640 lines
18 KiB
C
640 lines
18 KiB
C
/*++
|
|
|
|
Copyright (c) 1999 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
btree.c
|
|
|
|
Abstract:
|
|
|
|
Implementation of red-black binary tree insertion, deletion, and search.
|
|
This algorithm efficiently guarantees that the tree depth will never exceed
|
|
2*Lg(N), so a one million node tree would have a worst case depth of 40.
|
|
This insertion implementation is non-recursive and very efficient (the
|
|
average insertion speed is less than twice the average search speed).
|
|
|
|
Author:
|
|
|
|
Tom McGuire (tommcg) 1-Jan-1998
|
|
Wesley Witt (wesw) 18-Dec-1998
|
|
|
|
Revision History:
|
|
|
|
Tom McGuire (tommcg) 13-Apr-2000 fixed hash collision search bug
|
|
|
|
--*/
|
|
|
|
#include "sfcp.h"
|
|
#pragma hdrstop
|
|
|
|
//
|
|
// Rather than storing NULL links as NULL, we point NULL links to a special
|
|
// "Empty" node which is always black and its children links point to itself.
|
|
// We do this to simplify the color testing for children and grandchildren
|
|
// such that any link can be dereferenced and even double-dereferenced without
|
|
// explicitly checking for NULL. The empty node must be colored black.
|
|
//
|
|
|
|
const NAME_NODE NameRbEmptyNode = { RBNIL, RBNIL };
|
|
const DWORD_NODE EmptyNode = { NODE_NIL, NODE_NIL };
|
|
|
|
|
|
VOID
|
|
BtreeInit(
|
|
IN OUT PNAME_TREE Tree
|
|
)
|
|
{
|
|
Tree->Root = RBNIL;
|
|
}
|
|
|
|
|
|
PNAME_NODE
|
|
BtreeFind(
|
|
IN PNAME_TREE Tree,
|
|
IN LPCWSTR Name,
|
|
IN DWORD NameLength
|
|
)
|
|
{
|
|
PNAME_NODE Node;
|
|
ULONG Hash;
|
|
|
|
HASH_DYN_CONVERT_KEY( Name, (NameLength/sizeof(WCHAR)), &Hash );
|
|
|
|
Node = Tree->Root;
|
|
|
|
while ( Node != RBNIL ) {
|
|
|
|
if ( Hash < Node->Hash ) {
|
|
Node = Node->Left;
|
|
}
|
|
else if ( Hash > Node->Hash ) {
|
|
Node = Node->Right;
|
|
}
|
|
else { // hashes equal, compare lengths
|
|
|
|
if ( NameLength < Node->NameLength ) {
|
|
Node = Node->Left;
|
|
}
|
|
else if ( NameLength > Node->NameLength ) {
|
|
Node = Node->Right;
|
|
}
|
|
else { // hashes and lengths equal, compare strings
|
|
|
|
int Compare = memcmp( Name, Node->Name, NameLength );
|
|
|
|
if ( Compare == 0 ) {
|
|
return Node;
|
|
}
|
|
else if ( Compare < 0 ) {
|
|
Node = Node->Left;
|
|
}
|
|
else {
|
|
Node = Node->Right;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
PNAME_NODE
|
|
BtreeInsert(
|
|
IN OUT PNAME_TREE Tree,
|
|
IN LPCWSTR Name,
|
|
IN DWORD NameLength
|
|
)
|
|
{
|
|
PNAME_NODE * Stack[ MAX_DEPTH ];
|
|
PNAME_NODE **StackPointer = Stack;
|
|
PNAME_NODE * Link;
|
|
PNAME_NODE Node;
|
|
PNAME_NODE Sibling;
|
|
PNAME_NODE Parent;
|
|
PNAME_NODE Child;
|
|
PNAME_NODE NewNode;
|
|
ULONG Hash;
|
|
|
|
HASH_DYN_CONVERT_KEY( Name, (NameLength/sizeof(WCHAR)), &Hash );
|
|
|
|
*StackPointer++ = &Tree->Root;
|
|
|
|
Node = Tree->Root;
|
|
|
|
//
|
|
// Walk down the tree to find either an existing node with the same key
|
|
// (in which case we simply return) or the insertion point for the new
|
|
// node. At each traversal we need to store the address of the link to
|
|
// the next node so we can retrace the traversal path for balancing.
|
|
// The speed of insertion is highly dependent on traversing the tree
|
|
// quickly, so all balancing operations are deferred until after the
|
|
// traversal is complete.
|
|
//
|
|
// Implementation Note: The compiler is smart enough to collapse each
|
|
// of the three following "go left" and "go right" clauses into single
|
|
// "go left" and "go right" instruction sequences, so the code remains
|
|
// verbose for clarity.
|
|
//
|
|
|
|
while ( Node != RBNIL ) {
|
|
|
|
if ( Hash < Node->Hash ) {
|
|
*StackPointer++ = &Node->Left;
|
|
Node = Node->Left;
|
|
}
|
|
else if ( Hash > Node->Hash ) {
|
|
*StackPointer++ = &Node->Right;
|
|
Node = Node->Right;
|
|
}
|
|
else { // hashes equal, compare lengths
|
|
|
|
if ( NameLength < Node->NameLength ) {
|
|
*StackPointer++ = &Node->Left;
|
|
Node = Node->Left;
|
|
}
|
|
else if ( NameLength > Node->NameLength ) {
|
|
*StackPointer++ = &Node->Right;
|
|
Node = Node->Right;
|
|
}
|
|
else { // lengths equal, compare strings
|
|
|
|
int Compare = memcmp( Name, Node->Name, NameLength );
|
|
|
|
if ( Compare == 0 ) {
|
|
return Node;
|
|
}
|
|
else if ( Compare < 0 ) {
|
|
*StackPointer++ = &Node->Left;
|
|
Node = Node->Left;
|
|
}
|
|
else {
|
|
*StackPointer++ = &Node->Right;
|
|
Node = Node->Right;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Didn't find a matching entry, so allocate a new node and add it
|
|
// to the tree. Note that we're not allocating space for a terminator
|
|
// for the name data since we store the length of the name in the node.
|
|
//
|
|
|
|
NewNode = MemAlloc( sizeof(NAME_NODE)+NameLength );
|
|
|
|
if ( NewNode == NULL ) {
|
|
return NULL;
|
|
}
|
|
|
|
NewNode->Left = RBNIL;
|
|
NewNode->Right = RBNIL;
|
|
NewNode->Hash = Hash;
|
|
NewNode->NameLengthAndColorBit = NameLength | 0x80000000; // MARK_RED
|
|
memcpy( NewNode->Name, Name, NameLength );
|
|
|
|
//
|
|
// Insert new node under last link we traversed. The top of the stack
|
|
// contains the address of the last link we traversed.
|
|
//
|
|
|
|
Link = *( --StackPointer );
|
|
*Link = NewNode;
|
|
|
|
//
|
|
// Now walk back up the traversal chain to see if any balancing is
|
|
// needed. This terminates in one of three ways: we walk all the way
|
|
// up to the root (StackPointer == Stack), or find a black node that
|
|
// we don't need to change (no balancing needs to be done above a
|
|
// black node), or we perform a balancing rotation (only one necessary).
|
|
//
|
|
|
|
Node = NewNode;
|
|
Child = RBNIL;
|
|
|
|
while ( StackPointer > Stack ) {
|
|
|
|
Link = *( --StackPointer );
|
|
Parent = *Link;
|
|
|
|
//
|
|
// Node is always red here.
|
|
//
|
|
|
|
if ( IS_BLACK( Parent )) {
|
|
|
|
Sibling = ( Parent->Left == Node ) ? Parent->Right : Parent->Left;
|
|
|
|
if ( IS_RED( Sibling )) {
|
|
|
|
//
|
|
// Both Node and its Sibling are red, so change them both to
|
|
// black and make the Parent red. This essentially moves the
|
|
// red link up the tree so balancing can be performed at a
|
|
// higher level.
|
|
//
|
|
// Pb Pr
|
|
// / \ ----> / \
|
|
// Cr Sr Cb Sb
|
|
//
|
|
|
|
MARK_BLACK( Sibling );
|
|
MARK_BLACK( Node );
|
|
MARK_RED( Parent );
|
|
}
|
|
|
|
else {
|
|
|
|
//
|
|
// This is a terminal case. The Parent is black, and it's
|
|
// not going to be changed to red. If the Node's child is
|
|
// red, we perform an appropriate rotation to balance the
|
|
// tree. If the Node's child is black, we're done.
|
|
//
|
|
|
|
if ( IS_RED( Child )) {
|
|
|
|
if ( Node->Left == Child ) {
|
|
|
|
if ( Parent->Left == Node ) {
|
|
|
|
//
|
|
// Pb Nb
|
|
// / \ / \
|
|
// Nr Z to Cr Pr
|
|
// / \ / \
|
|
// Cr Y Y Z
|
|
//
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Left = Node->Right;
|
|
Node->Right = Parent;
|
|
MARK_BLACK( Node );
|
|
*Link = Node;
|
|
}
|
|
|
|
else {
|
|
|
|
//
|
|
// Pb Cb
|
|
// / \ / \
|
|
// W Nr to Pr Nr
|
|
// / \ / \ / \
|
|
// Cr Z W X Y Z
|
|
// / \
|
|
// X Y
|
|
//
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Right = Child->Left;
|
|
Child->Left = Parent;
|
|
Node->Left = Child->Right;
|
|
Child->Right = Node;
|
|
MARK_BLACK( Child );
|
|
*Link = Child;
|
|
}
|
|
}
|
|
|
|
else {
|
|
|
|
if ( Parent->Right == Node ) {
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Right = Node->Left;
|
|
Node->Left = Parent;
|
|
MARK_BLACK( Node );
|
|
*Link = Node;
|
|
}
|
|
|
|
else {
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Left = Child->Right;
|
|
Child->Right = Parent;
|
|
Node->Right = Child->Left;
|
|
Child->Left = Node;
|
|
MARK_BLACK( Child );
|
|
*Link = Child;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NewNode;
|
|
}
|
|
}
|
|
|
|
Child = Node;
|
|
Node = Parent;
|
|
}
|
|
|
|
//
|
|
// We bubbled red up to the root -- restore it to black.
|
|
//
|
|
|
|
MARK_BLACK( Tree->Root );
|
|
return NewNode;
|
|
}
|
|
|
|
|
|
|
|
|
|
VOID
|
|
TreeInit(
|
|
OUT PDWORD_TREE Tree
|
|
)
|
|
{
|
|
Tree->Root = NODE_NIL;
|
|
}
|
|
|
|
|
|
DWORD_CONTEXT
|
|
TreeFind(
|
|
IN PDWORD_TREE Tree,
|
|
IN ULONG Key
|
|
)
|
|
{
|
|
PDWORD_NODE Node;
|
|
|
|
ASSERT(Tree != NULL);
|
|
ASSERT(Key < (1 << 31));
|
|
|
|
Node = Tree->Root;
|
|
|
|
while ( Node != NODE_NIL ) {
|
|
|
|
if ( Key < Node->Key ) {
|
|
Node = Node->Left;
|
|
}
|
|
else if ( Key > Node->Key ) {
|
|
Node = Node->Right;
|
|
}
|
|
else {
|
|
return (DWORD_CONTEXT) Node->Context;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
DWORD_CONTEXT
|
|
TreeInsert(
|
|
IN OUT PDWORD_TREE Tree,
|
|
IN ULONG Key,
|
|
IN DWORD_CONTEXT Context,
|
|
IN ULONG ContextSize
|
|
)
|
|
{
|
|
PDWORD_NODE * Stack[ MAX_DEPTH ];
|
|
PDWORD_NODE **StackPointer = Stack;
|
|
PDWORD_NODE * Link;
|
|
PDWORD_NODE Node;
|
|
PDWORD_NODE Sibling;
|
|
PDWORD_NODE Parent;
|
|
PDWORD_NODE Child;
|
|
PDWORD_NODE NewNode;
|
|
|
|
ASSERT(Tree != NULL && Context != NULL && ContextSize != 0);
|
|
ASSERT(Key < (1 << 31));
|
|
|
|
*StackPointer++ = &Tree->Root;
|
|
Node = Tree->Root;
|
|
|
|
//
|
|
// Walk down the tree to find either an existing node with the same key
|
|
// (in which case we simply return) or the insertion point for the new
|
|
// node. At each traversal we need to store the address of the link to
|
|
// the next node so we can retrace the traversal path for balancing.
|
|
// The speed of insertion is highly dependent on traversing the tree
|
|
// quickly, so all balancing operations are deferred until after the
|
|
// traversal is complete.
|
|
//
|
|
// Implementation Note: The compiler is smart enough to collapse each
|
|
// of the three following "go left" and "go right" clauses into single
|
|
// "go left" and "go right" instruction sequences, so the code remains
|
|
// verbose for clarity.
|
|
//
|
|
|
|
while ( Node != NODE_NIL ) {
|
|
|
|
if ( Key < Node->Key ) {
|
|
*StackPointer++ = &Node->Left;
|
|
Node = Node->Left;
|
|
}
|
|
else if ( Key > Node->Key ) {
|
|
*StackPointer++ = &Node->Right;
|
|
Node = Node->Right;
|
|
}
|
|
else {
|
|
return (DWORD_CONTEXT) Node->Context;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Didn't find a matching entry, so allocate a new node and add it
|
|
// to the tree. Note that we're not allocating space for a terminator
|
|
// for the name data since we store the length of the name in the node.
|
|
//
|
|
|
|
NewNode = MemAlloc( sizeof(DWORD_NODE) + ContextSize);
|
|
|
|
if ( NewNode == NULL ) {
|
|
return NULL;
|
|
}
|
|
|
|
NewNode->Left = NODE_NIL;
|
|
NewNode->Right = NODE_NIL;
|
|
NewNode->Key = Key;
|
|
MARK_RED(NewNode);
|
|
memcpy( NewNode->Context, Context, ContextSize );
|
|
|
|
//
|
|
// Insert new node under last link we traversed. The top of the stack
|
|
// contains the address of the last link we traversed.
|
|
//
|
|
|
|
Link = *( --StackPointer );
|
|
*Link = NewNode;
|
|
|
|
//
|
|
// Now walk back up the traversal chain to see if any balancing is
|
|
// needed. This terminates in one of three ways: we walk all the way
|
|
// up to the root (StackPointer == Stack), or find a black node that
|
|
// we don't need to change (no balancing needs to be done above a
|
|
// black node), or we perform a balancing rotation (only one necessary).
|
|
//
|
|
|
|
Node = NewNode;
|
|
Child = NODE_NIL;
|
|
|
|
while ( StackPointer > Stack ) {
|
|
|
|
Link = *( --StackPointer );
|
|
Parent = *Link;
|
|
|
|
//
|
|
// Node is always red here.
|
|
//
|
|
|
|
if ( IS_BLACK( Parent )) {
|
|
|
|
Sibling = ( Parent->Left == Node ) ? Parent->Right : Parent->Left;
|
|
|
|
if ( IS_RED( Sibling )) {
|
|
|
|
//
|
|
// Both Node and its Sibling are red, so change them both to
|
|
// black and make the Parent red. This essentially moves the
|
|
// red link up the tree so balancing can be performed at a
|
|
// higher level.
|
|
//
|
|
// Pb Pr
|
|
// / \ ----> / \
|
|
// Cr Sr Cb Sb
|
|
//
|
|
|
|
MARK_BLACK( Sibling );
|
|
MARK_BLACK( Node );
|
|
MARK_RED( Parent );
|
|
}
|
|
|
|
else {
|
|
|
|
//
|
|
// This is a terminal case. The Parent is black, and it's
|
|
// not going to be changed to red. If the Node's child is
|
|
// red, we perform an appropriate rotation to balance the
|
|
// tree. If the Node's child is black, we're done.
|
|
//
|
|
|
|
if ( IS_RED( Child )) {
|
|
|
|
if ( Node->Left == Child ) {
|
|
|
|
if ( Parent->Left == Node ) {
|
|
|
|
//
|
|
// Pb Nb
|
|
// / \ / \
|
|
// Nr Z to Cr Pr
|
|
// / \ / \
|
|
// Cr Y Y Z
|
|
//
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Left = Node->Right;
|
|
Node->Right = Parent;
|
|
MARK_BLACK( Node );
|
|
*Link = Node;
|
|
}
|
|
|
|
else {
|
|
|
|
//
|
|
// Pb Cb
|
|
// / \ / \
|
|
// W Nr to Pr Nr
|
|
// / \ / \ / \
|
|
// Cr Z W X Y Z
|
|
// / \
|
|
// X Y
|
|
//
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Right = Child->Left;
|
|
Child->Left = Parent;
|
|
Node->Left = Child->Right;
|
|
Child->Right = Node;
|
|
MARK_BLACK( Child );
|
|
*Link = Child;
|
|
}
|
|
}
|
|
|
|
else {
|
|
|
|
if ( Parent->Right == Node ) {
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Right = Node->Left;
|
|
Node->Left = Parent;
|
|
MARK_BLACK( Node );
|
|
*Link = Node;
|
|
}
|
|
|
|
else {
|
|
|
|
MARK_RED( Parent );
|
|
Parent->Left = Child->Right;
|
|
Child->Right = Parent;
|
|
Node->Right = Child->Left;
|
|
Child->Left = Node;
|
|
MARK_BLACK( Child );
|
|
*Link = Child;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (DWORD_CONTEXT) NewNode->Context;
|
|
}
|
|
}
|
|
|
|
Child = Node;
|
|
Node = Parent;
|
|
}
|
|
|
|
//
|
|
// We bubbled red up to the root -- restore it to black.
|
|
//
|
|
|
|
MARK_BLACK( Tree->Root );
|
|
return (DWORD_CONTEXT) NewNode->Context;
|
|
}
|
|
|
|
|
|
VOID
|
|
TreeDestroy(
|
|
IN OUT PDWORD_TREE Tree
|
|
)
|
|
//
|
|
// We walk the tree left first, then right, until we find a leaf. We delete the leaf and continue
|
|
// our walking to the right of the parent since we must've been to the parent's left before
|
|
//
|
|
{
|
|
PDWORD_NODE * Stack[ MAX_DEPTH ];
|
|
PDWORD_NODE **StackPointer;
|
|
PDWORD_NODE Node;
|
|
|
|
if(NODE_NIL == Tree->Root)
|
|
return;
|
|
|
|
StackPointer = Stack;
|
|
*StackPointer = &Tree->Root;
|
|
|
|
lTryLeft:
|
|
Node = **StackPointer;
|
|
|
|
if(Node->Left != NODE_NIL)
|
|
{
|
|
*++StackPointer = &Node->Left;
|
|
goto lTryLeft;
|
|
}
|
|
|
|
lTryRight:
|
|
if(Node->Right != NODE_NIL)
|
|
{
|
|
*++StackPointer = &Node->Right;
|
|
goto lTryLeft;
|
|
}
|
|
|
|
MemFree(Node);
|
|
**StackPointer = NODE_NIL;
|
|
|
|
if(StackPointer > Stack) // this is true if the current node is not the root
|
|
{
|
|
Node = **--StackPointer;
|
|
goto lTryRight;
|
|
}
|
|
}
|