windows-nt/Source/XPSP1/NT/base/ntos/ke/alpha/allproc.c
2020-09-26 16:20:57 +08:00

455 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1990 Microsoft Corporation
Copyright (c) 1993 Digital Equipment Corporation
Module Name:
allproc.c
Abstract:
This module allocates and initializes kernel resources required
to start a new processor, and passes a complete processor state
structure to the HAL to obtain a new processor.
Author:
David N. Cutler 29-Apr-1993
Joe Notarangelo 30-Nov-1993
Environment:
Kernel mode only.
Revision History:
--*/
#include "ki.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT, KeStartAllProcessors)
#pragma alloc_text(INIT, KiAllProcessorsStarted)
#endif
#if defined(KE_MULTINODE)
PHALNUMAQUERYNODEAFFINITY KiQueryNodeAffinity;
//
// Statically preallocate enough KNODE structures to allow MM
// to allocate pages by node during system initialization. As
// processors are brought online, real KNODE structures are
// allocated in the appropriate memory for the node.
//
// This statically allocated set will be deallocated once the
// system is initialized.
//
#ifdef ALLOC_DATA_PRAGMA
#pragma data_seg("INITDATA")
#endif
KNODE KiNodeInit[MAXIMUM_CCNUMA_NODES];
#endif
//
// Define macro to round up to 64-byte boundary and define block sizes.
//
#define ROUND_UP(x) ((sizeof(x) + 64) & (~64))
#define BLOCK1_SIZE ((3 * KERNEL_STACK_SIZE) + PAGE_SIZE)
#define BLOCK2_SIZE (ROUND_UP(KPRCB) + ROUND_UP(KNODE) + ROUND_UP(ETHREAD) + 64)
//
// Macros to compute whether an address is physically addressable.
//
#if defined(_AXP64_)
#define IS_KSEG_ADDRESS(v) \
(((v) >= KSEG43_BASE) && \
((v) < KSEG43_LIMIT) && \
(KSEG_PFN(v) < ((KSEG2_BASE - KSEG0_BASE) >> PAGE_SHIFT)))
#define KSEG_PFN(v) ((ULONG)(((v) - KSEG43_BASE) >> PAGE_SHIFT))
#define KSEG0_ADDRESS(v) (KSEG0_BASE | ((v) - KSEG43_BASE))
#else
#define IS_KSEG_ADDRESS(v) (((v) >= KSEG0_BASE) && ((v) < KSEG2_BASE))
#define KSEG_PFN(v) ((ULONG)(((v) - KSEG0_BASE) >> PAGE_SHIFT))
#define KSEG0_ADDRESS(v) (v)
#endif
//
// Define forward referenced prototypes.
//
VOID
KiStartProcessor (
IN PLOADER_PARAMETER_BLOCK Loaderblock
);
VOID
KeStartAllProcessors(
VOID
)
/*++
Routine Description:
This function is called during phase 1 initialization on the master boot
processor to start all of the other registered processors.
Arguments:
None.
Return Value:
None.
--*/
{
#if !defined(NT_UP)
ULONG_PTR MemoryBlock1;
ULONG_PTR MemoryBlock2;
ULONG Number;
ULONG PcrPage;
PKPRCB Prcb;
KPROCESSOR_STATE ProcessorState;
struct _RESTART_BLOCK *RestartBlock;
BOOLEAN Started;
LOGICAL SpecialPoolState;
UCHAR NodeNumber = 0;
#if defined(KE_MULTINODE)
KAFFINITY NewProcessorAffinity;
PKNODE Node;
NTSTATUS Status;
//
// If this is a NUMA system, find out the number of nodes and the
// processors which belong to each node.
//
if (KeNumberNodes > 1) {
for (NodeNumber = 0; NodeNumber < KeNumberNodes; NodeNumber++) {
Node = KeNodeBlock[NodeNumber];
//
// Ask HAL which processors belong to this node and
// what Node Color to use for page coloring.
//
Status = KiQueryNodeAffinity(NodeNumber,
&Node->ProcessorMask);
if (!NT_SUCCESS(Status)) {
DbgPrint(
"KE/HAL: NUMA Hal failed to return info for Node %i.\n",
NodeNumber);
DbgPrint("KE/HAL: Reverting to non NUMA configuration.\n");
ASSERT(NT_SUCCESS(Status));
KeNumberNodes = 1;
} else {
//
// In the unlikely event that processor 0 is not
// on node 0, now would be the perfect time to
// fix it.
//
if (Node->ProcessorMask & 1) {
KeGetCurrentPrcb()->ParentNode = Node;
}
}
}
}
#endif
//
// If the registered number of processors is greater than the maximum
// number of processors supported, then only allow the maximum number
// of supported processors.
//
if (KeRegisteredProcessors > MAXIMUM_PROCESSORS) {
KeRegisteredProcessors = MAXIMUM_PROCESSORS;
}
//
// Initialize the processor state that will be used to start each of
// processors. Each processor starts in the system initialization code
// with address of the loader parameter block as an argument.
//
RtlZeroMemory(&ProcessorState, sizeof(KPROCESSOR_STATE));
ProcessorState.ContextFrame.IntA0 = (ULONGLONG)(LONG_PTR)KeLoaderBlock;
ProcessorState.ContextFrame.Fir = (ULONGLONG)(LONG_PTR)KiStartProcessor;
Number = 1;
while (Number < KeRegisteredProcessors) {
#if defined(KE_MULTINODE)
NewProcessorAffinity = 1 << Number;
for (NodeNumber = 0; NodeNumber < KeNumberNodes; NodeNumber++) {
Node = KeNodeBlock[NodeNumber];
if (Node->ProcessorMask & NewProcessorAffinity) {
break;
}
}
if (NodeNumber == KeNumberNodes) {
//
// This should only happen when we're about to ask
// for one processor more than is in the system. We
// could bail here but we have always depended on
// the HAL to tell us we're done. Set up as if
// on Node 0 so MM and friends won't be referencing
// uninitialized structures.
//
NodeNumber = 0;
Node = KeNodeBlock[0];
}
#endif
//
// Allocate a DPC stack, an idle thread kernel stack, a panic
// stack, a PCR page, a processor block, and an executive thread
// object. If the allocation fails or the allocation cannot be
// made from unmapped nonpaged pool, then stop starting processors.
//
// Disable any special pooling that the user may have set in the
// registry as the next couple of allocations must come from KSEG0.
//
SpecialPoolState = MmSetSpecialPool(FALSE);
MemoryBlock1 = (ULONG_PTR)ExAllocatePool(NonPagedPool, BLOCK1_SIZE);
if (IS_KSEG_ADDRESS(MemoryBlock1) == FALSE) {
MmSetSpecialPool(SpecialPoolState);
if ((PVOID)MemoryBlock1 != NULL) {
ExFreePool((PVOID)MemoryBlock1);
}
break;
}
MemoryBlock2 = (ULONG_PTR)ExAllocatePool(NonPagedPool, BLOCK2_SIZE);
if (IS_KSEG_ADDRESS(MemoryBlock2) == FALSE) {
MmSetSpecialPool(SpecialPoolState);
ExFreePool((PVOID)MemoryBlock1);
if ((PVOID)MemoryBlock2 != NULL) {
ExFreePool((PVOID)MemoryBlock2);
}
break;
}
MmSetSpecialPool(SpecialPoolState);
//
// Zero both blocks of allocated memory.
//
RtlZeroMemory((PVOID)MemoryBlock1, BLOCK1_SIZE);
RtlZeroMemory((PVOID)MemoryBlock2, BLOCK2_SIZE);
//
// Set address of interrupt stack in loader parameter block.
//
KeLoaderBlock->u.Alpha.PanicStack =
KSEG0_ADDRESS(MemoryBlock1 + (1 * KERNEL_STACK_SIZE));
//
// Set address of idle thread kernel stack in loader parameter block.
//
KeLoaderBlock->KernelStack =
KSEG0_ADDRESS(MemoryBlock1 + (2 * KERNEL_STACK_SIZE));
ProcessorState.ContextFrame.IntSp =
(ULONGLONG)(LONG_PTR)KeLoaderBlock->KernelStack;
//
// Set address of panic stack in loader parameter block.
//
KeLoaderBlock->u.Alpha.DpcStack =
KSEG0_ADDRESS(MemoryBlock1 + (3 * KERNEL_STACK_SIZE));
//
// Set the page frame of the PCR page in the loader parameter block.
//
PcrPage = KSEG_PFN(MemoryBlock1 + (3 * KERNEL_STACK_SIZE));
KeLoaderBlock->u.Alpha.PcrPage = PcrPage;
//
// Set the address of the processor block and executive thread in the
// loader parameter block.
//
KeLoaderBlock->Prcb = KSEG0_ADDRESS((MemoryBlock2 + 63) & ~63);
KeLoaderBlock->Thread = KeLoaderBlock->Prcb +
ROUND_UP(KPRCB) +
ROUND_UP(KNODE);
#if defined(KE_MULTINODE)
//
// If this is the first processor on this node, use the
// space allocated for KNODE as the KNODE.
//
if (KeNodeBlock[NodeNumber] == &KiNodeInit[NodeNumber]) {
Node = (PKNODE)(KeLoaderBlock->Prcb + ROUND_UP(KPRCB));
*Node = KiNodeInit[NodeNumber];
KeNodeBlock[NodeNumber] = Node;
}
((PKPRCB)KeLoaderBlock->Prcb)->ParentNode = Node;
#else
((PKPRCB)KeLoaderBlock->Prcb)->ParentNode = KeNodeBlock[0];
#endif
//
// Attempt to start the next processor. If attempt is successful,
// then wait for the processor to get initialized. Otherwise,
// deallocate the processor resources and terminate the loop.
//
Started = HalStartNextProcessor(KeLoaderBlock, &ProcessorState);
if (Started == FALSE) {
ExFreePool((PVOID)MemoryBlock1);
ExFreePool((PVOID)MemoryBlock2);
break;
} else {
//
// Wait until boot is finished on the target processor before
// starting the next processor. Booting is considered to be
// finished when a processor completes its initialization and
// drops into the idle loop.
//
Prcb = (PKPRCB)(KeLoaderBlock->Prcb);
RestartBlock = Prcb->RestartBlock;
while (RestartBlock->BootStatus.BootFinished == 0) {
KiMb();
}
}
Number += 1;
}
//
//
// All processors have been stated.
//
KiAllProcessorsStarted();
#endif
//
// Reset and synchronize the performance counters of all processors, by
// applying a null adjustment to the interrupt time
//
KiAdjustInterruptTime(0);
return;
}
#if !defined(NT_UP)
VOID
KiAllProcessorsStarted(
VOID
)
/*++
Routine Description:
This routine is called once all processors in the system
have been started.
Arguments:
None.
Return Value:
None.
--*/
{
ULONG i;
#if defined(KE_MULTINODE)
//
// Make sure there are no references to the temporary nodes
// used during initialization.
//
for (i = 0; i < KeNumberNodes; i++) {
if (KeNodeBlock[i] == &KiNodeInit[i]) {
//
// No processor started on this node so no new node
// structure has been allocated. This is possible
// if the node contains only memory or IO busses. At
// this time we need to allocate a permanent node
// structure for the node.
//
KeNodeBlock[i] = ExAllocatePoolWithTag(NonPagedPool,
sizeof(KNODE),
' eK');
if (KeNodeBlock[i]) {
*KeNodeBlock[i] = KiNodeInit[i];
}
}
}
for (i = KeNumberNodes; i < MAXIMUM_CCNUMA_NODES; i++) {
KeNodeBlock[i] = NULL;
}
#endif
if (KeNumberNodes == 1) {
//
// For Non NUMA machines, Node 0 gets all processors.
//
KeNodeBlock[0]->ProcessorMask = KeActiveProcessors;
}
}
#endif