Decrease deserialization complexity from quadratic to linear (#349)
* Speed up array code * Speed up map code too Also add regression test * Use more obvious closure notation * Document the builder functions
This commit is contained in:
parent
52586279ce
commit
34ef67bee2
112
src/de.rs
112
src/de.rs
|
@ -5,6 +5,7 @@
|
|||
//! provided at the top of the crate.
|
||||
|
||||
use std::borrow::Cow;
|
||||
use std::collections::HashMap;
|
||||
use std::error;
|
||||
use std::f64;
|
||||
use std::fmt;
|
||||
|
@ -215,6 +216,8 @@ impl<'de, 'b> de::Deserializer<'de> for &'b mut Deserializer<'de> {
|
|||
V: de::Visitor<'de>,
|
||||
{
|
||||
let mut tables = self.tables()?;
|
||||
let table_indices = build_table_indices(&tables);
|
||||
let table_pindices = build_table_pindices(&tables);
|
||||
|
||||
let res = visitor.visit_map(MapVisitor {
|
||||
values: Vec::new().into_iter().peekable(),
|
||||
|
@ -223,6 +226,8 @@ impl<'de, 'b> de::Deserializer<'de> for &'b mut Deserializer<'de> {
|
|||
cur: 0,
|
||||
cur_parent: 0,
|
||||
max: tables.len(),
|
||||
table_indices: &table_indices,
|
||||
table_pindices: &table_pindices,
|
||||
tables: &mut tables,
|
||||
array: false,
|
||||
de: self,
|
||||
|
@ -319,6 +324,53 @@ impl<'de, 'b> de::Deserializer<'de> for &'b mut Deserializer<'de> {
|
|||
}
|
||||
}
|
||||
|
||||
// Builds a datastructure that allows for efficient sublinear lookups.
|
||||
// The returned HashMap contains a mapping from table header (like [a.b.c])
|
||||
// to list of tables with that precise name. The tables are being identified
|
||||
// by their index in the passed slice. We use a list as the implementation
|
||||
// uses this data structure for arrays as well as tables,
|
||||
// so if any top level [[name]] array contains multiple entries,
|
||||
// there are multiple entires in the list.
|
||||
// The lookup is performed in the `SeqAccess` implementation of `MapVisitor`.
|
||||
// The lists are ordered, which we exploit in the search code by using
|
||||
// bisection.
|
||||
fn build_table_indices<'de>(tables: &[Table<'de>]) -> HashMap<Vec<Cow<'de, str>>, Vec<usize>> {
|
||||
let mut res = HashMap::new();
|
||||
for (i, table) in tables.iter().enumerate() {
|
||||
let header = table.header.iter().map(|v| v.1.clone()).collect::<Vec<_>>();
|
||||
res.entry(header).or_insert(Vec::new()).push(i);
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
// Builds a datastructure that allows for efficient sublinear lookups.
|
||||
// The returned HashMap contains a mapping from table header (like [a.b.c])
|
||||
// to list of tables whose name at least starts with the specified
|
||||
// name. So searching for [a.b] would give both [a.b.c.d] as well as [a.b.e].
|
||||
// The tables are being identified by their index in the passed slice.
|
||||
//
|
||||
// A list is used for two reasons: First, the implementation also
|
||||
// stores arrays in the same data structure and any top level array
|
||||
// of size 2 or greater creates multiple entries in the list with the
|
||||
// same shared name. Second, there can be multiple tables sharing
|
||||
// the same prefix.
|
||||
//
|
||||
// The lookup is performed in the `MapAccess` implementation of `MapVisitor`.
|
||||
// The lists are ordered, which we exploit in the search code by using
|
||||
// bisection.
|
||||
fn build_table_pindices<'de>(tables: &[Table<'de>]) -> HashMap<Vec<Cow<'de, str>>, Vec<usize>> {
|
||||
let mut res = HashMap::new();
|
||||
for (i, table) in tables.iter().enumerate() {
|
||||
let header = table.header.iter().map(|v| v.1.clone()).collect::<Vec<_>>();
|
||||
for len in 0..=header.len() {
|
||||
res.entry(header[..len].to_owned())
|
||||
.or_insert(Vec::new())
|
||||
.push(i);
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
fn headers_equal<'a, 'b>(hdr_a: &[(Span, Cow<'a, str>)], hdr_b: &[(Span, Cow<'b, str>)]) -> bool {
|
||||
if hdr_a.len() != hdr_b.len() {
|
||||
return false;
|
||||
|
@ -340,6 +392,8 @@ struct MapVisitor<'de, 'b> {
|
|||
cur: usize,
|
||||
cur_parent: usize,
|
||||
max: usize,
|
||||
table_indices: &'b HashMap<Vec<Cow<'de, str>>, Vec<usize>>,
|
||||
table_pindices: &'b HashMap<Vec<Cow<'de, str>>, Vec<usize>>,
|
||||
tables: &'b mut [Table<'de>],
|
||||
array: bool,
|
||||
de: &'b mut Deserializer<'de>,
|
||||
|
@ -365,20 +419,25 @@ impl<'de, 'b> de::MapAccess<'de> for MapVisitor<'de, 'b> {
|
|||
}
|
||||
|
||||
let next_table = {
|
||||
let prefix = &self.tables[self.cur_parent].header[..self.depth];
|
||||
self.tables[self.cur..self.max]
|
||||
let prefix_stripped = self.tables[self.cur_parent].header[..self.depth]
|
||||
.iter()
|
||||
.enumerate()
|
||||
.find(|&(_, t)| {
|
||||
if t.values.is_none() {
|
||||
return false;
|
||||
}
|
||||
match t.header.get(..self.depth) {
|
||||
Some(header) => headers_equal(&header, &prefix),
|
||||
None => false,
|
||||
.map(|v| v.1.clone())
|
||||
.collect::<Vec<_>>();
|
||||
self.table_pindices
|
||||
.get(&prefix_stripped)
|
||||
.and_then(|entries| {
|
||||
let start = entries.binary_search(&self.cur).unwrap_or_else(|v| v);
|
||||
if start == entries.len() || entries[start] < self.cur {
|
||||
return None;
|
||||
}
|
||||
entries[start..]
|
||||
.iter()
|
||||
.copied()
|
||||
.filter(|i| *i < self.max)
|
||||
.map(|i| (i, &self.tables[i]))
|
||||
.find(|(_, table)| table.values.is_some())
|
||||
.map(|p| p.0)
|
||||
})
|
||||
.map(|(i, _)| i + self.cur)
|
||||
};
|
||||
|
||||
let pos = match next_table {
|
||||
|
@ -471,6 +530,8 @@ impl<'de, 'b> de::MapAccess<'de> for MapVisitor<'de, 'b> {
|
|||
cur: 0,
|
||||
max: self.max,
|
||||
array,
|
||||
table_indices: &*self.table_indices,
|
||||
table_pindices: &*self.table_pindices,
|
||||
tables: &mut *self.tables,
|
||||
de: &mut *self.de,
|
||||
});
|
||||
|
@ -495,15 +556,28 @@ impl<'de, 'b> de::SeqAccess<'de> for MapVisitor<'de, 'b> {
|
|||
return Ok(None);
|
||||
}
|
||||
|
||||
let next = self.tables[..self.max]
|
||||
let header_stripped = self.tables[self.cur_parent]
|
||||
.header
|
||||
.iter()
|
||||
.enumerate()
|
||||
.skip(self.cur_parent + 1)
|
||||
.find(|&(_, table)| {
|
||||
let tables_eq = headers_equal(&table.header, &self.tables[self.cur_parent].header);
|
||||
table.array && tables_eq
|
||||
})
|
||||
.map(|v| v.1.clone())
|
||||
.collect::<Vec<_>>();
|
||||
let start_idx = self.cur_parent + 1;
|
||||
let next = self
|
||||
.table_indices
|
||||
.get(&header_stripped)
|
||||
.and_then(|entries| {
|
||||
let start = entries.binary_search(&start_idx).unwrap_or_else(|v| v);
|
||||
if start == entries.len() || entries[start] < start_idx {
|
||||
return None;
|
||||
}
|
||||
entries[start..]
|
||||
.iter()
|
||||
.copied()
|
||||
.filter(|i| *i < self.max)
|
||||
.map(|i| (i, &self.tables[i]))
|
||||
.find(|(_, table)| table.array)
|
||||
.map(|p| p.0)
|
||||
})
|
||||
.unwrap_or(self.max);
|
||||
|
||||
let ret = seed.deserialize(MapVisitor {
|
||||
|
@ -519,6 +593,8 @@ impl<'de, 'b> de::SeqAccess<'de> for MapVisitor<'de, 'b> {
|
|||
max: next,
|
||||
cur: 0,
|
||||
array: false,
|
||||
table_indices: &*self.table_indices,
|
||||
table_pindices: &*self.table_pindices,
|
||||
tables: &mut self.tables,
|
||||
de: &mut self.de,
|
||||
})?;
|
||||
|
|
37
test-suite/tests/linear.rs
Normal file
37
test-suite/tests/linear.rs
Normal file
|
@ -0,0 +1,37 @@
|
|||
use std::time::{Duration, Instant};
|
||||
use toml::Value;
|
||||
|
||||
const TOLERANCE: f64 = 2.0;
|
||||
|
||||
fn measure_time(entries: usize, f: impl Fn(usize) -> String) -> Duration {
|
||||
let start = Instant::now();
|
||||
let mut s = String::new();
|
||||
for i in 0..entries {
|
||||
s += &f(i);
|
||||
s += "entry = 42\n"
|
||||
}
|
||||
s.parse::<Value>().unwrap();
|
||||
Instant::now() - start
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_increase_map() {
|
||||
let time_1 = measure_time(100, |i| format!("[header_no_{}]\n", i));
|
||||
let time_4 = measure_time(400, |i| format!("[header_no_{}]\n", i));
|
||||
dbg!(time_1, time_4);
|
||||
// Now ensure that the deserialization time has increased linearly
|
||||
// (within a tolerance interval) instead of, say, quadratically
|
||||
assert!(time_4 > time_1.mul_f64(4.0 - TOLERANCE));
|
||||
assert!(time_4 < time_1.mul_f64(4.0 + TOLERANCE));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_increase_array() {
|
||||
let time_1 = measure_time(100, |i| format!("[[header_no_{}]]\n", i));
|
||||
let time_4 = measure_time(400, |i| format!("[[header_no_{}]]\n", i));
|
||||
dbg!(time_1, time_4);
|
||||
// Now ensure that the deserialization time has increased linearly
|
||||
// (within a tolerance interval) instead of, say, quadratically
|
||||
assert!(time_4 > time_1.mul_f64(4.0 - TOLERANCE));
|
||||
assert!(time_4 < time_1.mul_f64(4.0 + TOLERANCE));
|
||||
}
|
Loading…
Reference in a new issue