windows-nt/Source/XPSP1/NT/com/rpc/ndr64/unmrshl.cxx
2020-09-26 16:20:57 +08:00

2766 lines
82 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**********************************************************************
Copyright (c) 1993-2000 Microsoft Corporation
Module Name :
unmrshl.cxx
Abstract :
This file contains the unmarshalling routines called by MIDL generated
stubs and the interpreter.
Author :
David Kays dkays September 1993.
Revision History :
**********************************************************************/
#include "precomp.hxx"
#include "..\..\ndr20\ndrole.h"
void
Ndr64UDTSimpleTypeUnmarshall1(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
{
//
// Align the buffer.
//
ALIGN( pStubMsg->Buffer, NDR64_SIMPLE_TYPE_BUFALIGN(*(PFORMAT_STRING)pFormat) );
// Initialize the memory pointer if needed.
if ( fMustAlloc )
{
*ppMemory = (uchar *) NdrAllocate( pStubMsg,
NDR64_SIMPLE_TYPE_MEMSIZE(*(PFORMAT_STRING)pFormat) );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
else if ( !*ppMemory )
{
// Set pointer into buffer.
*ppMemory = pStubMsg->Buffer;
}
Ndr64SimpleTypeUnmarshall( pStubMsg,
*ppMemory,
*(PFORMAT_STRING)pFormat );
}
void
Ndr64SimpleTypeUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
uchar FormatChar )
/*++
Routine Description :
Unmarshalls a simple type.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Memory pointer to unmarshall into.
FormatChar - Simple type format character.
Return :
None.
--*/
{
switch ( FormatChar )
{
case FC64_CHAR :
case FC64_UINT8 :
case FC64_INT8 :
*pMemory = *(pStubMsg->Buffer)++;
break;
case FC64_WCHAR :
case FC64_UINT16 :
case FC64_INT16 :
ALIGN(pStubMsg->Buffer,1);
*((NDR64_UINT16 *)pMemory) = *((NDR64_UINT16 *)pStubMsg->Buffer);
pStubMsg->Buffer += sizeof(NDR64_UINT16);
break;
case FC64_INT32 :
case FC64_UINT32 :
case FC64_FLOAT32 :
case FC64_ERROR_STATUS_T:
ALIGN(pStubMsg->Buffer,3);
*((NDR64_UINT32 *)pMemory) = *((NDR64_UINT32 *)pStubMsg->Buffer);
pStubMsg->Buffer += sizeof(NDR64_UINT32);
break;
case FC64_UINT64 :
case FC64_INT64 :
case FC64_FLOAT64 :
ALIGN(pStubMsg->Buffer,7);
*((NDR64_UINT64 *)pMemory) = *((NDR64_UINT64 *)pStubMsg->Buffer);
pStubMsg->Buffer += sizeof(NDR64_UINT64);
break;
case FC64_IGNORE :
break;
default :
NDR_ASSERT(0,"Ndr64SimpleTypeUnmarshall : bad format char");
RpcRaiseException( RPC_S_INTERNAL_ERROR );
return;
}
}
void
Ndr64RangeUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Unmarshals a range FC64_RANGE descriptor.
--*/
{
const NDR64_RANGE_FORMAT * pRangeFormat =
(const NDR64_RANGE_FORMAT*)pFormat;
Ndr64UDTSimpleTypeUnmarshall1( pStubMsg,
ppMemory,
(PNDR64_FORMAT)&pRangeFormat->RangeType,
fMustAlloc );
EXPR_VALUE Value = Ndr64pSimpleTypeToExprValue( pRangeFormat->RangeType, *ppMemory );
if ( Value < (EXPR_VALUE)pRangeFormat->MinValue ||
Value > (EXPR_VALUE)pRangeFormat->MaxValue )
RpcRaiseException( RPC_X_INVALID_BOUND );
}
IUnknown *
Ndr64pInterfacePointerUnmarshall (
PMIDL_STUB_MESSAGE pStubMsg,
PNDR64_FORMAT pFormat)
/*++
Routine Description :
Unmarshalls an interface pointer.
Arguments :
pStubMsg - Pointer to the stub message.
pFormat - Interface pointer's format string description.
Return :
None.
Notes : Here is the data representation.
// wire representation of a marshalled interface pointer
typedef struct tagMInterfacePointer
{
ULONG ulCntData; // size of data
[size_is(ulCntData)] BYTE abData[]; // data (OBJREF)
} MInterfacePointer;
--*/
{
const NDR64_CONSTANT_IID_FORMAT *pConstInterfaceFormat =
(NDR64_CONSTANT_IID_FORMAT*)pFormat;
const NDR64_IID_FORMAT *pInterfaceFormat =
(NDR64_IID_FORMAT*)pFormat;
// Unmarshal the conformant size and the count field.
ALIGN( pStubMsg->Buffer, NDR64_WIRE_COUNT_ALIGN );
CHECK_EOB_WITH_WRAP_RAISE_BSD( pStubMsg->Buffer, (sizeof(NDR64_WIRE_COUNT_TYPE)+sizeof(ulong)) );
NDR64_UINT32 MaxCount = Ndr64pConvertTo2GB( *(NDR64_WIRE_COUNT_TYPE *) pStubMsg->Buffer );
pStubMsg->Buffer += sizeof(NDR64_WIRE_COUNT_TYPE);
ulong ulCntData = *(ulong *) pStubMsg->Buffer;
pStubMsg->Buffer += sizeof(ulong);
if ( MaxCount != ulCntData )
{
RpcRaiseException( RPC_X_BAD_STUB_DATA );
return NULL;
}
if ( !MaxCount )
{
return NULL;
}
CHECK_EOB_WITH_WRAP_RAISE_BSD( pStubMsg->Buffer, MaxCount );
// Get a pointer to the IID hidden in the interface pointer
// representation in the buffer with Rick's IRpcHelper.
//
IID *piidValue;
NdrpGetIIDFromBuffer( pStubMsg, & piidValue );
//
// Validate the IID.
//
if ( ((NDR64_IID_FLAGS*)&pConstInterfaceFormat->Flags)->ConstantIID )
{
if ( memcmp( &pConstInterfaceFormat->Guid,
piidValue,
sizeof(GUID)) != 0)
{
RpcRaiseException( RPC_X_BAD_STUB_DATA );
return NULL;
}
}
else
{
Ndr64pCheckCorrelation(pStubMsg,
(EXPR_VALUE)piidValue,
pInterfaceFormat->IIDDescriptor,
EXPR_IID
);
}
IStream *pStream = (*NdrpCreateStreamOnMemory)(pStubMsg->Buffer, MaxCount);
if(pStream == 0)
{
RpcRaiseException(RPC_S_OUT_OF_MEMORY);
return NULL;
}
IUnknown * punk = NULL;
HRESULT hr = (*pfnCoUnmarshalInterface)(pStream, IID_NULL, (void**)&punk );
pStream->Release();
if(FAILED(hr))
{
RpcRaiseException(hr);
return NULL;
}
pStubMsg->Buffer += MaxCount;
return punk;
}
class FINDONTFREE_CONTEXT
{
PMIDL_STUB_MESSAGE const pStubMsg;
const int fInDontFreeSave;
public:
__forceinline FINDONTFREE_CONTEXT( PMIDL_STUB_MESSAGE pStubMsg ) :
pStubMsg( pStubMsg ),
fInDontFreeSave(pStubMsg->fInDontFree)
{}
__forceinline FINDONTFREE_CONTEXT( PMIDL_STUB_MESSAGE pStubMsg,
int fInDontFree ) :
pStubMsg( pStubMsg ),
fInDontFreeSave(pStubMsg->fInDontFree)
{
pStubMsg->fInDontFree = fInDontFree;
}
__forceinline ~FINDONTFREE_CONTEXT()
{
pStubMsg->fInDontFree = fInDontFreeSave;
}
};
void
Ndr64pFreeOlePointer(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
NDR_POINTER_QUEUE *pOldQueue = NULL;
if ( pStubMsg->pPointerQueueState )
{
pOldQueue = pStubMsg->pPointerQueueState->GetActiveQueue();
pStubMsg->pPointerQueueState->SetActiveQueue(pOldQueue);
}
RpcTryFinally
{
Ndr64PointerFree( pStubMsg,
pMemory,
pFormat );
}
RpcFinally
{
if ( pStubMsg->pPointerQueueState )
{
pStubMsg->pPointerQueueState->SetActiveQueue( pOldQueue );
}
}
RpcEndFinally
}
NDR_ALLOC_ALL_NODES_CONTEXT *
Ndr64pGetAllocateAllNodesContext(
PMIDL_STUB_MESSAGE pStubMsg,
PNDR64_FORMAT pFormat )
{
uchar *pBuffer = pStubMsg->Buffer;
// Clear memory size before calling mem size routine.
pStubMsg->MemorySize = 0;
//
// Get the allocate all nodes memory size.
//
{
NDR_POINTER_QUEUE *pOldQueue = NULL;
if (pStubMsg->pPointerQueueState)
{
pOldQueue = pStubMsg->pPointerQueueState->GetActiveQueue();
pStubMsg->pPointerQueueState->SetActiveQueue(NULL);
}
RpcTryFinally
{
Ndr64TopLevelTypeMemorySize( pStubMsg,
pFormat );
}
RpcFinally
{
if ( pStubMsg->pPointerQueueState )
{
pStubMsg->pPointerQueueState->SetActiveQueue( pOldQueue );
}
}
RpcEndFinally
}
ulong AllocSize = pStubMsg->MemorySize;
pStubMsg->MemorySize = 0;
LENGTH_ALIGN( AllocSize, __alignof(NDR_ALLOC_ALL_NODES_CONTEXT) - 1);
uchar *pAllocMemory =
(uchar*)NdrAllocate( pStubMsg, AllocSize + sizeof(NDR_ALLOC_ALL_NODES_CONTEXT) );
NDR_ALLOC_ALL_NODES_CONTEXT *pAllocContext =
(NDR_ALLOC_ALL_NODES_CONTEXT*)(pAllocMemory + AllocSize);
pAllocContext->AllocAllNodesMemory = pAllocMemory;
pAllocContext->AllocAllNodesMemoryBegin = pAllocMemory;
pAllocContext->AllocAllNodesMemoryEnd = (uchar*)pAllocContext;
pStubMsg->Buffer = pBuffer;
return pAllocContext;
}
__forceinline void
Ndr64pPointerUnmarshallInternal(
PMIDL_STUB_MESSAGE pStubMsg,
NDR64_PTR_WIRE_TYPE WirePtr,
uchar ** ppMemory,
uchar * pMemory,
PNDR64_FORMAT pFormat )
/*++
Routine Description :
Private routine for unmarshalling a pointer to anything. This is the
entry point for pointers embedded in structures, arrays, and unions.
Used for FC64_RP, FC64_UP, FC64_FP, FC64_OP.
Arguments :
pStubMsg - Pointer to the stub message.
ppBufferPointer - Address of the location in the buffer which holds the
incomming pointer's value and will hold the final
unmarshalled pointer's value.
pMemory - Current memory pointer's value which we want to
unmarshall into. If this value is valid the it will
be copied to *ppBufferPointer and this is where stuff
will get unmarshalled into.
pFormat - Pointer's format string description.
pStubMsg->Buffer - set to the pointee.
Return :
None.
--*/
{
const NDR64_POINTER_FORMAT *pPointerFormat = (NDR64_POINTER_FORMAT*) pFormat;
bool fPointeeAlloc;
bool fNewAllocAllNodes = false;
// make sure we are not out out of bound. We need this check for embedded pointers / pointer
// to pointer cases.
CHECK_EOB_RAISE_BSD( pStubMsg->Buffer );
SAVE_CONTEXT<ulong> FullPtrRefIdSave( pStubMsg->FullPtrRefId );
FINDONTFREE_CONTEXT fInDontFreeSave( pStubMsg );
if ( NDR64_IS_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags) )
{
pMemory = 0;
}
//
// Check the pointer type.
//
switch ( *(PFORMAT_STRING)pFormat )
{
case FC64_RP :
break;
case FC64_OP :
//
// Burn some instructions for OLE unique pointer support.
//
if ( pStubMsg->IsClient )
{
//
// It's ok if this is an [out] unique pointer. It will get
// zeroed before this routine is called and Ndr64PointerFree
// will simply return.
//
Ndr64pFreeOlePointer(
pStubMsg,
pMemory,
pFormat );
// Set the current memory pointer to 0 so that we'll alloc.
pMemory = 0;
}
// Fall through.
case FC64_UP :
//
// Check for a null incomming pointer. Routines which call this
// routine insure that the memory pointer gets nulled.
//
if ( ! WirePtr )
{
*ppMemory = NULL;
return;
}
break;
case FC64_IP:
if ( pStubMsg->IsClient )
{
Ndr64PointerFree( pStubMsg,
pMemory,
pFormat );
pMemory = 0;
}
if ( ! WirePtr )
{
*ppMemory = NULL;
return;
}
*(IUnknown **)ppMemory = (IUnknown*)
Ndr64pInterfacePointerUnmarshall( pStubMsg,
pPointerFormat->Pointee
);
return;
case FC64_FP :
{
//
// We have to remember the incomming ref id because we overwrite
// it during the QueryRefId call.
//
ulong FullPtrRefId =
Ndr64pWirePtrToRefId( WirePtr );
if ( !FullPtrRefId )
{
*ppMemory = NULL;
return;
}
//
// Lookup the ref id.
//
if ( Ndr64pFullPointerQueryRefId( pStubMsg,
FullPtrRefId,
FULL_POINTER_UNMARSHALLED,
(void**)ppMemory ) )
{
return;
}
//
// If our query returned false then check if the returned pointer
// is 0. If so then we have to scribble away the ref id in the
// stub message FullPtrRefId field so that we can insert the
// pointer translation later, after we've allocated the pointer.
// If the returned pointer was non-null then we leave the stub
// message FullPtrRefId field alone so that we don't try to
// re-insert the pointer to ref id translation later.
//
// We also copy the returned pointer value into pMemory. This
// will allow our allocation decision to be made correctly.
//
if ( ! ( pMemory = *ppMemory ) )
{
//
// Put the unmarshalled ref id into the stub message to
// be used later in a call to Ndr64FullPointerInsertRefId.
//
pStubMsg->FullPtrRefId = FullPtrRefId;
}
}
break;
default :
NDR_ASSERT(0,"Ndr64pPointerUnmarshall : bad pointer type");
RpcRaiseException( RPC_S_INTERNAL_ERROR );
return;
}
//
// Make the initial "must allocate" decision.
//
// The fPointeeAlloc flag is set on the client side if the current memory
// pointer is null, and on the server side it is set if the current memory
// pointer has the allocate don't free attribute applied to it.
//
// On the client side we also set the pointer's value in the buffer equal
// to the current memory pointer.
//
// On the server side we explicitly null out the pointer's value in the
// buffer as long as it's not allocated on the stack, otherwise we set it
// equal to the current memory pointer (stack allocated).
//
if ( pStubMsg->IsClient )
{
*ppMemory = pMemory;
fPointeeAlloc = ! pMemory;
}
else
{
if ( ! NDR64_ALLOCED_ON_STACK( pPointerFormat->Flags ) )
*ppMemory = 0;
else
*ppMemory = pMemory;
//
// If this is a don't free pointer or a parent pointer of this pointer
// was a don't free pointer then we set the alloc flag.
//
if ( fPointeeAlloc = (NDR64_DONT_FREE( pPointerFormat->Flags ) ||
pStubMsg->fInDontFree ||
pStubMsg->ReuseBuffer ) )
{
pStubMsg->fInDontFree = TRUE;
}
//
// We also set the alloc flag for object interface pointers.
//
if ( *(PFORMAT_STRING)pFormat == FC64_OP )
fPointeeAlloc = true;
}
//
// Check if this is an allocate all nodes pointer AND that we're
// not already in an allocate all nodes context.
//
if ( NDR64_ALLOCATE_ALL_NODES( pPointerFormat->Flags ) && ! pStubMsg->pAllocAllNodesContext )
{
fNewAllocAllNodes = true;
pStubMsg->pAllocAllNodesContext =
Ndr64pGetAllocateAllNodesContext(
pStubMsg,
pPointerFormat->Pointee );
*ppMemory = 0;
fPointeeAlloc = true;
}
if ( NDR64_POINTER_DEREF( pPointerFormat->Flags ) )
{
//
// Re-align the buffer. This is to cover embedded pointer to
// pointers.
//
ALIGN(pStubMsg->Buffer, NDR64_PTR_WIRE_ALIGN );
//
// We can't re-use the buffer for a pointer to a pointer
// because we can't null out the pointee before we've unmarshalled
// it. We need the stubs to alloc pointers to pointers on the
// stack.
//
if ( ! *ppMemory && ! pStubMsg->IsClient )
fPointeeAlloc = true;
if ( fPointeeAlloc )
{
*ppMemory = (uchar*)NdrAllocate( pStubMsg, PTR_MEM_SIZE );
*((void **)*ppMemory) = 0;
}
if ( pStubMsg->FullPtrRefId )
FULL_POINTER_INSERT( pStubMsg, *ppMemory );
ppMemory = (uchar **) *ppMemory;
}
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
NDR64_RESET_EMBEDDED_FLAGS_TO_STANDALONE(pStubMsg->uFlags);
if ( fPointeeAlloc )
NDR64_SET_SKIP_REF_CHECK( pStubMsg->uFlags );
PNDR64_FORMAT pPointee = pPointerFormat->Pointee;
if ( NDR64_IS_SIMPLE_TYPE( *(PFORMAT_STRING)pPointee) )
{
ALIGN(pStubMsg->Buffer,NDR64_SIMPLE_TYPE_BUFALIGN(*(PFORMAT_STRING)pPointee) );
CHECK_EOB_RAISE_BSD( pStubMsg->Buffer +
NDR64_SIMPLE_TYPE_BUFSIZE( *(PFORMAT_STRING)pPointee ) );
}
// we don't need to check for buffer over run here. For non simple types,
// unmarshal routines have checks available; for pointer to pointer, we have
// the check at the beginning of this routine; and for pointer to simple types,
// we'll unmarshal in place, but that's in current pStubMsg->Buffer, which is
// covered by the above check too.
Ndr64TopLevelTypeUnmarshall(
pStubMsg,
ppMemory,
pPointerFormat->Pointee,
fPointeeAlloc );
// Insert full pointer to ref id translation if needed.
if ( pStubMsg->FullPtrRefId )
FULL_POINTER_INSERT( pStubMsg, *ppMemory );
//
// Reset the memory allocator and allocate all nodes flag if this was
// an allocate all nodes case.
//
if ( fNewAllocAllNodes )
{
pStubMsg->pAllocAllNodesContext = 0;
}
}
NDR64_UNMRSHL_POINTER_QUEUE_ELEMENT::NDR64_UNMRSHL_POINTER_QUEUE_ELEMENT(
MIDL_STUB_MESSAGE *pStubMsg,
uchar ** ppMemoryNew,
uchar * pMemoryNew,
NDR64_PTR_WIRE_TYPE WirePtrNew,
PFORMAT_STRING pFormatNew ) :
WirePtr(WirePtrNew),
ppMemory(ppMemoryNew),
pMemory(pMemoryNew),
pFormat(pFormatNew),
pCorrMemory(pStubMsg->pCorrMemory),
pAllocAllNodesContext(pStubMsg->pAllocAllNodesContext),
fInDontFree(pStubMsg->fInDontFree),
uFlags(pStubMsg->uFlags)
{
}
void NDR64_UNMRSHL_POINTER_QUEUE_ELEMENT::Dispatch( PMIDL_STUB_MESSAGE pStubMsg )
{
CORRELATION_CONTEXT CorrCtxt( pStubMsg, pCorrMemory );
SAVE_CONTEXT<NDR_ALLOC_ALL_NODES_CONTEXT*>
AllocNodesSave(pStubMsg->pAllocAllNodesContext,pAllocAllNodesContext );
FINDONTFREE_CONTEXT fInDoneFreeSave( pStubMsg, fInDontFree );
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags, uFlags );
Ndr64pPointerUnmarshallInternal(
pStubMsg,
WirePtr,
ppMemory,
pMemory,
pFormat );
}
#if defined(DBG)
void NDR64_UNMRSHL_POINTER_QUEUE_ELEMENT::Print()
{
DbgPrint("NDR64_UNMRSHL_POINTER_QUEUE_ELEMENT:\n");
DbgPrint("pNext: %p\n", pNext );
DbgPrint("WirePtr: %I64u\n", WirePtr );
DbgPrint("ppMemory: %p\n", ppMemory );
DbgPrint("pMemory: %p\n", pMemory );
DbgPrint("pFormat: %p\n", pFormat );
DbgPrint("pCorrMemory: %p\n", pCorrMemory );
DbgPrint("pAllocAllNodesContext: %p\n", pAllocAllNodesContext );
DbgPrint("fInDontFree: %u\n", fInDontFree );
DbgPrint("uFlags: %u\n", uFlags );
}
#endif
void
Ndr64pEnquePointerUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
NDR64_PTR_WIRE_TYPE WirePtr,
uchar ** ppMemory,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
NDR64_POINTER_CONTEXT PointerContext( pStubMsg );
RpcTryFinally
{
NDR64_UNMRSHL_POINTER_QUEUE_ELEMENT*pElement =
new(pStubMsg->pPointerQueueState)
NDR64_UNMRSHL_POINTER_QUEUE_ELEMENT(pStubMsg,
ppMemory,
pMemory,
WirePtr,
(PFORMAT_STRING)pFormat );
PointerContext.Enque( pElement );
PointerContext.DispatchIfRequired();
}
RpcFinally
{
PointerContext.EndContext();
}
RpcEndFinally
}
void
Ndr64pPointerUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
NDR64_PTR_WIRE_TYPE WirePtr,
uchar ** ppMemory,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
if ( !NdrIsLowStack( pStubMsg ) )
{
Ndr64pPointerUnmarshallInternal(
pStubMsg,
WirePtr,
ppMemory,
pMemory,
pFormat );
return;
}
Ndr64pEnquePointerUnmarshall(
pStubMsg,
WirePtr,
ppMemory,
pMemory,
pFormat );
}
__forceinline void
Ndr64EmbeddedPointerUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool /*fSkipRefCheck*/ )
{
ALIGN( pStubMsg->Buffer, NDR64_PTR_WIRE_ALIGN );
NDR64_PTR_WIRE_TYPE WirePtr = *(NDR64_PTR_WIRE_TYPE*) pStubMsg->Buffer;
pStubMsg->Buffer += sizeof(NDR64_PTR_WIRE_TYPE);
POINTER_BUFFER_SWAP_CONTEXT SwapContext(pStubMsg);
Ndr64pPointerUnmarshall( pStubMsg,
WirePtr,
*(uchar***)ppMemory,
**(uchar***)ppMemory,
pFormat );
}
__forceinline void
Ndr64TopLevelPointerUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool /* fSkipRefCheck */)
{
if ( *(PFORMAT_STRING)pFormat != FC64_RP )
{
ALIGN( pStubMsg->Buffer, NDR64_PTR_WIRE_ALIGN );
NDR64_PTR_WIRE_TYPE WirePtr = *(NDR64_PTR_WIRE_TYPE*) pStubMsg->Buffer;
pStubMsg->Buffer += sizeof(NDR64_PTR_WIRE_TYPE);
Ndr64pPointerUnmarshall( pStubMsg,
WirePtr,
ppMemory,
*ppMemory,
pFormat );
return;
}
//
// If we're on the client unmarshalling a top level [out] ref pointer,
// we have to make sure that it is non-null.
if ( pStubMsg->IsClient &&
!NDR64_IS_SKIP_REF_CHECK( pStubMsg->uFlags ) &&
! *ppMemory )
RpcRaiseException( RPC_X_NULL_REF_POINTER );
Ndr64pPointerUnmarshall( pStubMsg,
0,
ppMemory,
*ppMemory,
pFormat );
}
void
Ndr64SimpleStructUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine description :
Unmarshalls a simple structure.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Double pointer to the structure being unmarshalled.
pFormat - Structure's format string description.
fMustAlloc - TRUE if the structure must be allocate, FALSE otherwise.
--*/
{
const NDR64_STRUCTURE_HEADER_FORMAT * const pStructFormat =
(NDR64_STRUCTURE_HEADER_FORMAT*) pFormat;
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
// Align the buffer.
ALIGN(pStubMsg->Buffer, pStructFormat->Alignment);
CHECK_EOB_WITH_WRAP_RAISE_BSD( pStubMsg->Buffer, pStructFormat->MemorySize );
uchar *pBufferSave = pStubMsg->Buffer;
pStubMsg->Buffer += pStructFormat->MemorySize;
if ( fMustAlloc )
{
*ppMemory = (uchar *) NdrAllocate( pStubMsg, pStructFormat->MemorySize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
else if ( !*ppMemory )
{
*ppMemory = pBufferSave;
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
if ( pStructFormat->Flags.HasPointerInfo )
{
CORRELATION_CONTEXT CorrCtxt( pStubMsg, pBufferSave );
Ndr64pPointerLayoutUnmarshall( pStubMsg,
pStructFormat + 1,
0,
*ppMemory,
pBufferSave );
}
// Copy the struct if we're not using the rpc buffer.
if ( *ppMemory != pBufferSave )
{
RpcpMemoryCopy( *ppMemory,
pBufferSave,
pStructFormat->MemorySize );
}
}
void
Ndr64ConformantStructUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine description :
Unmarshalls a conformant structure.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Double pointer to where the structure should be unmarshalled.
pFormat - Structure's format string description.
fMustAlloc - TRUE if the structure must be allocate, FALSE otherwise.
Return :
None.
--*/
{
const NDR64_CONF_STRUCTURE_HEADER_FORMAT * const pStructFormat =
(NDR64_CONF_STRUCTURE_HEADER_FORMAT*) pFormat;
const NDR64_CONF_ARRAY_HEADER_FORMAT * const pArrayFormat =
(NDR64_CONF_ARRAY_HEADER_FORMAT *) pStructFormat->ArrayDescription;
SAVE_CONTEXT<uchar> uFlagsSave(pStubMsg->uFlags );
NDR64_WIRE_COUNT_TYPE MaxCount;
if ( !NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
// Align the buffer for unmarshalling the conformance count.
ALIGN(pStubMsg->Buffer, NDR64_WIRE_COUNT_ALIGN);
MaxCount = *((NDR64_WIRE_COUNT_TYPE *)pStubMsg->Buffer);
pStubMsg->Buffer += sizeof(NDR64_WIRE_COUNT_TYPE);
}
else
MaxCount = *((NDR64_WIRE_COUNT_TYPE *)pStubMsg->ConformanceMark);
// Re-align the buffer
ALIGN(pStubMsg->Buffer, pStructFormat->Alignment );
uchar *pBufferStart = pStubMsg->Buffer;
CHECK_EOB_RAISE_IB( pBufferStart + pStructFormat->MemorySize );
CORRELATION_CONTEXT CorrCtxt( pStubMsg, pBufferStart );
Ndr64pCheckCorrelation( pStubMsg,
MaxCount,
pArrayFormat->ConfDescriptor,
EXPR_MAXCOUNT );
NDR64_UINT32 StructSize = Ndr64pConvertTo2GB( (NDR64_UINT64)pStructFormat->MemorySize +
( MaxCount * (NDR64_UINT64)pArrayFormat->ElementSize ) );
CHECK_EOB_WITH_WRAP_RAISE_IB( pBufferStart, StructSize );
pStubMsg->Buffer += StructSize;
if ( fMustAlloc )
{
*ppMemory = (uchar *) NdrAllocate( pStubMsg, StructSize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
else if ( !*ppMemory )
{
*ppMemory = pBufferStart;
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
if ( pStructFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutUnmarshall( pStubMsg,
pStructFormat + 1,
(NDR64_UINT32)MaxCount,
*ppMemory,
pBufferStart );
}
if ( *ppMemory != pBufferStart )
{
RpcpMemoryCopy( *ppMemory,
pBufferStart,
StructSize );
}
}
void
Ndr64ComplexStructUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine description :
Unmarshalls a complex structure.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Double pointer to where the structure should be unmarshalled.
pFormat - Structure's format string description.
fMustAlloc - Ignored.
Return :
None.
--*/
{
const NDR64_BOGUS_STRUCTURE_HEADER_FORMAT * pStructFormat =
(NDR64_BOGUS_STRUCTURE_HEADER_FORMAT*) pFormat;
const NDR64_CONF_BOGUS_STRUCTURE_HEADER_FORMAT * pConfStructFormat =
(NDR64_CONF_BOGUS_STRUCTURE_HEADER_FORMAT*) pFormat;
bool fSetPointerBufferMark = !pStubMsg->PointerBufferMark;
if ( fSetPointerBufferMark )
{
uchar *pBufferSave = pStubMsg->Buffer;
BOOL fOldIgnore = pStubMsg->IgnoreEmbeddedPointers;
pStubMsg->IgnoreEmbeddedPointers = TRUE;
pStubMsg->MemorySize = 0;
Ndr64ComplexStructMemorySize(
pStubMsg,
pFormat );
// check buffer overrun for flat part of the struct.
CHECK_EOB_RAISE_BSD( pStubMsg->Buffer );
pStubMsg->PointerBufferMark = pStubMsg->Buffer;
pStubMsg->IgnoreEmbeddedPointers = fOldIgnore;
pStubMsg->Buffer = pBufferSave;
}
uchar * pMemory;
PFORMAT_STRING pFormatPointers = (PFORMAT_STRING)pStructFormat->PointerLayout;
PFORMAT_STRING pFormatArray = NULL;
bool fIsFullBogus = ( *(PFORMAT_STRING)pFormat == FC64_BOGUS_STRUCT ||
*(PFORMAT_STRING)pFormat == FC64_CONF_BOGUS_STRUCT );
PFORMAT_STRING pMemberLayout = ( *(PFORMAT_STRING)pFormat == FC64_CONF_BOGUS_STRUCT ||
*(PFORMAT_STRING)pFormat == FC64_FORCED_CONF_BOGUS_STRUCT ) ?
(PFORMAT_STRING)( pConfStructFormat + 1) :
(PFORMAT_STRING)( pStructFormat + 1);
SAVE_CONTEXT<uchar*> ConformanceMarkSave( pStubMsg->ConformanceMark );
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
// Get conformant array description.
if ( pStructFormat->Flags.HasConfArray )
{
pFormatArray = (PFORMAT_STRING)pConfStructFormat->ConfArrayDescription;
}
//
// Now check if there is a conformant array and mark where the conformance
// will be unmarshalled from.
//
if ( pFormatArray && !NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
ALIGN(pStubMsg->Buffer, NDR64_WIRE_COUNT_ALIGN);
pStubMsg->ConformanceMark = pStubMsg->Buffer;
//
// Increment the buffer pointer for every dimension in the
// conformant array.
//
pStubMsg->Buffer += pConfStructFormat->Dimensions * sizeof(NDR64_WIRE_COUNT_TYPE);
NDR64_SET_CONF_MARK_VALID( pStubMsg->uFlags );
}
// Align the buffer on the struct's alignment.
ALIGN( pStubMsg->Buffer, pStructFormat->Alignment );
bool fMustCopy;
if ( fMustAlloc || ( fIsFullBogus && ! *ppMemory ) )
{
NDR64_UINT32 StructSize =
Ndr64pMemorySize( pStubMsg,
pFormat,
TRUE );
*ppMemory = (uchar*)NdrAllocate( pStubMsg, StructSize );
memset( *ppMemory, 0, StructSize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION( pStubMsg->uFlags );
fMustCopy = true;
}
else if ( ! *ppMemory )
{
*ppMemory = pStubMsg->Buffer;
NDR64_SET_NEW_EMBEDDED_ALLOCATION( pStubMsg->uFlags );
fMustCopy = false;
}
else
// reuse the clients memory
fMustCopy = true;
if ( pStubMsg->FullPtrRefId )
FULL_POINTER_INSERT( pStubMsg, *ppMemory );
// Get the beginning memory pointer.
pMemory = *ppMemory;
CORRELATION_CONTEXT CorrCtxt( pStubMsg, pMemory );
for ( ; ; )
{
switch ( *pMemberLayout )
{
case FC64_STRUCT:
{
const NDR64_SIMPLE_REGION_FORMAT *pRegion =
(NDR64_SIMPLE_REGION_FORMAT*) pMemberLayout;
ALIGN( pStubMsg->Buffer, pRegion->Alignment );
CHECK_EOB_RAISE_BSD( pStubMsg->Buffer + pRegion->RegionSize );
if ( fMustCopy )
RpcpMemoryCopy( pMemory,
pStubMsg->Buffer,
pRegion->RegionSize );
pStubMsg->Buffer += pRegion->RegionSize;
pMemory += pRegion->RegionSize;
pMemberLayout += sizeof( *pRegion );
break;
}
case FC64_STRUCTPADN :
{
const NDR64_MEMPAD_FORMAT *pMemPad = (NDR64_MEMPAD_FORMAT*)pMemberLayout;
pMemory += pMemPad->MemPad;
pMemberLayout += sizeof(*pMemPad);
break;
}
case FC64_POINTER :
{
Ndr64EmbeddedTypeUnmarshall( pStubMsg,
&pMemory,
pFormatPointers );
pMemory += PTR_MEM_SIZE;
pFormatPointers += sizeof(NDR64_POINTER_FORMAT);
pMemberLayout += sizeof(NDR64_SIMPLE_MEMBER_FORMAT);
break;
}
case FC64_EMBEDDED_COMPLEX :
{
const NDR64_EMBEDDED_COMPLEX_FORMAT * pEmbeddedFormat =
(NDR64_EMBEDDED_COMPLEX_FORMAT*) pMemberLayout;
Ndr64EmbeddedTypeUnmarshall( pStubMsg,
&pMemory,
pEmbeddedFormat->Type );
pMemory = Ndr64pMemoryIncrement( pStubMsg,
pMemory,
pEmbeddedFormat->Type,
TRUE );
pMemberLayout += sizeof(*pEmbeddedFormat);
break;
}
case FC64_BUFFER_ALIGN:
{
const NDR64_BUFFER_ALIGN_FORMAT *pBufAlign =
(NDR64_BUFFER_ALIGN_FORMAT*) pMemberLayout;
ALIGN( pStubMsg->Buffer, pBufAlign->Alignment );
pMemberLayout += sizeof( *pBufAlign );
break;
}
case FC64_CHAR :
case FC64_WCHAR :
case FC64_INT8:
case FC64_UINT8:
case FC64_INT16:
case FC64_UINT16:
case FC64_INT32:
case FC64_UINT32:
case FC64_INT64:
case FC64_UINT64:
case FC64_FLOAT32 :
case FC64_FLOAT64 :
case FC64_ERROR_STATUS_T:
Ndr64SimpleTypeUnmarshall( pStubMsg,
pMemory,
*pMemberLayout );
pMemory += NDR64_SIMPLE_TYPE_MEMSIZE(*pMemberLayout);
pMemberLayout += sizeof(NDR64_SIMPLE_MEMBER_FORMAT);
break;
case FC64_IGNORE :
ALIGN(pStubMsg->Buffer, NDR64_PTR_WIRE_ALIGN);
pStubMsg->Buffer += sizeof(NDR64_PTR_WIRE_TYPE);
if ( NDR64_IS_NEW_EMBEDDED_ALLOCATION( pStubMsg->uFlags ) )
{
*(char**)pMemory = (char*)0;
}
pMemory += PTR_MEM_SIZE;
pMemberLayout += sizeof(NDR64_SIMPLE_MEMBER_FORMAT);
break;
case FC64_END :
goto ComplexUnmarshallEnd;
default :
NDR_ASSERT(0,"Ndr64ComplexStructUnmarshall : bad format char");
RpcRaiseException( RPC_S_INTERNAL_ERROR );
return;
}
}
ComplexUnmarshallEnd:
if ( pFormatArray )
{
Ndr64EmbeddedTypeUnmarshall( pStubMsg,
&pMemory,
pFormatArray );
}
else
{
// If the structure doesn't have a conformant array, align it again
ALIGN( pStubMsg->Buffer, pStructFormat->Alignment );
}
if ( fSetPointerBufferMark )
{
pStubMsg->Buffer = pStubMsg->PointerBufferMark;
pStubMsg->PointerBufferMark = 0;
}
}
void
Ndr64pCommonStringUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
const NDR64_STRING_HEADER_FORMAT *pStringFormat,
bool fMustAlloc,
NDR64_UINT32 MemorySize )
{
ALIGN(pStubMsg->Buffer,NDR64_WIRE_COUNT_ALIGN);
NDR64_WIRE_COUNT_TYPE Offset = ((NDR64_WIRE_COUNT_TYPE *)pStubMsg->Buffer)[0];
NDR64_WIRE_COUNT_TYPE Count = ((NDR64_WIRE_COUNT_TYPE *)pStubMsg->Buffer)[1];
pStubMsg->Buffer += sizeof(NDR64_WIRE_COUNT_TYPE) * 2;
NDR64_UINT32 TransmittedSize =
Ndr64pConvertTo2GB( (NDR64_UINT64)pStringFormat->ElementSize *
Count );
if ( ( Offset != 0 ) ||
( 0 == Count ) ||
( TransmittedSize > MemorySize ) )
RpcRaiseException( RPC_X_INVALID_BOUND );
CHECK_EOB_WITH_WRAP_RAISE_BSD( pStubMsg->Buffer, TransmittedSize );
// In this code, we check that a terminator is
// where the marshaller tells us it is. We could check
// if another terminator exists in addition to the other
// terminator, but it doesn't make sense to do this
// since it wouldn't close any attacks.
switch( pStringFormat->FormatCode )
{
case FC64_CHAR_STRING:
case FC64_CONF_CHAR_STRING:
{
char *p = (char *) pStubMsg->Buffer;
NDR64_WIRE_COUNT_TYPE ActualChars = Count - 1;
if ( '\0' != p[ActualChars] )
{
RpcRaiseException( RPC_X_INVALID_BOUND );
return;
}
break;
}
case FC64_WCHAR_STRING:
case FC64_CONF_WCHAR_STRING:
{
wchar_t *p = ( wchar_t* ) pStubMsg->Buffer;
NDR64_WIRE_COUNT_TYPE ActualChars = Count - 1;
if ( L'\0' != p[ActualChars] )
{
RpcRaiseException( RPC_X_INVALID_BOUND );
return;
}
break;
}
case FC64_STRUCT_STRING:
case FC64_CONF_STRUCT_STRING:
{
NDR64_UINT8 *p = (NDR64_UINT8 *) pStubMsg->Buffer;
NDR64_WIRE_COUNT_TYPE ActualChars = Count - 1;
NDR64_UINT32 ElementSize = pStringFormat->ElementSize;
NDR64_UINT8 *t = p + Ndr64pConvertTo2GB( ActualChars * ElementSize );
if ( !Ndr64pIsStructStringTerminator( t, ElementSize ) )
{
RpcRaiseException( RPC_X_INVALID_BOUND );
return;
}
break;
}
}
if ( fMustAlloc )
{
*ppMemory = (uchar *) NdrAllocate( pStubMsg, MemorySize );
}
else if ( ! *ppMemory )
{
*ppMemory = ( TransmittedSize == MemorySize ) ? pStubMsg->Buffer :
(uchar *) NdrAllocate( pStubMsg, MemorySize );
}
if ( *ppMemory != pStubMsg->Buffer )
{
RpcpMemoryCopy( *ppMemory,
pStubMsg->Buffer,
TransmittedSize );
}
pStubMsg->Buffer += TransmittedSize;
return;
}
void
Ndr64NonConformantStringUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine description :
Unmarshalls a non conformant string.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Double pointer to the string should be unmarshalled.
pFormat - String's format string description.
fMustAlloc - Ignored.
Return :
None.
--*/
{
const NDR64_NON_CONFORMANT_STRING_FORMAT * pStringFormat =
(NDR64_NON_CONFORMANT_STRING_FORMAT*) pFormat;
Ndr64pCommonStringUnmarshall( pStubMsg,
ppMemory,
&pStringFormat->Header,
fMustAlloc,
pStringFormat->TotalSize );
}
void
Ndr64ConformantStringUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine description :
Unmarshalls a top level conformant string.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Double pointer to where the string should be unmarshalled.
pFormat - String's format string description.
fMustAlloc - TRUE if the string must be allocated, FALSE otherwise.
Return :
None.
--*/
{
const NDR64_CONFORMANT_STRING_FORMAT * pStringFormat =
(const NDR64_CONFORMANT_STRING_FORMAT*) pFormat;
const NDR64_SIZED_CONFORMANT_STRING_FORMAT *pSizedStringFormat =
(const NDR64_SIZED_CONFORMANT_STRING_FORMAT*) pFormat;
NDR64_WIRE_COUNT_TYPE MaxCount;
if ( !NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
ALIGN( pStubMsg->Buffer, NDR64_WIRE_COUNT_ALIGN );
MaxCount = *((NDR64_WIRE_COUNT_TYPE*)pStubMsg->Buffer);
pStubMsg->Buffer += sizeof(NDR64_WIRE_COUNT_TYPE);
}
else
{
MaxCount = *(NDR64_WIRE_COUNT_TYPE*)pStubMsg->ConformanceMark;
}
NDR64_UINT32 AllocationSize =
Ndr64pConvertTo2GB( MaxCount *
(NDR64_UINT64)pStringFormat->Header.ElementSize );
if ( pStringFormat->Header.Flags.IsSized )
{
Ndr64pCheckCorrelation( pStubMsg,
MaxCount,
pSizedStringFormat->SizeDescription,
EXPR_MAXCOUNT );
}
return
Ndr64pCommonStringUnmarshall( pStubMsg,
ppMemory,
&pStringFormat->Header,
fMustAlloc,
AllocationSize );
}
void
Ndr64FixedArrayUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine Description :
Unmarshalls a fixed array of any number of dimensions.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Pointer to the array to unmarshall.
pFormat - Array's format string description.
fMustAlloc - TRUE if the array must be allocated, FALSE otherwise.
Return :
None.
--*/
{
const NDR64_FIX_ARRAY_HEADER_FORMAT * pArrayFormat =
(NDR64_FIX_ARRAY_HEADER_FORMAT*) pFormat;
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
ALIGN(pStubMsg->Buffer, pArrayFormat->Alignment );
uchar *pBufferStart = pStubMsg->Buffer;
CHECK_EOB_RAISE_BSD( pStubMsg->Buffer + pArrayFormat->TotalSize );
pStubMsg->Buffer += pArrayFormat->TotalSize;
if ( fMustAlloc )
{
*ppMemory = (uchar *) NdrAllocate( pStubMsg, pArrayFormat->TotalSize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
else if ( !*ppMemory )
{
*ppMemory = pBufferStart;
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
if ( pArrayFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutUnmarshall( pStubMsg,
pArrayFormat + 1,
0,
*ppMemory,
pBufferStart );
}
if ( *ppMemory != pBufferStart )
{
RpcpMemoryCopy( *ppMemory,
pBufferStart,
pArrayFormat->TotalSize );
}
}
void
Ndr64ConformantArrayUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine Description :
Unmarshalls a top level one dimensional conformant array.
Used for FC64_CARRAY.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Pointer to array to be unmarshalled.
pFormat - Array's format string description.
Return :
None.
--*/
{
const NDR64_CONF_ARRAY_HEADER_FORMAT *pArrayFormat =
(NDR64_CONF_ARRAY_HEADER_FORMAT*) pFormat;
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
NDR64_WIRE_COUNT_TYPE MaxCount;
if ( ! NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
// Align the buffer for conformance marshalling.
ALIGN(pStubMsg->Buffer,NDR64_WIRE_COUNT_ALIGN);
MaxCount = *((NDR64_WIRE_COUNT_TYPE*)pStubMsg->Buffer);
pStubMsg->Buffer += sizeof(NDR64_WIRE_COUNT_TYPE);
}
else
{
MaxCount = *pStubMsg->ConformanceMark;
}
NDR64_UINT32 CopySize =
Ndr64pConvertTo2GB( MaxCount *
(NDR64_UINT64)pArrayFormat->ElementSize );
Ndr64pCheckCorrelation( pStubMsg,
MaxCount,
pArrayFormat->ConfDescriptor,
EXPR_MAXCOUNT );
ALIGN( pStubMsg->Buffer, pArrayFormat->Alignment );
uchar *pBufferStart = pStubMsg->Buffer;
CHECK_EOB_WITH_WRAP_RAISE_IB( pStubMsg->Buffer, CopySize);
pStubMsg->Buffer += CopySize; // Unmarshall embedded pointers.
if ( fMustAlloc )
{
*ppMemory = (uchar *) NdrAllocate( pStubMsg, CopySize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
else if ( !*ppMemory )
{
*ppMemory = pBufferStart;
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
if ( pArrayFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutUnmarshall( pStubMsg,
pArrayFormat + 1,
(NDR64_UINT32)MaxCount,
*ppMemory,
pBufferStart );
}
if ( *ppMemory != pBufferStart )
{
RpcpMemoryCopy( *ppMemory,
pBufferStart,
CopySize );
}
}
void
Ndr64ConformantVaryingArrayUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine Description :
Unmarshalls a top level one dimensional conformant varying array.
Used for FC64_CVARRAY.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Pointer to the array being unmarshalled.
pFormat - Array's format string description.
fMustAlloc - Ignored.
Return :
None.
--*/
{
const NDR64_CONF_VAR_ARRAY_HEADER_FORMAT * pArrayFormat =
(NDR64_CONF_VAR_ARRAY_HEADER_FORMAT*) pFormat;
SAVE_CONTEXT<uchar> uFlagsSave(pStubMsg->uFlags);
NDR64_WIRE_COUNT_TYPE MaxCount;
if ( ! NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
// Align the buffer for conformance unmarshalling.
ALIGN(pStubMsg->Buffer, NDR64_WIRE_COUNT_ALIGN );
MaxCount = *((NDR64_WIRE_COUNT_TYPE*)pStubMsg->Buffer);
pStubMsg->Buffer += sizeof(NDR64_WIRE_COUNT_TYPE);
}
else
{
MaxCount = *(NDR64_WIRE_COUNT_TYPE*)pStubMsg->ConformanceMark;
}
ALIGN( pStubMsg->Buffer, NDR64_WIRE_COUNT_ALIGN );
NDR64_WIRE_COUNT_TYPE Offset = ((NDR64_WIRE_COUNT_TYPE*)pStubMsg->Buffer)[0];
NDR64_WIRE_COUNT_TYPE ActualCount = ((NDR64_WIRE_COUNT_TYPE*)pStubMsg->Buffer)[1];
pStubMsg->Buffer += sizeof(NDR64_WIRE_COUNT_TYPE) * 2;
NDR64_UINT32 AllocSize = Ndr64pConvertTo2GB( MaxCount *
(NDR64_UINT64)pArrayFormat->ElementSize );
NDR64_UINT32 CopySize = Ndr64pConvertTo2GB( ActualCount *
(NDR64_UINT64)pArrayFormat->ElementSize );
if ( ( Offset != 0 ) ||
ActualCount > MaxCount )
RpcRaiseException( RPC_X_INVALID_BOUND );
Ndr64pCheckCorrelation( pStubMsg,
MaxCount,
pArrayFormat->ConfDescriptor,
EXPR_MAXCOUNT );
Ndr64pCheckCorrelation( pStubMsg,
ActualCount,
pArrayFormat->VarDescriptor,
EXPR_ACTUALCOUNT );
//
// For a conformant varying array, we can't reuse the buffer
// because it doesn't hold the total size of the array.
if ( fMustAlloc || !*ppMemory )
{
*ppMemory = (uchar *) NdrAllocate( pStubMsg, AllocSize );
memset( *ppMemory, 0, AllocSize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
ALIGN( pStubMsg->Buffer, pArrayFormat->Alignment );
CHECK_EOB_WITH_WRAP_RAISE_IB( pStubMsg->Buffer, CopySize);
uchar *pBufferStart = pStubMsg->Buffer;
pStubMsg->Buffer += CopySize;
if ( pArrayFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutUnmarshall( pStubMsg,
pArrayFormat + 1,
(NDR64_UINT32)ActualCount,
*ppMemory,
pBufferStart );
}
RpcpMemoryCopy( *ppMemory,
pBufferStart,
CopySize );
}
void
Ndr64VaryingArrayUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine Description :
Unmarshalls top level or embedded a one dimensional varying array.
Arguments :
pStubMsg - Pointer to the stub message.
pMemory - Array being unmarshalled.
pFormat - Array's format string description.
fMustAlloc - Ignored.
--*/
{
const NDR64_VAR_ARRAY_HEADER_FORMAT * pArrayFormat =
(NDR64_VAR_ARRAY_HEADER_FORMAT*) pFormat;
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
ALIGN(pStubMsg->Buffer, NDR64_WIRE_COUNT_ALIGN );
NDR64_WIRE_COUNT_TYPE Offset = ((NDR64_WIRE_COUNT_TYPE *)pStubMsg->Buffer)[0];
NDR64_WIRE_COUNT_TYPE ActualCount = ((NDR64_WIRE_COUNT_TYPE *)pStubMsg->Buffer)[1];
pStubMsg->Buffer += sizeof(NDR64_WIRE_COUNT_TYPE) * 2;
NDR64_UINT32 CopySize
= Ndr64pConvertTo2GB( ActualCount *
(NDR64_UINT64)pArrayFormat->ElementSize );
if ( ( Offset != 0 ) ||
( CopySize > pArrayFormat->TotalSize ) )
RpcRaiseException( RPC_X_INVALID_BOUND );
Ndr64pCheckCorrelation( pStubMsg,
ActualCount,
pArrayFormat->VarDescriptor,
EXPR_ACTUALCOUNT );
if ( fMustAlloc || !*ppMemory )
{
*ppMemory = (uchar *) NdrAllocate( pStubMsg, pArrayFormat->TotalSize );
memset( *ppMemory, 0, pArrayFormat->TotalSize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
ALIGN(pStubMsg->Buffer, pArrayFormat->Alignment );
CHECK_EOB_WITH_WRAP_RAISE_IB( pStubMsg->Buffer, CopySize );
uchar *pBufferStart = pStubMsg->Buffer;
pStubMsg->Buffer += CopySize;
if ( pArrayFormat->Flags.HasPointerInfo )
{
Ndr64pPointerLayoutUnmarshall( pStubMsg,
pArrayFormat + 1,
(NDR64_UINT32)ActualCount,
*ppMemory,
pBufferStart );
}
RpcpMemoryCopy( *ppMemory,
pBufferStart,
CopySize );
}
void
Ndr64ComplexArrayUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine Description :
Unmarshalls a top level complex array.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Pointer to the array being unmarshalled.
pFormat - Array's format string description.
fMustAlloc - Ignored.
Return :
None.
--*/
{
const NDR64_BOGUS_ARRAY_HEADER_FORMAT *pArrayFormat =
(NDR64_BOGUS_ARRAY_HEADER_FORMAT *) pFormat;
bool fSetPointerBufferMark = ! pStubMsg->PointerBufferMark;
if ( fSetPointerBufferMark )
{
uchar *pBuffer = pStubMsg->Buffer;
BOOL fOldIgnore = pStubMsg->IgnoreEmbeddedPointers;
pStubMsg->IgnoreEmbeddedPointers = TRUE;
pStubMsg->MemorySize = 0;
Ndr64ComplexArrayMemorySize(
pStubMsg,
pFormat );
// make sure we haven't overflow for the flat part.
CHECK_EOB_RAISE_BSD( pStubMsg->Buffer );
pStubMsg->PointerBufferMark = pStubMsg->Buffer;
pStubMsg->IgnoreEmbeddedPointers = fOldIgnore;
pStubMsg->Buffer = pBuffer;
}
BOOL IsFixed = ( pArrayFormat->FormatCode == FC64_FIX_BOGUS_ARRAY ) ||
( pArrayFormat->FormatCode == FC64_FIX_FORCED_BOGUS_ARRAY );
SAVE_CONTEXT<uchar> uFlagsSave(pStubMsg->uFlags);
SAVE_CONTEXT<uchar*> ConformanceMarkSave( pStubMsg->ConformanceMark );
SAVE_CONTEXT<uchar*> VarianceMarkSave( pStubMsg->VarianceMark );
PFORMAT_STRING pElementFormat = (PFORMAT_STRING)pArrayFormat->Element;
NDR64_WIRE_COUNT_TYPE Elements = pArrayFormat->NumberElements;
NDR64_WIRE_COUNT_TYPE Count = Elements;
NDR64_WIRE_COUNT_TYPE Offset = 0;
if ( !IsFixed )
{
const NDR64_CONF_VAR_BOGUS_ARRAY_HEADER_FORMAT* pConfVarFormat=
(NDR64_CONF_VAR_BOGUS_ARRAY_HEADER_FORMAT*)pFormat;
//
// Check for conformance description.
//
if ( pConfVarFormat->ConfDescription )
{
if ( ! NDR64_IS_CONF_MARK_VALID( pStubMsg->uFlags ) )
{
//
// Outer most dimension sets the conformance marker.
//
// Align the buffer for conformance marshalling.
ALIGN(pStubMsg->Buffer, NDR64_WIRE_COUNT_ALIGN);
// Mark where the conformance count(s) will be marshalled.
pStubMsg->ConformanceMark = pStubMsg->Buffer;
// Increment past where the conformance will go.
pStubMsg->Buffer += pArrayFormat->NumberDims * sizeof(NDR64_WIRE_COUNT_TYPE);
NDR64_SET_CONF_MARK_VALID( pStubMsg->uFlags );
}
Elements = *(NDR64_WIRE_COUNT_TYPE*)pStubMsg->ConformanceMark;
pStubMsg->ConformanceMark += sizeof(NDR64_WIRE_COUNT_TYPE);
Ndr64pCheckCorrelation( pStubMsg,
Elements,
pConfVarFormat->ConfDescription,
EXPR_MAXCOUNT );
Offset = 0;
Count = Elements;
}
//
// Check for variance description.
//
if ( pConfVarFormat->VarDescription )
{
if ( ! NDR64_IS_VAR_MARK_VALID( pStubMsg->uFlags ) )
{
NDR64_UINT32 Dimensions;
ALIGN(pStubMsg->Buffer, NDR64_WIRE_COUNT_ALIGN );
Dimensions = ( pArrayFormat->Flags.IsArrayofStrings ) ? ( pArrayFormat->NumberDims - 1) :
( pArrayFormat->NumberDims );
pStubMsg->VarianceMark = pStubMsg->Buffer;
pStubMsg->Buffer += Dimensions * sizeof(NDR64_WIRE_COUNT_TYPE) * 2;
if ( NDR64_IS_ARRAY_OR_STRING( *pElementFormat ) )
NDR64_SET_VAR_MARK_VALID( pStubMsg->uFlags );
}
else if ( !NDR64_IS_ARRAY_OR_STRING( *pElementFormat ) )
NDR64_RESET_VAR_MARK_VALID( pStubMsg->uFlags );
Offset = ((NDR64_WIRE_COUNT_TYPE*)pStubMsg->VarianceMark)[0];
Count = ((NDR64_WIRE_COUNT_TYPE*)pStubMsg->VarianceMark)[1];
pStubMsg->VarianceMark += sizeof(NDR64_WIRE_COUNT_TYPE) * 2;
Ndr64pCheckCorrelation( pStubMsg,
Count,
pConfVarFormat->VarDescription,
EXPR_ACTUALCOUNT );
Ndr64pCheckCorrelation( pStubMsg,
Offset,
pConfVarFormat->OffsetDescription,
EXPR_OFFSET );
}
}
NDR64_UINT32 ElementMemorySize =
Ndr64pMemorySize( pStubMsg,
pElementFormat,
TRUE );
NDR64_UINT32 ArraySize = Ndr64pConvertTo2GB( Elements *
(NDR64_UINT64)ElementMemorySize );
Ndr64pConvertTo2GB( Count *
(NDR64_UINT64)ElementMemorySize );
if ( fMustAlloc || ! *ppMemory )
{
*ppMemory = (uchar*)NdrAllocate( pStubMsg, (uint) ArraySize );
memset( *ppMemory, 0, ArraySize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
if ( pStubMsg->FullPtrRefId )
FULL_POINTER_INSERT( pStubMsg, *ppMemory );
uchar *pMemory = *ppMemory;
pMemory += Ndr64pConvertTo2GB(Offset *
(NDR64_UINT64)ElementMemorySize);
ALIGN(pStubMsg->Buffer, pArrayFormat->Alignment);
for( ; Count--; )
{
Ndr64EmbeddedTypeUnmarshall( pStubMsg,
&pMemory,
pElementFormat );
pMemory += ElementMemorySize;
}
if ( fSetPointerBufferMark )
{
pStubMsg->Buffer = pStubMsg->PointerBufferMark;
pStubMsg->PointerBufferMark = 0;
}
}
void
Ndr64UnionUnmarshall (
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
/*++
Routine Description :
Unmarshalls an encapsulated array.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Double pointer to where the union should be unmarshalled.
pFormat - Union's format string description.
fMustAlloc - Ignored.
Return :
None.
--*/
{
const NDR64_UNION_ARM_SELECTOR* pArmSelector;
SAVE_CONTEXT<uchar> uFlagsSave( pStubMsg->uFlags );
EXPR_VALUE SwitchIs;
uchar* pArmMemory;
switch(*(PFORMAT_STRING)pFormat)
{
case FC64_NON_ENCAPSULATED_UNION:
{
const NDR64_NON_ENCAPSULATED_UNION* pNonEncapUnionFormat =
(const NDR64_NON_ENCAPSULATED_UNION*) pFormat;
ALIGN(pStubMsg->Buffer, pNonEncapUnionFormat->Alignment);
pArmSelector = (NDR64_UNION_ARM_SELECTOR*)(pNonEncapUnionFormat + 1);
if ( fMustAlloc || ! *ppMemory )
{
*ppMemory = (uchar*)NdrAllocate( pStubMsg, pNonEncapUnionFormat->MemorySize );
//
// We must zero out all of the new memory in case there are pointers
// in any of the arms.
//
MIDL_memset( *ppMemory, 0, pNonEncapUnionFormat->MemorySize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
SwitchIs = Ndr64pSimpleTypeToExprValue( pNonEncapUnionFormat->SwitchType,
pStubMsg->Buffer );
pStubMsg->Buffer += NDR64_SIMPLE_TYPE_BUFSIZE( pNonEncapUnionFormat->SwitchType );
Ndr64pCheckCorrelation( pStubMsg,
SwitchIs,
pNonEncapUnionFormat->Switch,
EXPR_SWITCHIS );
pArmMemory = *ppMemory;
break;
}
case FC64_ENCAPSULATED_UNION:
{
const NDR64_ENCAPSULATED_UNION* pEncapUnionFormat =
(const NDR64_ENCAPSULATED_UNION*)pFormat;
ALIGN(pStubMsg->Buffer, pEncapUnionFormat->Alignment);
pArmSelector = (NDR64_UNION_ARM_SELECTOR*)(pEncapUnionFormat + 1);
if ( fMustAlloc || ! *ppMemory )
{
*ppMemory = (uchar*)NdrAllocate( pStubMsg, pEncapUnionFormat->MemorySize );
//
// We must zero out all of the new memory in case there are pointers
// in any of the arms.
//
MIDL_memset( *ppMemory, 0, pEncapUnionFormat->MemorySize );
NDR64_SET_NEW_EMBEDDED_ALLOCATION(pStubMsg->uFlags);
}
SwitchIs = Ndr64pSimpleTypeToExprValue( pEncapUnionFormat->SwitchType,
pStubMsg->Buffer );
Ndr64SimpleTypeUnmarshall( pStubMsg,
*ppMemory,
pEncapUnionFormat->SwitchType );
pArmMemory = *ppMemory + pEncapUnionFormat->MemoryOffset;
break;
}
default:
NDR_ASSERT("Bad union format\n", 0);
return;
}
if ( pStubMsg->FullPtrRefId )
FULL_POINTER_INSERT( pStubMsg, *ppMemory );
ALIGN(pStubMsg->Buffer, pArmSelector->Alignment);
PNDR64_FORMAT pArmFormat =
Ndr64pFindUnionArm( pStubMsg,
pArmSelector,
SwitchIs );
// check we aren't EOB after unmarshalling arm selector
// we won't corrupt memory as there is no in place unmarshall here.
CHECK_EOB_RAISE_BSD( pStubMsg->Buffer );
if ( pArmFormat )
{
Ndr64EmbeddedTypeUnmarshall( pStubMsg,
&pArmMemory,
pArmFormat );
}
}
void
Ndr64XmitOrRepAsUnmarshall (
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool /*fMustAlloc*/,
bool bIsEmbedded )
/*++
Routine Description :
Unmarshalls a transmit as (or represent as)object.
Means: allocate the transmitted object,
unmarshall transmitted object,
translate the transmitted into presented
free the transmitted.
See mrshl.c for the description of the FC layout.
Arguments :
pStubMsg - a pointer to the stub message
ppMemory - pointer to the presented type where to put data
pFormat - format string description
fMustAlloc - allocate flag
Note.
fMustAlloc is ignored as we always allocate outside of the buffer.
--*/
{
unsigned char * pPresentedType = *ppMemory;
const XMIT_ROUTINE_QUINTUPLE * pQuintuple = pStubMsg->StubDesc->aXmitQuintuple;
NDR64_TRANSMIT_AS_FORMAT *pTransFormat =
( NDR64_TRANSMIT_AS_FORMAT *) pFormat;
NDR_ASSERT( pTransFormat->FormatCode == FC64_TRANSMIT_AS || pTransFormat->FormatCode , "invalid format string for user marshal" );
unsigned short QIndex = pTransFormat->RoutineIndex;
unsigned long PresentedTypeSize = pTransFormat->PresentedTypeMemorySize;
if ( ! pPresentedType )
{
pPresentedType = (uchar*)NdrAllocate( pStubMsg, (uint) PresentedTypeSize );
MIDL_memset( pPresentedType, 0, (uint) PresentedTypeSize );
}
// Allocate the transmitted object outside of the buffer
// and unmarshall into it
if ( NDR64_IS_SIMPLE_TYPE( *(PFORMAT_STRING)pTransFormat->TransmittedType ))
{
__int64 SimpleTypeValueBuffer[2];
unsigned char * pTransmittedType = (unsigned char *)SimpleTypeValueBuffer;
Ndr64SimpleTypeUnmarshall( pStubMsg,
pTransmittedType,
*(PFORMAT_STRING)pTransFormat->TransmittedType );
// Translate from the transmitted type into the presented type.
pStubMsg->pTransmitType = pTransmittedType;
pStubMsg->pPresentedType = pPresentedType;
pQuintuple[ QIndex ].pfnTranslateFromXmit( pStubMsg );
*ppMemory = pStubMsg->pPresentedType;
}
else
{
// Save the current state of the memory list so that the temporary
// memory allocated for the transmitted type can be easily removed
// from the list. This assumes that the memory allocated here
// will not have any linkes to other blocks of memory. This is true
// as long as full pointers are not used. Fortunatly, full pointers
// do not work correctly in the current code.
void *pMemoryListSave = pStubMsg->pMemoryList;
unsigned char *pTransmittedType = NULL; // asking the engine to allocate
// In NDR64, Xmit/Rep cannot be a pointer or contain a pointer.
// So we don't need to worry about the pointer queue here.
if ( bIsEmbedded )
{
Ndr64EmbeddedTypeUnmarshall( pStubMsg,
&pTransmittedType,
pTransFormat->TransmittedType );
}
else
{
Ndr64TopLevelTypeUnmarshall( pStubMsg,
&pTransmittedType,
pTransFormat->TransmittedType,
TRUE );
}
// Translate from the transmitted type into the presented type.
pStubMsg->pTransmitType = pTransmittedType;
pStubMsg->pPresentedType = pPresentedType;
pQuintuple[ QIndex ].pfnTranslateFromXmit( pStubMsg );
*ppMemory = pStubMsg->pPresentedType;
// Free the transmitted object (it was allocated by the engine)
// and its pointees. The call through the table frees the pointees
// only (plus it'd free the object itself if it were a pointer).
// As the transmitted type is not a pointer here, we need to free it
// explicitely later.
// Remove the memory that will be freed from the allocated memory
// list by restoring the memory list pointer.
// If an exception occures during one of these free routines, we
// are in trouble anyway.
pStubMsg->pMemoryList = pMemoryListSave;
if ( bIsEmbedded )
{
Ndr64EmbeddedTypeFree( pStubMsg,
pTransmittedType,
pTransFormat->TransmittedType );
}
else
{
Ndr64ToplevelTypeFree( pStubMsg,
pTransmittedType,
pTransFormat->TransmittedType );
}
// The buffer reusage check.
if ( pTransmittedType < pStubMsg->BufferStart ||
pTransmittedType > pStubMsg->BufferEnd )
(*pStubMsg->pfnFree)( pTransmittedType );
}
}
void
Ndr64TopLevelXmitOrRepAsUnmarshall (
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
{
Ndr64XmitOrRepAsUnmarshall( pStubMsg,
ppMemory,
pFormat,
fMustAlloc,
false );
}
void
Ndr64EmbeddedXmitOrRepAsUnmarshall (
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
{
Ndr64XmitOrRepAsUnmarshall( pStubMsg,
ppMemory,
pFormat,
fMustAlloc,
true );
}
void
Ndr64UserMarshallUnmarshallInternal(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
NDR64_USER_MARSHAL_FORMAT *pUserFormat =
( NDR64_USER_MARSHAL_FORMAT *) pFormat;
unsigned char * pUserBuffer = pStubMsg->Buffer;
unsigned char * pUserBufferSaved = pUserBuffer;
USER_MARSHAL_CB UserMarshalCB;
Ndr64pInitUserMarshalCB( pStubMsg,
pUserFormat,
USER_MARSHAL_CB_UNMARSHALL,
& UserMarshalCB );
unsigned short QIndex = pUserFormat->RoutineIndex;
const USER_MARSHAL_ROUTINE_QUADRUPLE * pQuadruple = (const USER_MARSHAL_ROUTINE_QUADRUPLE * )
( ( NDR_PROC_CONTEXT *)pStubMsg->pContext )->pSyntaxInfo->aUserMarshalQuadruple;
if ((pUserBufferSaved < (uchar *) pStubMsg->RpcMsg->Buffer) ||
((unsigned long) (pUserBufferSaved - (uchar *) pStubMsg->RpcMsg->Buffer)
> pStubMsg->RpcMsg->BufferLength))
{
RpcRaiseException( RPC_X_INVALID_BUFFER );
}
pUserBuffer = pQuadruple[ QIndex ].pfnUnmarshall( (ulong*) &UserMarshalCB,
pUserBuffer,
pMemory );
if ((pUserBufferSaved > pUserBuffer) ||
((unsigned long) (pUserBuffer - (uchar *) pStubMsg->RpcMsg->Buffer)
> pStubMsg->RpcMsg->BufferLength ))
{
RpcRaiseException( RPC_X_INVALID_BUFFER );
}
// Step over the pointee.
pStubMsg->Buffer = pUserBuffer;
}
void
NDR64_USR_MRSHL_UNMRSHL_POINTER_QUEUE_ELEMENT::Dispatch(MIDL_STUB_MESSAGE *pStubMsg)
{
Ndr64UserMarshallUnmarshallInternal( pStubMsg,
pMemory,
pFormat );
}
#if defined(DBG)
void
NDR64_USR_MRSHL_UNMRSHL_POINTER_QUEUE_ELEMENT::Print()
{
DbgPrint("NDR64_USR_MRSHL_UNMRSHL_POINTER_QUEUE_ELEMENT\n");
DbgPrint("pMemory: %p\n", pMemory );
DbgPrint("pFormat: %p\n", pFormat );
}
#endif
void
Ndr64UserMarshallPointeeUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
uchar * pMemory,
PNDR64_FORMAT pFormat )
{
if ( !pStubMsg->pPointerQueueState ||
!pStubMsg->pPointerQueueState->GetActiveQueue() )
{
POINTER_BUFFER_SWAP_CONTEXT SwapContext(pStubMsg);
Ndr64UserMarshallUnmarshallInternal(
pStubMsg,
pMemory,
pFormat );
return;
}
NDR64_USR_MRSHL_UNMRSHL_POINTER_QUEUE_ELEMENT*pElement =
new(pStubMsg->pPointerQueueState)
NDR64_USR_MRSHL_UNMRSHL_POINTER_QUEUE_ELEMENT(pMemory,
(PFORMAT_STRING)pFormat );
pStubMsg->pPointerQueueState->GetActiveQueue()->Enque( pElement );
}
void
Ndr64UserMarshalUnmarshall (
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc,
bool bIsEmbedded )
/*++
Routine Description :
Unmarshals a user_marshal object.
The layout is described in marshalling.
Arguments :
pStubMsg - Pointer to the stub message.
ppMemory - Pointer to pointer to the usr_marshall object to unmarshall.
pFormat - Object's format string description.
Return :
None.
--*/
{
NDR64_USER_MARSHAL_FORMAT *pUserFormat =
( NDR64_USER_MARSHAL_FORMAT *) pFormat;
NDR_ASSERT( pUserFormat->FormatCode == FC64_USER_MARSHAL, "invalid format string for user marshal" );
// Align for the object or a pointer to it.
ALIGN( pStubMsg->Buffer, pUserFormat->TransmittedTypeWireAlignment );
// Take care of the pointer, if any.
NDR64_PTR_WIRE_TYPE PointerMarker;
if ( ( pUserFormat->Flags & USER_MARSHAL_UNIQUE) ||
(( pUserFormat->Flags & USER_MARSHAL_REF) && bIsEmbedded) )
{
PointerMarker = *((NDR64_PTR_WIRE_TYPE *)pStubMsg->Buffer);
pStubMsg->Buffer += sizeof(NDR64_PTR_WIRE_TYPE);
}
// We always call user's routine to unmarshall the user object.
// However, the top level object is allocated by the engine.
// Thus, the behavior is exactly the same as for represent_as(),
// with regard to the top level presented type.
if ( *ppMemory == NULL )
{
// Allocate a presented type object first.
uint MemSize = pUserFormat->UserTypeMemorySize;
*ppMemory = (uchar *) NdrAllocate( pStubMsg, MemSize );
MIDL_memset( *ppMemory, 0, MemSize );
}
if ( ( pUserFormat->Flags & USER_MARSHAL_UNIQUE) && (0 == PointerMarker ))
{
// The user type is a unique pointer, and it is 0. So, we are done.
return;
}
if ( pUserFormat->Flags & USER_MARSHAL_POINTER )
{
Ndr64UserMarshallPointeeUnmarshall( pStubMsg,
*ppMemory,
pFormat );
return;
}
Ndr64UserMarshallUnmarshallInternal( pStubMsg,
*ppMemory,
pFormat );
}
void
Ndr64TopLevelUserMarshalUnmarshall (
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
{
Ndr64UserMarshalUnmarshall( pStubMsg,
ppMemory,
pFormat,
fMustAlloc,
false );
}
void
Ndr64EmbeddedUserMarshalUnmarshall (
PMIDL_STUB_MESSAGE pStubMsg,
uchar ** ppMemory,
PNDR64_FORMAT pFormat,
bool fMustAlloc )
{
Ndr64UserMarshalUnmarshall( pStubMsg,
ppMemory,
pFormat,
fMustAlloc,
true );
}
void
Ndr64ClientContextUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
NDR_CCONTEXT * pContextHandle,
RPC_BINDING_HANDLE BindHandle )
/*++
Routine Description :
Unmarshalls a context handle on the client side.
Arguments :
pStubMsg - Pointer to stub message.
pContextHandle - Pointer to context handle to unmarshall.
BindHandle - The handle value used by the client for binding.
Return :
None.
--*/
{
// Note, this is a routine called directly from -Os stubs.
// The routine called by interpreter is called Ndr64UnmarshallHandle
// and can be found in hndl.c
ALIGN(pStubMsg->Buffer,3);
// All 20 bytes of the buffer are touched so a check is not needed here.
CHECK_EOB_RAISE_BSD( pStubMsg->Buffer + CONTEXT_HANDLE_WIRE_SIZE );
NDRCContextUnmarshall( pContextHandle,
BindHandle,
pStubMsg->Buffer,
pStubMsg->RpcMsg->DataRepresentation );
pStubMsg->Buffer += CONTEXT_HANDLE_WIRE_SIZE;
}
NDR_SCONTEXT
Ndr64ServerContextUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg )
/*++
Routine Description :
Unmarshalls a context handle on the server side.
Arguments :
pStubMsg - Pointer to stub message.
Return :
The unmarshalled context handle.
--*/
{
// Note, this is a routine called directly from -Os stubs.
// The routine called by interpreter is called Ndr64UnmarshallHandle
// and can be found in hndl.c
NDR_SCONTEXT Context;
ALIGN(pStubMsg->Buffer,3);
// All 20 bytes of the buffer are touched so a check is not needed here.
// we could corrupt memory if it's out of bound
CHECK_EOB_RAISE_BSD( pStubMsg->Buffer + CONTEXT_HANDLE_WIRE_SIZE );
Context = NDRSContextUnmarshall2(pStubMsg->RpcMsg->Handle,
pStubMsg->Buffer,
pStubMsg->RpcMsg->DataRepresentation,
RPC_CONTEXT_HANDLE_DEFAULT_GUARD,
RPC_CONTEXT_HANDLE_DEFAULT_FLAGS );
if ( ! Context )
RpcRaiseException( RPC_X_SS_CONTEXT_MISMATCH );
pStubMsg->Buffer += CONTEXT_HANDLE_WIRE_SIZE;
return Context;
}
NDR_SCONTEXT
Ndr64ContextHandleInitialize (
PMIDL_STUB_MESSAGE pStubMsg,
PFORMAT_STRING pFormat )
/*
This routine is to initialize a context handle with a new NT5 flavor.
It is used in conjunction with Ndr64ContextHandleUnmarshal.
*/
{
NDR_SCONTEXT SContext;
void * pGuard = RPC_CONTEXT_HANDLE_DEFAULT_GUARD;
DWORD Flags = RPC_CONTEXT_HANDLE_DEFAULT_FLAGS;
NDR64_CONTEXT_HANDLE_FORMAT * pContextFormat;
pContextFormat = ( NDR64_CONTEXT_HANDLE_FORMAT * )pFormat;
NDR_ASSERT( pContextFormat->FormatCode == FC64_BIND_CONTEXT, "invalid format char " );
// NT5 beta2 features: strict context handle, serialize and noserialize.
if ( pContextFormat->ContextFlags & NDR_STRICT_CONTEXT_HANDLE )
{
pGuard = pStubMsg->StubDesc->RpcInterfaceInformation;
pGuard = & ((PRPC_SERVER_INTERFACE)pGuard)->InterfaceId;
}
if ( pContextFormat->ContextFlags & NDR_CONTEXT_HANDLE_NOSERIALIZE )
{
Flags = RPC_CONTEXT_HANDLE_DONT_SERIALIZE;
}
else if ( pContextFormat->ContextFlags & NDR_CONTEXT_HANDLE_SERIALIZE )
{
Flags = RPC_CONTEXT_HANDLE_SERIALIZE;
}
SContext = NDRSContextUnmarshall2(
pStubMsg->RpcMsg->Handle,
(void *)0, // buffer
pStubMsg->RpcMsg->DataRepresentation,
pGuard,
Flags );
return SContext;
}
NDR_SCONTEXT
Ndr64ServerContextNewUnmarshall(
PMIDL_STUB_MESSAGE pStubMsg,
PFORMAT_STRING pFormat )
/*
This routine to unmarshal a context handle with a new NT5 flavor.
For the old style handles, we call an optimized routine
Ndr64ServerContextUnmarshall below.
Interpreter calls Ndr64UnmarshallHandle from hndl.c
ppMemory - note, this is not a pointer to user's context handle but
a pointer to NDR_SCONTEXT pointer to the runtime internal object.
User's handle is a field of that object.
*/
{
void * pGuard = RPC_CONTEXT_HANDLE_DEFAULT_GUARD;
DWORD Flags = RPC_CONTEXT_HANDLE_DEFAULT_FLAGS;
NDR64_CONTEXT_HANDLE_FORMAT *pContextFormat = ( NDR64_CONTEXT_HANDLE_FORMAT * )pFormat;
NDR_ASSERT( pContextFormat->FormatCode == FC64_BIND_CONTEXT, "invalid format char " );
// Anti-attack defense for servers, NT5 beta3 feature.
if ( pContextFormat->ContextFlags & NDR_CONTEXT_HANDLE_CANNOT_BE_NULL )
{
// Check the incoming context handle on the server.
// Context handle wire layout: ulong with version (always 0), then a uuid.
//
if ( !pStubMsg->IsClient && 0 == memcmp( pStubMsg->Buffer + 4,
&GUID_NULL,
sizeof(GUID) ) )
RpcRaiseException( RPC_X_BAD_STUB_DATA );
}
// NT5 beta2 features: strict context handle, serialize and noserialize.
if ( pContextFormat->ContextFlags & NDR_STRICT_CONTEXT_HANDLE )
{
pGuard = pStubMsg->StubDesc->RpcInterfaceInformation;
pGuard = & ((PRPC_SERVER_INTERFACE)pGuard)->InterfaceId;
}
if ( pContextFormat->ContextFlags & NDR_CONTEXT_HANDLE_NOSERIALIZE )
{
Flags = RPC_CONTEXT_HANDLE_DONT_SERIALIZE;
}
else if ( pContextFormat->ContextFlags & NDR_CONTEXT_HANDLE_SERIALIZE )
{
Flags = RPC_CONTEXT_HANDLE_SERIALIZE;
}
ALIGN( pStubMsg->Buffer, 0x3 );
// All 20 bytes of the buffer are touched so a check is not needed here.
NDR_SCONTEXT SContext =
NDRSContextUnmarshall2(
pStubMsg->RpcMsg->Handle,
pStubMsg->Buffer,
pStubMsg->RpcMsg->DataRepresentation,
pGuard,
Flags );
if ( ! SContext )
RpcRaiseException( RPC_X_SS_CONTEXT_MISMATCH );
pStubMsg->Buffer += CONTEXT_HANDLE_WIRE_SIZE;
return SContext;
}
// define the jump table
#define NDR64_BEGIN_TABLE \
PNDR64_UNMARSHALL_ROUTINE extern const Ndr64UnmarshallRoutinesTable[] = \
{
#define NDR64_TABLE_END \
};
#define NDR64_ZERO_ENTRY NULL
#define NDR64_UNUSED_TABLE_ENTRY( number, tokenname ) ,NULL
#define NDR64_UNUSED_TABLE_ENTRY_NOSYM( number ) ,NULL
#define NDR64_TABLE_ENTRY( number, tokenname, marshall, embeddedmarshall, unmarshall, embeddedunmarshall, buffersize, embeddedbuffersize, memsize, embeddedmemsize, free, embeddedfree, typeflags ) \
,unmarshall
#define NDR64_SIMPLE_TYPE_TABLE_ENTRY( number, tokenname, buffersize, memorysize) \
,Ndr64UDTSimpleTypeUnmarshall1
#include "tokntbl.h"
C_ASSERT( sizeof(Ndr64UnmarshallRoutinesTable)/sizeof(PNDR64_UNMARSHALL_ROUTINE) == 256 );
#undef NDR64_BEGIN_TABLE
#undef NDR64_TABLE_ENTRY
#define NDR64_BEGIN_TABLE \
PNDR64_UNMARSHALL_ROUTINE extern const Ndr64EmbeddedUnmarshallRoutinesTable[] = \
{
#define NDR64_TABLE_ENTRY( number, tokenname, marshall, embeddedmarshall, unmarshall, embeddedunmarshall, buffersize, embeddedbuffersize, memsize, embeddedmemsize, free, embeddedfree, typeflags ) \
,embeddedunmarshall
#include "tokntbl.h"
C_ASSERT( sizeof(Ndr64EmbeddedUnmarshallRoutinesTable)/sizeof(PNDR64_UNMARSHALL_ROUTINE) == 256 );