underflow = 1;
}
if (sw & ISW_INEXACT) {
prec->Status.Inexact = 1;
}
switch (*pcw & IMCW_RC) {
case IRC_CHOP:
prec->RoundingMode = _FpRoundChopped;
break;
case IRC_UP:
prec->RoundingMode = _FpRoundPlusInfinity;
break;
case IRC_DOWN:
prec->RoundingMode = _FpRoundMinusInfinity;
break;
case IRC_NEAR:
prec->RoundingMode = _FpRoundNearest;
break;
}
#ifdef _M_IX86
switch (*pcw & IMCW_PC) {
case IPC_64:
prec->Precision = _FpPrecisionFull;
break;
case IPC_53:
prec->Precision = _FpPrecision53;
break;
case IPC_24:
prec->Precision = _FpPrecision24;
break;
}
#endif
#if defined(_M_MRX000) || defined(_M_ALPHA) || defined(_M_PPC)
prec->Precision = _FpPrecision53;
#endif
prec->Operation = opcode;
prec->Operand1.OperandValid = 1;
prec->Operand1.Format = _FpFormatFp64;
prec->Operand1.Value.Fp64Value = *parg1;
prec->Result.OperandValid = 1;
prec->Result.Format = _FpFormatFp64;
prec->Result.Value.Fp64Value = *presult;
//
// By convention software exceptions use the first exception
// parameter in order to pass a pointer to the _FPIEEE_RECORD
// structure.
//
_clrfp();
ProxyRaiseException(exc_code,0,1,(CONST ULONG_PTR *)&prec);
//
// user's trap handler may have changed either the fp environment
// or the result
//
//
// Update exception mask
//
if (prec->Enable.InvalidOperation)
(*pcw) &= ~IEM_INVALID;
if (prec->Enable.ZeroDivide)
(*pcw) &= ~IEM_ZERODIVIDE;
if (prec->Enable.Overflow)
(*pcw) &= ~IEM_OVERFLOW;
if (prec->Enable.Underflow)
(*pcw) &= ~IEM_UNDERFLOW;
if (prec->Enable.Inexact)
(*pcw) &= ~IEM_INEXACT;
//
// Update Rounding mode
//
switch (prec->RoundingMode) {
case _FpRoundChopped:
*pcw = *pcw & ~IMCW_RC | IRC_CHOP;
break;
case _FpRoundPlusInfinity:
*pcw = *pcw & ~IMCW_RC | IRC_UP;
break;
case _FpRoundMinusInfinity:
*pcw = *pcw & ~IMCW_RC | IRC_DOWN;
break;
case _FpRoundNearest:
*pcw = *pcw & ~IMCW_RC | IRC_NEAR;
break;
}
#ifdef _M_IX86
//
// Update Precision Control
//
switch (prec->Precision) {
case _FpPrecisionFull:
*pcw = *pcw & ~IMCW_RC | IPC_64;
break;
case _FpPrecision53:
*pcw = *pcw & ~IMCW_RC | IPC_53;
break;
case _FpPrecision24:
*pcw = *pcw & ~IMCW_RC | IPC_24;
break;
}
#endif
//
// Update result
//
*presult = prec->Result.Value.Fp64Value;
}
/***
* _handle_exc - produce masked response for IEEE fp exception
*
*Purpose:
*
*Entry:
* unsigned int flags the exception flags
* double *presult the default result
* unsigned int cw user's fp control word
*
*Exit:
* returns 1 on successful handling, 0 on failure
* On success, *presult becomes the masked response
*
*Exceptions:
*
*******************************************************************************/
int _handle_exc(unsigned int flags, double * presult, unsigned int cw)
{
//
// flags_p is useful for deciding whether there are still unhandled
// exceptions in case multiple exceptions have occurred
//
int flags_p = flags & (FP_I | FP_Z | FP_O | FP_U | FP_P);
if (flags & FP_I && cw & IEM_INVALID) {
//
// Masked response for invalid operation
//
_set_statfp(ISW_INVALID);
flags_p &= ~FP_I;
}
else if (flags & FP_Z && cw & IEM_ZERODIVIDE) {
//
// Masked response for Division by zero
// result should already have the proper value
//
_set_statfp( ISW_ZERODIVIDE);
flags_p &= ~FP_Z;
}
else if (flags & FP_O && cw & IEM_OVERFLOW) {
//
// Masked response for Overflow
//
_set_statfp(ISW_OVERFLOW);
switch (cw & IMCW_RC) {
case IRC_NEAR:
*presult = *presult > 0.0 ? D_INF : -D_INF;
break;
case IRC_UP:
*presult = *presult > 0.0 ? D_INF : -D_MAX;
break;
case IRC_DOWN:
*presult = *presult > 0.0 ? D_MAX : -D_INF;
break;
case IRC_CHOP:
*presult = *presult > 0.0 ? D_MAX : -D_MAX;
break;
}
flags_p &= ~FP_O;
}
else if (flags & FP_U && cw & IEM_UNDERFLOW) {
//
// Masked response for Underflow:
// According to the IEEE standard, when the underflow trap is not
// enabled, underflow shall be signaled only when both tininess
// and loss of accuracy have been detected
//
int aloss=0; // loss of accuracy flag
if (flags & FP_P) {
aloss = 1;
}
//
// a zero value in the result denotes
// that even after ieee scaling, the exponent
// was too small.
// in this case the masked response is also
// zero (sign is preserved)
//
if (*presult != 0.0) {
double result;
int expn, newexp;
result = _decomp(*presult, &expn);
newexp = expn - IEEE_ADJUST;
if (newexp < MINEXP - 53) {
result *= 0.0; // produce a signed zero
aloss = 1;
}
else {
int neg = result < 0; // save sign
//
// denormalize result
//
(*D_EXP(result)) &= 0x000f; /* clear exponent field */
(*D_EXP(result)) |= 0x0010; /* set hidden bit */
for (;newexp<MINEXP;newexp++) {
if (*D_LO(result) & 0x1 && !aloss) {
aloss = 1;
}
/* shift mantissa to the right */
(*D_LO(result)) >>= 1;
if (*D_HI(result) & 0x1) {
(*D_LO(result)) |= 0x80000000;
}
(*D_HI(result)) >>= 1;
}
if (neg) {
result = -result; // restore sign
}
}
*presult = result;
}
else {
aloss = 1;
}
if (aloss) {
_set_statfp(ISW_UNDERFLOW);
}
flags_p &= ~FP_U;
}
//
// Separate check for precision exception
// (may coexist with overflow or underflow)
//
if (flags & FP_P && cw & IEM_INEXACT) {
//
// Masked response for inexact result
//
_set_statfp(ISW_INEXACT);
flags_p &= ~FP_P;
}
return flags_p ? 0: 1;
}
/***
* _umatherr - call user's matherr routine
*
*Purpose:
* call user's matherr routine and set errno if appropriate
*
*
*Entry:
* int type type of excpetion
* unsigned int opcode fp function that caused the exception
* double arg1 first argument of the fp function
* double arg2 second argument of the fp function
* double retval return value of the fp function
* unsigned int cw user's fp control word
*
*Exit:
* fp control word becomes the user's fp cw
* errno modified if user's matherr returns 0
* return value the retval entered by the user in
* the _exception matherr struct
*
*Exceptions:
*
*******************************************************************************/
double _umatherr(
int type,
unsigned int opcode,
double arg1,
double arg2,
double retval,
unsigned int cw
)
{
struct _exception exc;
//
// call matherr only if the name of the function
// is registered in the table, i.e., only if exc.name is valid
//
if (exc.name = _get_fname(opcode)) {
exc.type = type;
COPY_DOUBLE(&exc.arg1,&arg1);
COPY_DOUBLE(&exc.arg2,&arg2);
COPY_DOUBLE(&exc.retval,&retval);
_rstorfp(cw);
//if (_matherr(&exc) == 0) {
_set_errno(type);
//}
return exc.retval;
}
else {
//
// treat this case as if matherr returned 0
//
_rstorfp(cw);
_set_errno(type);
return retval;
}
}
/***
* _set_errno - set errno
*
*Purpose:
* set correct error value for errno
*
*Entry:
* int matherrtype: the type of math error
*
*Exit:
* modifies errno
*
*Exceptions:
*
*******************************************************************************/
void _set_errno(int matherrtype)
{
switch(matherrtype) {
case _DOMAIN:
SetMathError ( EDOM );
break;
case _OVERFLOW:
case _SING:
SetMathError ( ERANGE );
break;
}
}
/***
* _get_fname - get function name
*
*Purpose:
* returns the _matherr function name that corresponds to a
* floating point opcode
*
*Entry:
* _FP_OPERATION_CODE opcode
*
*Exit:
* returns a pointer to a string
*
*Exceptions:
*
*******************************************************************************/
#define OP_NUM 27 /* number of fp operations */
static char *_get_fname(unsigned int opcode)
{
static struct {
unsigned int opcode;
char *name;
} _names[OP_NUM] = {
{ OP_EXP, "exp" },
{ OP_POW, "pow" },
{ OP_LOG, "log" },
{ OP_LOG10, "log10"},
{ OP_SINH, "sinh"},
{ OP_COSH, "cosh"},
{ OP_TANH, "tanh"},
{ OP_ASIN, "asin"},
{ OP_ACOS, "acos"},
{ OP_ATAN, "atan"},
{ OP_ATAN2, "atan2"},
{ OP_SQRT, "sqrt"},
{ OP_SIN, "sin"},
{ OP_COS, "cos"},
{ OP_TAN, "tan"},
{ OP_CEIL, "ceil"},
{ OP_FLOOR, "floor"},
{ OP_ABS, "fabs"},
{ OP_MODF, "modf"},
{ OP_LDEXP, "ldexp"},
{ OP_CABS, "_cabs"},
{ OP_HYPOT, "_hypot"},
{ OP_FMOD, "fmod"},
{ OP_FREXP, "frexp"},
{ OP_Y0, "_y0"},
{ OP_Y1, "_y1"},
{ OP_YN, "_yn"}
};
int i;
for (i=0;i<OP_NUM;i++) {
if (_names[i].opcode == opcode)
return _names[i].name;
}
return (char *)0;
}
/***
* _errcode - get _matherr error code
*
*Purpose:
* returns matherr type that corresponds to exception flags
*
*Entry:
* flags: exception flags
*
*Exit:
* returns matherr type
*
*Exceptions:
*
*******************************************************************************/
int _errcode(unsigned int flags)
{
unsigned int errcode;
if (flags & FP_TLOSS) {
errcode = _TLOSS;
}
else if (flags & FP_I) {
errcode = _DOMAIN;
}
else if (flags & FP_Z) {
errcode = _SING;
}
else if (flags & FP_O) {
errcode = _OVERFLOW;
}
else if (flags & FP_U) {
errcode = _UNDERFLOW;
}
else {
// FP_P
errcode = 0;
}
return errcode;
}