windows-nt/Source/XPSP1/NT/enduser/netmeeting/ui/msconfwb/ccl32.cpp
2020-09-26 16:20:57 +08:00

1766 lines
39 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// CCL32.CPP
// Common Control Classes
//
// Copyright Microsoft 1998-
//
// PRECOMP
#include "precomp.h"
#define COMPILE_MULTIMON_STUBS
#include <multimon.h>
LRESULT CALLBACK DummyMouseHookProc( int code, WPARAM wParam, LPARAM lParam );
HHOOK g_utMouseHookHandle = NULL;
HWND g_utCaptureWindow = NULL;
void UT_CaptureMouse( HWND hwnd )
{
// disable asynchronous input so we don't lose capture because the
// left button isn't down
g_utMouseHookHandle = SetWindowsHookEx( WH_JOURNALRECORD,
DummyMouseHookProc,
g_hInstance,
NULL );
if( g_utMouseHookHandle == NULL )
{
WARNING_OUT(("Failed to insert JournalRecord hook"));
}
// grap mouse
::SetCapture(hwnd);
g_utCaptureWindow = hwnd;
}
void UT_ReleaseMouse( HWND hwnd )
{
::ReleaseCapture();
g_utCaptureWindow = NULL;
if (g_utMouseHookHandle != NULL )
{
// le go my lego
::UnhookWindowsHookEx( g_utMouseHookHandle );
g_utMouseHookHandle = NULL;
}
}
LRESULT CALLBACK DummyMouseHookProc( int code, WPARAM wParam, LPARAM lParam )
{
return( CallNextHookEx( g_utMouseHookHandle, code, wParam, lParam ) );
}
//
// General definitions
//
#define MAX_OPTIONS_LINE_LENGTH 255
#define MAX_SECTION_LEN 200
//
//
// Function: HexDigitToByte
//
// Purpose: Helper function to convert a single hex digit to a byte value.
//
//
BOOL HexDigitToByte(char cHexDigit, BYTE& byte);
BOOL HexDigitToByte(char cHexDigit, BYTE& byte)
{
// Decimal digits
if ( (cHexDigit >= '0')
&& (cHexDigit <= '9'))
{
byte = (BYTE) (cHexDigit - '0');
return(TRUE);
}
// Uppercase characters
if ( (cHexDigit >= 'A')
&& (cHexDigit <= 'F'))
{
byte = (BYTE) ((cHexDigit - 'A') + 10);
return(TRUE);
}
// Lowercase characters
if ( (cHexDigit >= 'a')
&& (cHexDigit <= 'f'))
{
byte = (BYTE) ((cHexDigit - 'a') + 10);
return(TRUE);
}
// The character is not a valid hex digit
return(FALSE);
}
//
//
// Function: GetIntegerOption
//
// Purpose: Retrieve a named option from the dictionary and convert the
// option string to a long integer value.
//
//
LONG OPT_GetIntegerOption
(
LPCSTR cstrOptionName,
LONG lDefault
)
{
LONG lResult;
TCHAR cstrValue[MAX_OPTIONS_LINE_LENGTH];
if (OPT_Lookup(cstrOptionName, cstrValue, MAX_OPTIONS_LINE_LENGTH))
{
// Option has been found, convert it to a long
lResult = RtStrToInt(cstrValue);
}
else
{
// The option is not in the dictionary, return the default
lResult = lDefault;
}
return lResult;
}
//
//
// Function: GetBooleanOption
//
// Purpose: Retrieve a named option from the dictionary and convert it to
// a boolean value.
//
//
BOOL OPT_GetBooleanOption
(
LPCSTR cstrOptionName,
BOOL bDefault
)
{
TCHAR cstrValue[MAX_OPTIONS_LINE_LENGTH];
// Lookup the option
if (OPT_Lookup(cstrOptionName, cstrValue,MAX_OPTIONS_LINE_LENGTH))
{
return(cstrValue[0] == 'y' || cstrValue[0] =='Y') ;
}
return bDefault;
}
//
//
// Function: GetStringOption
//
// Purpose: Retrieve a named option from the dictionary and return a copy
// of it. No conversion of the string is performed.
//
//
void OPT_GetStringOption
(
LPCSTR cstrOptionName,
LPSTR cstrValue,
UINT size
)
{
if (!OPT_Lookup(cstrOptionName, cstrValue, size) || !(lstrlen(cstrValue)))
{
*cstrValue = _T('\0');
}
}
//
//
// Function: Lookup
//
// Purpose: Retrieve a named option from the dictionary and return a copy
// of it in the CString object passed. No conversion is performed.
//
//
BOOL OPT_Lookup
(
LPCSTR cstrOptionName,
LPCSTR cstrResult,
UINT size
)
{
BOOL fSuccess = FALSE;
HKEY read_hkey = NULL;
DWORD read_type;
DWORD read_bufsize;
// open key
if (RegOpenKeyEx( HKEY_CURRENT_USER,
WHITEBOARD_KEY,
0,
KEY_EXECUTE,
&read_hkey )
!= ERROR_SUCCESS )
{
TRACE_MSG(("Could not open key"));
goto bail_out;
}
// read key's value
read_bufsize = size;
if (RegQueryValueEx( read_hkey,
cstrOptionName,
NULL,
&read_type,
(LPBYTE)cstrResult,
&read_bufsize )
!= ERROR_SUCCESS )
{
TRACE_MSG(("Could not read key"));
goto bail_out;
}
// check for valid type
if (read_type != REG_SZ)
{
WARNING_OUT(("Bad key data"));
goto bail_out;
}
fSuccess = TRUE;
bail_out:
if (read_hkey != NULL)
RegCloseKey(read_hkey);
return (fSuccess);
}
//
//
// Function: GetWindowRectOption
//
// Purpose: Retrieve a named option from the dictionary and convert it to
// a window rectangle. The rectangle is checked to make sure that
// it is at least partially on screen, and not zero sized.
//
//
void OPT_GetWindowRectOption
(
LPCSTR optionName,
LPRECT lprc,
LPCRECT lprcDefault
)
{
int iLeft;
int iTop;
int iRight;
int iBottom;
TCHAR cstrValue[MAX_OPTIONS_LINE_LENGTH];
if (OPT_Lookup(optionName, cstrValue,MAX_OPTIONS_LINE_LENGTH))
{
// Option has been found, parse it to a rectangle
iLeft = RtStrToInt(StrTok(cstrValue, " ,"));
iTop = RtStrToInt(StrTok(NULL, " ,"));
iRight = RtStrToInt(StrTok(NULL, " ,"));
iBottom = RtStrToInt(StrTok(NULL, " ,"));
// Check for non-zero size
if ((iRight <= iLeft) || (iBottom <= iTop))
{
*lprc = *lprcDefault;
}
else
{
// Make sure that the window rectangle is (at least partially) on
// screen, and not too large. First get the screen size
int screenWidth = ::GetSystemMetrics(SM_CXSCREEN);
int screenHeight = ::GetSystemMetrics(SM_CYSCREEN);
// Check the window size
if ((iRight - iLeft) > screenWidth)
{
iRight = iLeft + screenWidth;
}
if ((iBottom - iTop) > screenHeight)
{
iTop = screenHeight;
}
// Check the window position
if (iLeft >= screenWidth)
{
// Off screen to the right - keep the width the same
iLeft = screenWidth - (iRight - iLeft);
iRight = screenWidth;
}
if (iRight < 0)
{
// Off screen to the left - keep the width the same
iRight = iRight - iLeft;
iLeft = 0;
}
if (iTop >= screenHeight)
{
// Off screen to the bottom - keep the height the same
iTop = screenHeight - (iBottom - iTop);
iBottom = screenHeight;
}
if (iBottom < 0)
{
// Off screen to the top - keep the height the same
iBottom = (iBottom - iTop);
iTop = 0;
}
lprc->left = iLeft;
lprc->top = iTop;
lprc->right = iRight;
lprc->bottom = iBottom;
}
}
else
{
// The option is not in the dictionary, return the default
*lprc = *lprcDefault;
}
}
//
//
// Function: GetDataOption
//
// Purpose: Retrieve a named option from the dictionary and parse it as
// an ASCII representation of a string of hex bytes.
//
//
int OPT_GetDataOption
(
LPCSTR cstrOptionName,
int iBufferLength,
BYTE* pbResult
)
{
TCHAR cstrValue[MAX_OPTIONS_LINE_LENGTH];
BYTE* pbSaveResult = pbResult;
// Lookup the option
OPT_GetStringOption(cstrOptionName, cstrValue,MAX_OPTIONS_LINE_LENGTH);
if (lstrlen(cstrValue))
{
// Calculate the maximum number of characters to convert
int iMaxChars = min(2 * iBufferLength, lstrlen(cstrValue));
// Option found, convert the string to hex bytes
for (int iIndex = 0; iIndex < iMaxChars; iIndex += 2)
{
BYTE bByteHigh = 0;
BYTE bByteLow = 0;
if ( (HexDigitToByte(cstrValue[iIndex], bByteHigh) == FALSE)
|| (HexDigitToByte(cstrValue[iIndex + 1], bByteLow) == FALSE))
{
// The character was not a valid hex digit
break;
}
// Build the result byte
*pbResult++ = (BYTE) ((bByteHigh << 4) | bByteLow);
}
}
// Return the length of data in the buffer
return (int)(pbResult - pbSaveResult);
}
//
//
// Function: SetStringOption
//
// Purpose: Set the value of an option in the dictionary.
//
//
BOOL OPT_SetStringOption
(
LPCSTR cstrOptionName,
LPCSTR cstrValue
)
{
BOOL fSuccess = FALSE;
HKEY write_hkey = NULL;
DWORD disposition;
// open or create the key
if (RegCreateKeyEx( HKEY_CURRENT_USER,
WHITEBOARD_KEY,
0,
NULL,
REG_OPTION_NON_VOLATILE,
KEY_ALL_ACCESS,
NULL,
&write_hkey,
&disposition) != ERROR_SUCCESS)
{
WARNING_OUT(("Could not write key"));
goto bail_out;
}
// got data, write the value
if (RegSetValueEx( write_hkey,
cstrOptionName,
0,
REG_SZ,
(LPBYTE)cstrValue,
_tcsclen(cstrValue) + sizeof(TCHAR)) != ERROR_SUCCESS )
{
WARNING_OUT(("Could not write key value"));
goto bail_out;
}
fSuccess = TRUE;
bail_out:
if (write_hkey != NULL)
RegCloseKey(write_hkey);
return(fSuccess);
}
//
//
// Function: SetIntegerOption
//
// Purpose: Write an integer option
//
//
BOOL OPT_SetIntegerOption
(
LPCSTR cstrOptionName,
LONG lValue
)
{
char cBuffer[20];
// Convert the integer value to ASCII decimal
wsprintf(cBuffer, "%ld", lValue);
// Write the option
return OPT_SetStringOption(cstrOptionName, cBuffer);
}
//
//
// Function: SetBooleanOption
//
// Purpose: Write a boolean option
//
//
BOOL OPT_SetBooleanOption
(
LPCSTR cstrOptionName,
BOOL bValue
)
{
char cBuffer[8];
wsprintf(cBuffer, "%c", (bValue ? 'Y' : 'N'));
// Write the option
return OPT_SetStringOption(cstrOptionName, cBuffer);
}
//
//
// Function: SetWindowRectOption
//
// Purpose: Write a window position rectangle
//
//
BOOL OPT_SetWindowRectOption
(
LPCSTR optionName,
LPCRECT lpwindowRect
)
{
char cBuffer[64];
// Convert the integer values to ASCII decimal
wsprintf(cBuffer, "%d,%d,%d,%d",
lpwindowRect->left, lpwindowRect->top, lpwindowRect->right,
lpwindowRect->bottom);
// Write the option
return OPT_SetStringOption(optionName, cBuffer);
}
//
//
// Function: SetDataOption
//
// Purpose: Write a data option to the options file
//
//
BOOL OPT_SetDataOption
(
LPCSTR cstrOptionName,
int iBufferLength,
BYTE* pbBuffer
)
{
char cBuffer[1024];
LPSTR cTmp;
ASSERT(iBufferLength*2 < sizeof(cBuffer));
// Loop through the data array converting a byte at a time
cTmp = cBuffer;
for (int iIndex = 0; iIndex < iBufferLength; iIndex++)
{
// Convert the next byte to ASCII hex
wsprintf(cTmp, "%02x", pbBuffer[iIndex]);
// add it to the string to be written
cTmp += lstrlen(cTmp);
}
// Write the option
return OPT_SetStringOption(cstrOptionName, cBuffer);
}
//
//
// Function: CreateSystemPalette
//
// Purpose: Get a palette representing the system palette
//
//
HPALETTE CreateSystemPalette(void)
{
LPLOGPALETTE lpLogPal;
HDC hdc;
HPALETTE hPal = NULL;
int nColors;
MLZ_EntryOut(ZONE_FUNCTION, "CreateSystemPalette");
hdc = ::CreateIC("DISPLAY", NULL, NULL, NULL);
if (!hdc)
{
ERROR_OUT(("Couldn't create DISPLAY IC"));
return(NULL);
}
nColors = ::GetDeviceCaps(hdc, SIZEPALETTE);
::DeleteDC(hdc);
if (nColors == 0)
{
TRACE_MSG(("CreateSystemPalette: device has no palette"));
return(NULL);
}
// Allocate room for the palette and lock it.
lpLogPal = (LPLOGPALETTE)::GlobalAlloc(GPTR, sizeof(LOGPALETTE) +
nColors * sizeof(PALETTEENTRY));
if (lpLogPal != NULL)
{
lpLogPal->palVersion = PALVERSION;
lpLogPal->palNumEntries = (WORD) nColors;
for (int iIndex = 0; iIndex < nColors; iIndex++)
{
lpLogPal->palPalEntry[iIndex].peBlue = 0;
*((LPWORD) (&lpLogPal->palPalEntry[iIndex].peRed)) = (WORD) iIndex;
lpLogPal->palPalEntry[iIndex].peFlags = PC_EXPLICIT;
}
hPal = ::CreatePalette(lpLogPal);
// Free the logical palette structure
::GlobalFree((HGLOBAL)lpLogPal);
}
return(hPal);
}
//
//
// Function: CreateColorPalette
//
// Purpose: Get a 256-color palette
//
//
HPALETTE CreateColorPalette(void)
{
HDC hdc;
HPALETTE hPal = NULL;
MLZ_EntryOut(ZONE_FUNCTION, "CreateColorPalette");
// Find out how many colors are reserved
hdc = ::CreateIC("DISPLAY", NULL, NULL, NULL);
if (!hdc)
{
ERROR_OUT(("Couldn't create DISPLAY IC"));
return(NULL);
}
UINT uiSystemUse = ::GetSystemPaletteUse(hdc);
// Get the number of static colors
int iCountStatic = 20;
int iHalfCountStatic = 10;
if (uiSystemUse == SYSPAL_NOSTATIC)
{
iCountStatic = 2;
iHalfCountStatic = 1;
}
LOGPALETTE_NM gIndeoPalette = gcLogPaletteIndeo;
// put system colors in correct lower and upper pal entries (bug NM4db:817)
::GetSystemPaletteEntries(hdc,
0,
iHalfCountStatic,
&(gIndeoPalette.aEntries[0]) );
::GetSystemPaletteEntries(hdc,
MAXPALETTE - iHalfCountStatic,
iHalfCountStatic,
&(gIndeoPalette.aEntries[MAXPALETTE - iHalfCountStatic]) );
// Create the windows object for this palette
// from the logical palette
hPal = CreatePalette( (LOGPALETTE *)&gIndeoPalette );
// Delete the display DC
::DeleteDC(hdc);
return(hPal);
}
//
//
// Function: FromScreenAreaBmp
//
// Purpose: Create a bitmap from an area of the screen
//
//
HBITMAP FromScreenAreaBmp(LPCRECT lprect)
{
RECT rcScreen;
HBITMAP hBitMap = NULL;
//
// Get screen boundaries, in a way that works for single and multiple
// monitor scenarios.
//
if (rcScreen.right = ::GetSystemMetrics(SM_CXVIRTUALSCREEN))
{
//
// This is Win98, NT 4.0 SP-3, or NT5
//
rcScreen.bottom = ::GetSystemMetrics(SM_CYVIRTUALSCREEN);
rcScreen.left = ::GetSystemMetrics(SM_XVIRTUALSCREEN);
rcScreen.top = ::GetSystemMetrics(SM_YVIRTUALSCREEN);
}
else
{
//
// The VIRTUALSCREEN size metrics are zero on older platforms
// which don't support them.
//
rcScreen.right = ::GetSystemMetrics(SM_CXSCREEN);
rcScreen.bottom = ::GetSystemMetrics(SM_CYSCREEN);
rcScreen.left = 0;
rcScreen.top = 0;
}
rcScreen.right += rcScreen.left;
rcScreen.bottom += rcScreen.top;
//
// Clip bitmap rectangle to the screen.
//
if (IntersectRect(&rcScreen, &rcScreen, lprect))
{
// Create a DC for the screen and create
// a memory DC compatible to screen DC
HDC hdisplayDC;
hdisplayDC = ::CreateDC("DISPLAY", NULL, NULL, NULL);
HDC hmemDC;
hmemDC = ::CreateCompatibleDC(hdisplayDC);
// Create a bitmap compatible with the screen DC
hBitMap = ::CreateCompatibleBitmap(hdisplayDC,
rcScreen.right - rcScreen.left,
rcScreen.bottom - rcScreen.top);
if (hBitMap != NULL)
{
// Select new bitmap into memory DC
HBITMAP hOldBitmap = SelectBitmap(hmemDC, hBitMap);
// BitBlt screen DC to memory DC
::BitBlt(hmemDC, 0, 0, rcScreen.right - rcScreen.left,
rcScreen.bottom - rcScreen.top, hdisplayDC,
rcScreen.left, rcScreen.top, SRCCOPY);
// Select old bitmap back into memory DC and get handle to
// bitmap of the screen
SelectBitmap(hmemDC, hOldBitmap);
}
::DeleteDC(hmemDC);
::DeleteDC(hdisplayDC);
}
// return handle to the bitmap
return hBitMap;
}
// Macro to round off the given value to the closest byte
#define WIDTHBYTES(i) (((i+31)/32)*4)
//
//
// Function: DIB_NumberOfColors
//
// Purpose: Calculates the number of colours in the DIB
//
//
UINT DIB_NumberOfColors(LPBITMAPINFOHEADER lpbi)
{
UINT numColors;
int bits;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_NumberOfColors");
ASSERT(lpbi != NULL);
// With the BITMAPINFO format headers, the size of the palette
// is in biClrUsed, whereas in the BITMAPCORE - style headers, it
// is dependent on the bits per pixel ( = 2 raised to the power of
// bits/pixel).
if (lpbi->biSize == sizeof(BITMAPCOREHEADER))
{
// Old DIB format, some apps still put this on the clipboard
numColors = 0;
bits = ((LPBITMAPCOREHEADER)lpbi)->bcBitCount;
}
else
{
numColors = lpbi->biClrUsed;
bits = lpbi->biBitCount;
}
if ((numColors == 0) && (bits <= 8))
{
numColors = (1 << bits);
}
return numColors;
}
//
//
// Function: DIB_PaletteLength
//
// Purpose: Calculates the palette size in bytes
//
//
UINT DIB_PaletteLength(LPBITMAPINFOHEADER lpbi)
{
UINT size;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_PaletteLength");
if (lpbi->biSize == sizeof(BITMAPCOREHEADER))
{
size = DIB_NumberOfColors(lpbi) * sizeof(RGBTRIPLE);
}
else
{
size = DIB_NumberOfColors(lpbi) * sizeof(RGBQUAD);
}
TRACE_MSG(("Palette length %d", size));
return(size);
}
//
//
// Function: DIB_DataLength
//
// Purpose: Return the length of the DIB data (after the header and the
// color table.
//
//
UINT DIB_DataLength(LPBITMAPINFOHEADER lpbi)
{
MLZ_EntryOut(ZONE_FUNCTION, "DIB_DataLength");
ASSERT(lpbi);
UINT dwLength = 0;
// If the image is not compressed, calculate the length of the data
if (lpbi->biCompression == BI_RGB)
{
// Image is not compressed, the size can be given as zero in the header
// Calculate the width in bytes of the image
DWORD dwByteWidth = ( ((DWORD) lpbi->biWidth) * (DWORD) lpbi->biBitCount);
TRACE_MSG(("Data byte width is %ld",dwByteWidth));
// Round the width to a multiple of 4 bytes
dwByteWidth = WIDTHBYTES(dwByteWidth);
TRACE_MSG(("Rounded up to %ld",dwByteWidth));
dwLength = (dwByteWidth * ((DWORD) lpbi->biHeight));
}
else
{
// Image is compressed, the length should be correct in the header
dwLength = lpbi->biSizeImage;
}
TRACE_MSG(("Total data length is %d",dwLength));
return(dwLength);
}
//
//
// Function: DIB_TotalLength
//
// Purpose: Return the total length of the DIB (header + colors + data).
//
//
UINT DIB_TotalLength(LPBITMAPINFOHEADER lpbi)
{
MLZ_EntryOut(ZONE_FUNCTION, "DIB_TotalLength");
ASSERT(lpbi);
// Header + Palette + Bits
return(lpbi->biSize + DIB_PaletteLength(lpbi) + DIB_DataLength(lpbi));
}
//
//
// Function: DIB_CreatePalette
//
// Purpose: Create a palette object from the bitmap info color table
//
//
HPALETTE DIB_CreatePalette(LPBITMAPINFOHEADER lpbi)
{
LOGPALETTE *pPal;
HPALETTE hpal = NULL;
WORD nNumColors;
BYTE red;
BYTE green;
BYTE blue;
WORD i;
RGBQUAD FAR * pRgb;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_CreatePalette");
if (!lpbi)
return NULL;
if (lpbi->biSize != sizeof(BITMAPINFOHEADER))
return NULL;
// Get a pointer to the color table and the number of colors in it
pRgb = (RGBQUAD FAR *)((LPSTR)lpbi + (WORD)lpbi->biSize);
nNumColors = (WORD)DIB_NumberOfColors(lpbi);
if (nNumColors)
{
TRACE_MSG(("There are %d colors in the palette",nNumColors));
// Allocate for the logical palette structure
pPal = (LOGPALETTE*) ::GlobalAlloc(GPTR, sizeof(LOGPALETTE)
+ (nNumColors * sizeof(PALETTEENTRY)));
if (!pPal)
{
ERROR_OUT(("Couldn't allocate palette memory"));
return(NULL);
}
pPal->palNumEntries = nNumColors;
pPal->palVersion = PALVERSION;
// Fill in the palette entries from the DIB color table and
// create a logical color palette.
for (i = 0; i < nNumColors; i++)
{
pPal->palPalEntry[i].peRed = pRgb[i].rgbRed;
pPal->palPalEntry[i].peGreen = pRgb[i].rgbGreen;
pPal->palPalEntry[i].peBlue = pRgb[i].rgbBlue;
pPal->palPalEntry[i].peFlags = (BYTE)0;
}
hpal = ::CreatePalette(pPal);
::GlobalFree((HGLOBAL)pPal);
}
else
{
if (lpbi->biBitCount == 24)
{
// A 24 bitcount DIB has no color table entries so, set the number
// of to the maximum value (256).
nNumColors = MAXPALETTE;
pPal = (LOGPALETTE*) ::GlobalAlloc(GPTR, sizeof(LOGPALETTE)
+ (nNumColors * sizeof(PALETTEENTRY)));
if (!pPal)
{
ERROR_OUT(("Couldn't allocate palette memory"));
return NULL;
}
pPal->palNumEntries = nNumColors;
pPal->palVersion = PALVERSION;
red = green = blue = 0;
// Generate 256 (= 8*8*4) RGB combinations to fill the palette
// entries.
for (i = 0; i < pPal->palNumEntries; i++)
{
pPal->palPalEntry[i].peRed = red;
pPal->palPalEntry[i].peGreen = green;
pPal->palPalEntry[i].peBlue = blue;
pPal->palPalEntry[i].peFlags = (BYTE) 0;
if (!(red += 32))
if (!(green += 32))
blue += 64;
}
hpal = ::CreatePalette(pPal);
::GlobalFree((HGLOBAL)pPal);
}
}
return hpal;
}
//
//
// Function: DIB_Bits
//
// Purpose: Return a pointer to the bitmap bits data (from a pointer
// to the bitmap info header).
//
//
LPSTR DIB_Bits(LPBITMAPINFOHEADER lpbi)
{
MLZ_EntryOut(ZONE_FUNCTION, "DIB_Bits");
ASSERT(lpbi);
return ((LPSTR) (((char *) lpbi)
+ lpbi->biSize
+ DIB_PaletteLength(lpbi)));
}
//
//
// Function: DIB_FromScreenArea
//
// Purpose: Create a DIB from an area of the screen
//
//
LPBITMAPINFOHEADER DIB_FromScreenArea(LPCRECT lprect)
{
HBITMAP hBitmap = NULL;
HPALETTE hPalette = NULL;
LPBITMAPINFOHEADER lpbi = NULL;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_FromScreenArea");
// Get the device-dependent bitmap from the screen area
hBitmap = FromScreenAreaBmp(lprect);
if (hBitmap != NULL)
{
// Get the current system palette
hPalette = CreateSystemPalette();
lpbi = DIB_FromBitmap(hBitmap, hPalette, FALSE);
}
if (hPalette != NULL)
::DeletePalette(hPalette);
if (hBitmap != NULL)
::DeleteBitmap(hBitmap);
return(lpbi);
}
//
//
// Function: DIB_Copy
//
// Purpose: Make a copy of the DIB memory
//
//
LPBITMAPINFOHEADER DIB_Copy(LPBITMAPINFOHEADER lpbi)
{
LPBITMAPINFOHEADER lpbiNew = NULL;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_Copy");
ASSERT(lpbi);
// Get the length of memory
DWORD dwLen = DIB_TotalLength(lpbi);
lpbiNew = (LPBITMAPINFOHEADER)::GlobalAlloc(GPTR, dwLen);
if (lpbiNew != NULL)
{
// Copy the data
memcpy(lpbiNew, lpbi, dwLen);
}
return(lpbiNew);
}
//
//
// Function: DIB_FromBitmap
//
// Purpose: Creates a DIB from a bitmap and palette
//
//
LPBITMAPINFOHEADER DIB_FromBitmap
(
HBITMAP hBitmap,
HPALETTE hPalette,
BOOL fGHandle
)
{
LPBITMAPINFOHEADER lpbi = NULL;
HGLOBAL hmem = NULL;
BITMAP bm;
BITMAPINFOHEADER bi;
DWORD dwLen;
WORD biBits;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_FromBitmap");
// If the bitmap handle given is null, do nothing
if (hBitmap != NULL)
{
if (hPalette == NULL)
hPalette = (HPALETTE)::GetStockObject(DEFAULT_PALETTE);
// Get the bitmap information
::GetObject(hBitmap, sizeof(bm), (LPSTR) &bm);
biBits = (WORD) (bm.bmPlanes * bm.bmBitsPixel);
if (biBits > 8)
{
// If > 8, make life easy and use plain R-G-B 24-bits
biBits = 24;
}
bi.biSize = sizeof(BITMAPINFOHEADER);
bi.biWidth = bm.bmWidth;
bi.biHeight = bm.bmHeight;
bi.biPlanes = 1;
bi.biBitCount = biBits;
bi.biCompression = 0;
bi.biSizeImage = 0;
bi.biXPelsPerMeter = 0;
bi.biYPelsPerMeter = 0;
bi.biClrUsed = 0;
bi.biClrImportant = 0;
dwLen = bi.biSize + DIB_PaletteLength(&bi);
HDC hdc;
HPALETTE hPalOld;
hdc = ::CreateDC("DISPLAY", NULL, NULL, NULL);
hPalOld = ::SelectPalette(hdc, hPalette, FALSE);
::RealizePalette(hdc);
// Allocate memory for the DIB
if (fGHandle)
{
// For the clipboard, we MUST use GHND
hmem = ::GlobalAlloc(GHND, dwLen);
lpbi = (LPBITMAPINFOHEADER)::GlobalLock(hmem);
}
else
{
lpbi = (LPBITMAPINFOHEADER)::GlobalAlloc(GPTR, dwLen);
}
if (lpbi != NULL)
{
*lpbi = bi;
// Call GetDIBits with a NULL lpBits param, so it will calculate the
// biSizeImage field for us
::GetDIBits(hdc, hBitmap, 0, (WORD) bi.biHeight, NULL,
(LPBITMAPINFO)lpbi, DIB_RGB_COLORS);
bi = *lpbi;
// If the driver did not fill in the biSizeImage field, make one up
if (bi.biSizeImage == 0)
{
bi.biSizeImage = WIDTHBYTES((DWORD)bm.bmWidth * biBits) * bm.bmHeight;
}
// Realloc the buffer big enough to hold all the bits
dwLen = bi.biSize + DIB_PaletteLength(&bi) + bi.biSizeImage;
if (fGHandle)
{
HGLOBAL hT;
::GlobalUnlock(hmem);
hT = ::GlobalReAlloc(hmem, dwLen, GHND);
if (!hT)
{
ERROR_OUT(("Can't reallocate DIB handle"));
::GlobalFree(hmem);
hmem = NULL;
lpbi = NULL;
}
else
{
hmem = hT;
lpbi = (LPBITMAPINFOHEADER)::GlobalLock(hmem);
}
}
else
{
LPBITMAPINFOHEADER lpbiT;
lpbiT = (LPBITMAPINFOHEADER)::GlobalReAlloc((HGLOBAL)lpbi, dwLen, GMEM_MOVEABLE);
if (!lpbiT)
{
ERROR_OUT(("Can't reallocate DIB ptr"));
::GlobalFree((HGLOBAL)lpbi);
lpbi = NULL;
}
else
{
lpbi = lpbiT;
}
}
}
if (lpbi != NULL)
{
::GetDIBits(hdc, hBitmap, 0,
(WORD)bi.biHeight,
DIB_Bits(lpbi),
(LPBITMAPINFO)lpbi,
DIB_RGB_COLORS);
if (fGHandle)
{
// We want to return the HANDLE, not the POINTER
::GlobalUnlock(hmem);
lpbi = (LPBITMAPINFOHEADER)hmem;
}
}
// Restore the old palette and give back the device context
::SelectPalette(hdc, hPalOld, FALSE);
::DeleteDC(hdc);
}
return(lpbi);
}
//
// AbortProc()
// Process messages during printing
//
//
BOOL CALLBACK AbortProc(HDC, int)
{
MSG msg;
ASSERT(g_pPrinter);
// Message pump in case user wants to cancel printing
while (!g_pPrinter->Aborted()
&& PeekMessage(&msg, NULL, NULL, NULL, PM_REMOVE))
{
if ( (g_pPrinter->m_hwndDialog == NULL) ||
!::IsDialogMessage(g_pPrinter->m_hwndDialog, &msg))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
return !g_pPrinter->Aborted();
}
//
//
// Function: WbPrinter
//
// Purpose: Constructor for a printer object
//
//
WbPrinter::WbPrinter(LPCTSTR szDeviceName)
{
m_szDeviceName = szDeviceName;
m_szPrintPageText[0] = 0;
// Set up the global pointer for the abort procedure
g_pPrinter = this;
// Create the dialog window
m_hwndDialog = ::CreateDialogParam(g_hInstance, MAKEINTRESOURCE(PRINTCANCEL),
g_pMain->m_hwnd, CancelPrintDlgProc, 0);
// Save the original text for the page number area
::GetDlgItemText(m_hwndDialog, IDD_PRINT_PAGE, m_szPrintPageText, _MAX_PATH);
}
//
//
// Function: ~WbPrinter
//
// Purpose: Destructor for a printer object
//
//
WbPrinter::~WbPrinter(void)
{
// Kill off the dialog etc. if still around
StopDialog();
ASSERT(m_hwndDialog == NULL);
g_pPrinter = NULL;
}
//
// StopDialog()
// If the dialog is up, ends it.
//
void WbPrinter::StopDialog(void)
{
::EnableWindow(g_pMain->m_hwnd, TRUE);
// Close and destroy the dialog
if (m_hwndDialog != NULL)
{
::DestroyWindow(m_hwndDialog);
m_hwndDialog = NULL;
}
}
//
//
// Function: StartDoc
//
// Purpose: Tell the printer we are starting a new document
//
//
int WbPrinter::StartDoc
(
HDC hdc,
LPCTSTR szJobName,
int nStartPage
)
{
// Initialize the result codes and page number
m_bAborted = FALSE; // Not aborted
m_nPrintResult = 1; // Greater than 0 implies all is well
// Disable the main window
::EnableWindow(g_pMain->m_hwnd, FALSE);
// Attach the printer DC
SetPrintPageNumber(nStartPage);
// Set up the abort routine for the print
if (SetAbortProc(hdc, AbortProc) >= 0)
{
// Abort routine successfully set
::ShowWindow(m_hwndDialog, SW_SHOW);
::UpdateWindow(m_hwndDialog);
DOCINFO docinfo;
docinfo.cbSize = sizeof(DOCINFO);
docinfo.lpszDocName = szJobName;
docinfo.lpszOutput = NULL;
docinfo.lpszDatatype = NULL; // Windows 95 only; ignored on Windows NT
docinfo.fwType = 0; // Windows 95 only; ignored on Windows NT
// Initialize the document.
m_nPrintResult = ::StartDoc(hdc, &docinfo);
}
return m_nPrintResult;
}
//
//
// Function: StartPage
//
// Purpose: Tell the printer we are starting a new page
//
//
int WbPrinter::StartPage(HDC hdc, int nPageNumber)
{
MLZ_EntryOut(ZONE_FUNCTION, "WbPrinter::StartPage");
m_nPrintResult = -1; // Initialise to error
// If the print has been aborted, return an error.
if (m_bAborted)
{
TRACE_DEBUG(("Print has been aborted"));
}
else
{
SetPrintPageNumber(nPageNumber);
// Tell the printer of the new page number
m_nPrintResult = ::StartPage(hdc);
}
return(m_nPrintResult);
}
//
//
// Function: EndPage
//
// Purpose: Tell the printer we are finishing a page
//
//
int WbPrinter::EndPage(HDC hdc)
{
MLZ_EntryOut(ZONE_FUNCTION, "WbPrinter::EndPage");
m_nPrintResult = -1; // Initialise to error
// If the print has been aborted, return an error.
if (m_bAborted)
{
TRACE_DEBUG(("Print has been aborted"));
}
else
{
// Tell the printer of the new page number
m_nPrintResult = ::EndPage(hdc);
}
return(m_nPrintResult);
}
//
//
// Function: EndDoc
//
// Purpose: Tell the printer we have completed a document
//
//
int WbPrinter::EndDoc(HDC hdc)
{
// If an error has occurred the driver will already have aborted the print
if (m_nPrintResult > 0)
{
if (!m_bAborted)
{
// If we have not been aborted, and no error has occurred
// end the document
m_nPrintResult = ::EndDoc(hdc);
}
else
{
m_nPrintResult = ::AbortDoc(hdc);
}
}
StopDialog();
// Return an the error indicator
return m_nPrintResult;
}
//
//
// Function: AbortDoc
//
// Purpose: Abort the document currently in progress
//
//
int WbPrinter::AbortDoc()
{
// Show that we have been aborted, the actual abort is
// done by the EndDoc call.
m_bAborted = TRUE;
//
// Renable the application window.
//
StopDialog();
// Return a positive value indicating "aborted OK"
return 1;
}
//
//
// Function: SetPrintPageNumber
//
// Purpose: Set the number of the page currently being printed
//
//
void WbPrinter::SetPrintPageNumber(int nPageNumber)
{
// Display the number of the page currently being printed
TCHAR szPageNumber [10 + _MAX_PATH];
wsprintf(szPageNumber, m_szPrintPageText, nPageNumber);
::SetDlgItemText(m_hwndDialog, IDD_PRINT_PAGE, szPageNumber);
}
//
// CancelPrintDlgProc()
// Dialog message handler for the cancel printing dialog
//
INT_PTR CALLBACK CancelPrintDlgProc(HWND hwnd, UINT uMessage, WPARAM wParam, LPARAM lParam)
{
BOOL fHandled = FALSE;
switch (uMessage)
{
case WM_INITDIALOG:
ASSERT(g_pPrinter != NULL);
::SetDlgItemText(hwnd, IDD_DEVICE_NAME, g_pPrinter->m_szDeviceName);
fHandled = TRUE;
break;
case WM_COMMAND:
switch (GET_WM_COMMAND_ID(wParam, lParam))
{
case IDOK:
case IDCANCEL:
switch (GET_WM_COMMAND_CMD(wParam, lParam))
{
case BN_CLICKED:
ASSERT(g_pPrinter != NULL);
g_pPrinter->AbortDoc();
break;
}
}
fHandled = TRUE;
break;
}
return(fHandled);
}
//
// Bogus Bogus LAURABU
// STRING ARRAY (TEMP!)
//
StrArray::StrArray()
{
m_pData = NULL;
m_nSize = m_nMaxSize = 0;
}
StrArray::~StrArray()
{
ClearOut();
}
void StrArray::ClearOut(void)
{
int iItem;
for (iItem = 0; iItem < m_nSize; iItem++)
{
if (m_pData[iItem] != NULL)
{
delete (LPTSTR)m_pData[iItem];
m_pData[iItem] = NULL;
}
}
m_nSize = 0;
m_nMaxSize = 0;
if (m_pData != NULL)
{
delete[] m_pData;
m_pData = NULL;
}
}
void StrArray::SetSize(int nNewSize)
{
if (nNewSize == 0)
{
// shrink to nothing
ClearOut();
}
else if (nNewSize <= m_nMaxSize)
{
// No shrinking allowed.
ASSERT(nNewSize >= m_nSize);
// We're still within the alloced block range
m_nSize = nNewSize;
}
else
{
//
// Make a larger array (isn't this lovely if you already have an
// array, we alloc a new one and free the old one)
//
int nNewMax;
nNewMax = (nNewSize + (ALLOC_CHUNK -1)) & ~(ALLOC_CHUNK-1);
ASSERT(nNewMax >= m_nMaxSize); // no wrap around
LPCTSTR* pNewData = new LPCTSTR[nNewMax];
if (!pNewData)
{
ERROR_OUT(("StrArray::SetSize failed, couldn't allocate larger array"));
}
else
{
// Zero out the memory
ZeroMemory(pNewData, nNewMax * sizeof(LPCTSTR));
// If an old array exists, copy the existing string ptrs.
if (m_pData != NULL)
{
CopyMemory(pNewData, m_pData, m_nSize * sizeof(LPCTSTR));
//
// Delete the old array, but not the strings inside, we're
// keeping them around in the new array
//
delete[] m_pData;
}
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
}
}
void StrArray::SetAtGrow(int nIndex, LPCTSTR newElement)
{
ASSERT(nIndex >= 0);
if (nIndex >= m_nSize)
SetSize(nIndex+1);
SetAt(nIndex, newElement);
}
LPCTSTR StrArray::operator[](int nIndex) const
{
ASSERT(nIndex >= 0);
if (nIndex < m_nSize)
{
ASSERT(m_pData != NULL);
return(m_pData[nIndex]);
}
else
{
WARNING_OUT(("StrArray[] got index outside of bounds"));
return(NULL);
}
}
void StrArray::SetAt(int nIndex, LPCTSTR newElement)
{
ASSERT(nIndex >= 0);
if (nIndex >= m_nSize)
{
WARNING_OUT(("StrArray::SetAt got index outside of bounds"));
return;
}
ASSERT(m_pData != NULL);
m_pData[nIndex] = new TCHAR[lstrlen(newElement) + 1];
if (!m_pData[nIndex])
{
ERROR_OUT(("StrArray::SetAt failed to allocate string %s at pos %d",
newElement, nIndex));
}
else
{
lstrcpy((LPTSTR)m_pData[nIndex], newElement);
}
}
void StrArray::Add(LPCTSTR newElement)
{
SetAtGrow(m_nSize, newElement);
}
//
//char *StrTok(string, control) - tokenize string with delimiter in control
//
char * StrTok (char * string, char * control)
{
char *str;
char *ctrl = control;
unsigned char map[32];
int count;
static char *nextoken;
/* Clear control map */
for (count = 0; count < 32; count++)
map[count] = 0;
/* Set bits in delimiter table */
do {
map[*ctrl >> 3] |= (1 << (*ctrl & 7));
} while (*ctrl++);
/* Initialize str. If string is NULL, set str to the saved
* pointer (i.e., continue breaking tokens out of the string
* from the last StrTok call) */
if (string)
str = string;
else
str = nextoken;
/* Find beginning of token (skip over leading delimiters). Note that
* there is no token iff this loop sets str to point to the terminal
* null (*str == '\0') */
while ( (map[*str >> 3] & (1 << (*str & 7))) && *str )
str++;
string = str;
/* Find the end of the token. If it is not the end of the string,
* put a null there. */
for ( ; *str ; str++ )
if ( map[*str >> 3] & (1 << (*str & 7)) ) {
*str++ = '\0';
break;
}
/* Update nextoken (or the corresponding field in the per-thread data
* structure */
nextoken = str;
/* Determine if a token has been found. */
if ( string == str )
return NULL;
else
return string;
}