1
1
Fork 0
mirror of https://github.com/azur1s/bobbylisp.git synced 2024-10-16 02:37:40 -05:00

Prepare for proper type inference

This commit is contained in:
azur 2023-04-12 10:35:35 +07:00
parent 4b805823e6
commit 0c79321826
5 changed files with 32 additions and 522 deletions

View file

@ -1,6 +1,6 @@
use ariadne::{sources, Color, Label, Report, ReportKind};
use chumsky::{Parser, prelude::Input};
use self::{parse::parser::{lexer, exprs_parser}, typing::check::check};
use self::{parse::parser::{lexer, exprs_parser}};
pub mod parse;
pub mod typing;
@ -8,11 +8,10 @@ pub mod typing;
fn main() {
let src = "
{
let foo : num =
let a : num = true,
b : num = 3
in
a + b;
let foo =
let a = true in
let b = false in
a + b;
foo * 2
}
".to_string();
@ -27,34 +26,7 @@ fn main() {
.into_output_errors();
if let Some(ast) = ast.filter(|_| errs.len() + parse_errs.len() == 0) {
match check(ast.0) {
Ok(tast) => println!("{:?}", tast),
Err(ty_err) => {
let mut r = Report::build(ReportKind::Error, filename.clone(), ty_err.loc.start)
.with_message(ty_err.msg)
.with_label(Label::new((filename.clone(), ty_err.loc.into_range()))
.with_message(match ty_err.note {
Some(note) => note,
None => "While type checking this expression".to_string(),
})
.with_color(Color::Red)
);
if let Some((hint, loc)) = ty_err.hint {
r = r.with_label(Label::new((filename.clone(), loc.into_range()))
.with_message(hint)
.with_color(Color::Yellow),
);
}
r.finish()
.print(sources([(
filename.clone(),
src.clone(),
)]))
.unwrap();
}
}
println!("{:?}", ast);
}
parse_errs

View file

@ -178,8 +178,6 @@ pub enum BinaryOp {
}
pub type Spanned<T> = (T, Span);
type Binding<'src> =
(&'src str, Option<Type>, Spanned<Box<Expr<'src>>>);
// Clone is needed for type checking since the type checking
// algorithm is recursive and sometimes consume the AST.
@ -200,10 +198,16 @@ pub enum Expr<'src> {
f: Spanned<Box<Self>>,
},
Let {
bindings: Vec<Binding<'src>>,
name: &'src str,
ty: Option<Type>,
value: Spanned<Box<Self>>,
body: Spanned<Box<Self>>,
},
Assign(Vec<Binding<'src>>),
Define {
name: &'src str,
ty: Option<Type>,
value: Spanned<Box<Self>>,
},
Block {
exprs: Vec<Spanned<Box<Self>>>,
void: bool, // True if last expression is discarded (ends with semicolon).
@ -268,8 +272,8 @@ pub fn expr_parser<'tokens, 'src: 'tokens>() -> impl Parser<
.then(expr.clone())
.map(|(args, body)| Expr::Lambda(args, boxspan(body)));
// (ident (: type)?)*
let binds = symbol
// ident (: type)?
let bind = symbol
.then(
just(Token::Colon)
.ignore_then(type_parser())
@ -277,21 +281,18 @@ pub fn expr_parser<'tokens, 'src: 'tokens>() -> impl Parser<
)
.then_ignore(just(Token::Assign))
.then(expr.clone())
.map(|((name, ty), expr)| (name, ty, boxspan(expr)))
.separated_by(just(Token::Comma))
.allow_trailing()
.collect::<Vec<_>>();
.map(|((name, ty), expr)| (name, ty, boxspan(expr)));
let let_or_assign = just(Token::Let)
.ignore_then(binds)
let let_or_define = just(Token::Let)
.ignore_then(bind)
.then(
just(Token::In)
.ignore_then(expr.clone())
.or_not()
)
.map(|(bindings, body)| match body {
Some(body) => Expr::Let { bindings, body: boxspan(body) },
None => Expr::Assign(bindings),
.map(|((name, ty, expr), body)| match body {
Some(body) => Expr::Let { name, ty, value: expr, body: boxspan(body) },
None => Expr::Define { name, ty, value: expr },
});
let if_ = just(Token::If)
@ -333,7 +334,7 @@ pub fn expr_parser<'tokens, 'src: 'tokens>() -> impl Parser<
.or(ident)
.or(paren_expr)
.or(lambda)
.or(let_or_assign)
.or(let_or_define)
.or(if_)
.or(block)
.map_with_span(|e, s| (e, s))

View file

@ -1,425 +0,0 @@
use crate::parse::parser::{
Span, Spanned,
UnaryOp, BinaryOp, Lit, Expr,
};
use super::{ty::Type, typed::TExpr};
#[derive(Clone, Debug)]
struct TypeContext<'src> {
bindings: Vec<(&'src str, Type)>,
funcs: Vec<(&'src str, Vec<Type>, Type)>,
}
impl<'src> TypeContext<'src> {
fn new() -> Self {
Self {
bindings: Vec::new(),
funcs: Vec::new(),
}
}
/// Bind a type to a name.
fn bind(&mut self, name: &'src str, ty: Type) {
self.bindings.push((name, ty));
}
/// Bind a function (parameters and return type) to a name.
fn bind_func(&mut self, name: &'src str, args: Vec<Type>, ret_ty: Type) {
self.funcs.push((name, args, ret_ty));
}
fn lookup(&self, name: &str) -> Option<Type> {
self.bindings.iter()
.rev()
.find(|(n, _)| *n == name)
.map(|(_, t)| t.clone())
}
fn lookup_func(&self, name: &str) -> Option<(Vec<Type>, Type)> {
self.funcs.iter()
.rev()
.find(|(n, _, _)| *n == name)
.map(|(_, args, ret_ty)| (args.clone(), ret_ty.clone()))
}
}
#[derive(Debug)]
pub struct TypeError {
pub msg: String,
pub note: Option<String>,
pub hint: Option<(String, Span)>,
pub loc: Span,
}
impl TypeError {
fn new(msg: String, loc: Span) -> Self {
Self {
msg,
note: None,
hint: None,
loc,
}
}
fn with_note(mut self, note: String) -> Self {
self.note = Some(note);
self
}
fn with_hint(mut self, hint: String, loc: Span) -> Self {
self.hint = Some((hint, loc));
self
}
}
fn type_expr<'src>(
env: &mut TypeContext<'src>, expr: Spanned<Expr<'src>>
) -> Result<Spanned<TExpr<'src>>, TypeError> {
macro_rules! oks { // Spanned Ok macro.
($e:expr $(,)?) => {
Ok(($e, expr.1))
};
}
macro_rules! unbox { // Unbox a Spanned<Box<T>> into a Spanned<T>.
($e:expr) => {
(*$e.0, $e.1)
};
}
macro_rules! sbox { // Box the first value of a Spanned<T>.
($e:expr) => {
(Box::new($e.0), $e.1)
};
}
match expr.0 {
Expr::Lit(lit) => match lit {
Lit::Unit => oks!(TExpr::Lit(Lit::Unit)),
Lit::Bool(x) => oks!(TExpr::Lit(Lit::Bool(x))),
Lit::Num(x) => oks!(TExpr::Lit(Lit::Num(x))),
Lit::Str(x) => oks!(TExpr::Lit(Lit::Str(x))),
}
Expr::Ident(name) => {
let ty = env.lookup(name)
.ok_or(TypeError::new(format!("Unknown identifier `{}`", name), expr.1))?;
oks!(TExpr::Ident(name, ty))
}
Expr::Unary(op, e) => {
let te = type_expr(env, unbox!(e))?;
let ret_ty = match op {
UnaryOp::Neg => Type::Num,
UnaryOp::Not => Type::Bool,
};
if te.0.ty() != &ret_ty {
return Err(TypeError::new(format!("Expected `{}` but found `{}`", ret_ty, te.0.ty()), te.1)
.with_note(format!("This have type `{}`", te.0.ty()))
.with_hint(format!("This operator requires a `{}`", ret_ty), (te.1.start-1..te.1.start).into()));
}
oks!(TExpr::Unary {
op,
expr: sbox!(te),
ret_ty,
})
}
Expr::Binary(op, lhs, rhs) => {
let tlhs = type_expr(env, unbox!(lhs))?;
let trhs = type_expr(env, unbox!(rhs))?;
let op_ty = match op {
BinaryOp::Add
| BinaryOp::Sub
| BinaryOp::Mul
| BinaryOp::Div
| BinaryOp::Rem => Some(Type::Num),
BinaryOp::And
| BinaryOp::Or => Some(Type::Bool),
BinaryOp::Eq
| BinaryOp::Ne
| BinaryOp::Lt
| BinaryOp::Le
| BinaryOp::Gt
| BinaryOp::Ge => None,
};
let ret_ty;
if let Some(op_ty) = op_ty {
if tlhs.0.ty() != &op_ty {
return Err(TypeError::new(format!("Expected `{}` but found `{}`", op_ty, tlhs.0.ty()), tlhs.1)
.with_note(format!("This have type `{}`", tlhs.0.ty()))
.with_hint(format!("This operator requires a `{}`", op_ty), (tlhs.1.start-1..tlhs.1.start).into()));
}
if trhs.0.ty() != &op_ty {
return Err(TypeError::new(format!("Expected `{}` but found `{}`", op_ty, trhs.0.ty()), trhs.1)
.with_note(format!("This have type `{}`", trhs.0.ty()))
.with_hint(format!("This operator requires a `{}`", op_ty), (trhs.1.start-1..trhs.1.start).into()));
}
ret_ty = op_ty;
} else {
if tlhs.0.ty() != trhs.0.ty() {
return Err(TypeError::new(format!("Expected `{}` but found `{}`", tlhs.0.ty(), trhs.0.ty()), trhs.1)
.with_hint(
format!("Both have to be the same type. Got `{}` and `{}`", tlhs.0.ty(), trhs.0.ty()),
(tlhs.1.start..trhs.1.end).into(),
));
}
ret_ty = Type::Bool;
}
oks!(TExpr::Binary {
op,
lhs: sbox!(tlhs),
rhs: sbox!(trhs),
ret_ty,
})
}
Expr::Lambda(args, body) => {
// Create a new type environment.
let mut new_env = env.clone();
// Bind the arguments to the new environment.
let mut arg_tys = Vec::new();
for (arg, maybe_ty) in args {
let ty = match maybe_ty {
Some(ty) => ty,
None => todo!(), // TODO: infer the type of the argument after type checking the body.
};
arg_tys.push((arg, ty.clone()));
new_env.bind(arg, ty);
}
// Type check the body.
let tbody = type_expr(&mut new_env, unbox!(body))?;
// Return the typed lambda expression.
oks!(TExpr::Lambda {
params: arg_tys,
body: sbox!(tbody.clone()),
ret_ty: tbody.0.ty().clone(),
})
}
Expr::Call(func, cargs) => {
// Get span of the arguments.
let args_span = cargs.iter()
.map(|arg| arg.1.into_range())
.fold(None, |acc: Option<std::ops::Range<usize>>, range| match acc {
Some(acc) => Some(acc.start..range.end),
None => Some(range),
})
.unwrap_or(func.1.end..func.1.end+2);
// Type check the arguments.
let mut targs = Vec::new();
for arg in cargs {
let targ = type_expr(env, arg)?;
targs.push(targ);
}
// Type check the function (callee).
let tfunc = type_expr(env, unbox!(func))?;
// Get the function type of the callee. (if any).
if let Some((param_tys, ret_ty)) = tfunc.0.clone().as_fn() {
// Check if the number of arguments match the number of parameters.
if param_tys.len() != targs.len() {
return Err(TypeError::new(
format!(
"Expected {} arguments, got {}",
param_tys.len(),
targs.len(),
),
args_span.into(),
).with_note(format!(
"Expected {} arguments",
param_tys.len(),
)).with_hint(
format!(
"This expect arguments of type `{}`",
param_tys.iter().map(|ty| ty.to_string()).collect::<Vec<_>>().join(", ")
),
func.1,
));
}
// Check if the types of the arguments match the types of the parameters.
for (arg, param) in targs.iter().zip(param_tys.iter()) {
if arg.0.ty() != param {
return Err(TypeError::new(
format!(
"Expected argument of type `{}`, got `{}`",
param,
arg.0.ty(),
),
arg.1,
).with_note(format!(
"Expected argument of type `{}`",
param,
)));
}
}
// Return the typed call expression.
oks!(TExpr::Call {
func: sbox!(tfunc),
args: targs,
ret_ty,
})
} else {
Err(TypeError::new(
format!("Expected function, got `{}`", tfunc.0.ty()),
tfunc.1,
))
}
}
Expr::If { cond, t, f } => {
let tcond = type_expr(env, unbox!(cond))?;
let tt = type_expr(env, unbox!(t))?;
let tf = type_expr(env, unbox!(f))?;
// Check if the condition is of type `bool`.
if tcond.0.ty() != &Type::Bool {
return Err(TypeError::new(
format!("Expected condition of type `bool`, got `{}`", tcond.0.ty()),
tcond.1,
));
}
// Check if the true and false branches have the same type.
if tt.0.ty() != tf.0.ty() {
return Err(TypeError::new(
format!(
"Expected the branches to have the same type, got `{}` and `{}`",
tt.0.ty(),
tf.0.ty(),
),
tf.1,
).with_note(format!(
"Expected this branch to be type of `{}`",
tt.0.ty(),
)));
}
oks!(TExpr::If {
cond: sbox!(tcond),
br_ty: tt.0.ty().clone(),
t: sbox!(tt),
f: sbox!(tf),
})
}
Expr::Let { bindings, body } => {
// Create a new type environment.
let mut new_env = env.clone();
// Type check the bindings.
let mut tbindings = Vec::new();
for (name, maybe_ty, expr) in bindings {
let ty = match maybe_ty {
Some(ty) => ty,
None => todo!("Type inferrence"), // TODO: infer.
};
let texpr = type_expr(&mut new_env, unbox!(expr))?;
// Check if the type of the binding matches the type of the expression.
if texpr.0.ty() != &ty {
return Err(TypeError::new(
format!(
"Expected the value to be of type `{}`, got `{}`",
ty,
texpr.0.ty(),
),
texpr.1,
).with_note(format!(
"Expected this value to be of type `{}`",
ty,
)));
}
tbindings.push((name, ty.clone(), sbox!(texpr)));
new_env.bind(name, ty);
}
// Type check the body.
let tbody = type_expr(&mut new_env, unbox!(body))?;
// Return the typed let expression.
oks!(TExpr::Let {
bindings: tbindings,
body: sbox!(tbody),
})
}
Expr::Assign(bindings) => {
// Type check the bindings.
let mut tbindings = Vec::new();
for (name, maybe_ty, expr) in bindings {
let ty = match maybe_ty {
Some(ty) => ty,
None => todo!("Type inferrence"), // TODO: infer.
};
let texpr = type_expr(env, unbox!(expr))?;
// Check if the type of the binding matches the type of the expression.
if texpr.0.ty() != &ty {
return Err(TypeError::new(
format!(
"Expected the binding to be of type `{}`, got `{}`",
ty,
texpr.0.ty(),
),
texpr.1,
).with_note(format!(
"Expected this binding to be of type `{}`",
ty,
)));
}
tbindings.push((name, ty.clone(), sbox!(texpr)));
env.bind(name, ty);
}
// Return the typed assign expression.
oks!(TExpr::Assign(tbindings))
}
Expr::Block { exprs, void } => {
let texprs = exprs
.into_iter()
.map(|e| type_expr(env, unbox!(e)))
.collect::<Result<Vec<_>, _>>()?;
let ret_ty = if void {
Type::Unit
} else if let Some(texpr) = texprs.last() {
texpr.0.ty().clone()
} else {
Type::Unit
};
oks!(TExpr::Block {
exprs: texprs,
void,
ret_ty,
})
}
#[allow(unreachable_patterns)]
_ => todo!(),
}
}
pub fn check(es: Vec<Spanned<Expr<'_>>>) -> Result<Vec<Spanned<TExpr<'_>>>, TypeError> {
let mut env = TypeContext::new();
let mut tes = Vec::new();
for e in es {
let te = type_expr(&mut env, e)?;
tes.push(te);
}
Ok(tes)
}

View file

@ -1,3 +1,2 @@
pub mod ty;
pub mod check;
pub mod typed;

View file

@ -6,14 +6,11 @@ use crate::parse::parser::{
Spanned,
};
type TypedBinding<'src> =
(&'src str, Type, Spanned<Box<TExpr<'src>>>);
// Typed version of the expression.
#[derive(Clone, Debug)]
pub enum TExpr<'src> {
Lit(Lit<'src>),
Ident(&'src str, Type),
Ident(&'src str),
Unary {
op: UnaryOp,
@ -35,7 +32,6 @@ pub enum TExpr<'src> {
Call {
func: Spanned<Box<Self>>,
args: Vec<Spanned<Self>>,
ret_ty: Type,
},
If {
cond: Spanned<Box<Self>>,
@ -44,52 +40,19 @@ pub enum TExpr<'src> {
br_ty: Type,
},
Let {
bindings: Vec<TypedBinding<'src>>,
name: &'src str,
ty: Type,
value: Spanned<Box<Self>>,
body: Spanned<Box<Self>>,
},
Assign(Vec<TypedBinding<'src>>),
Define {
name: &'src str,
ty: Type,
value: Spanned<Box<Self>>,
},
Block {
exprs: Vec<Spanned<Self>>,
void: bool,
ret_ty: Type,
},
}
impl<'src> TExpr<'src> {
pub fn ty(&self) -> &Type {
match self {
TExpr::Lit(lit) => match lit {
Lit::Unit => &Type::Unit,
Lit::Bool(_) => &Type::Bool,
Lit::Num(_) => &Type::Num,
Lit::Str(_) => &Type::Str,
},
TExpr::Ident(_, ty) => ty,
TExpr::Unary { ret_ty, .. } => ret_ty,
TExpr::Binary { ret_ty, .. } => ret_ty,
TExpr::Lambda { ret_ty, .. } => ret_ty,
TExpr::Call { ret_ty, .. } => ret_ty,
TExpr::If { br_ty, .. } => br_ty,
// Get the type from the body.
TExpr::Let { body, .. } => body.0.ty(),
// Assignment is always unit.
TExpr::Assign { .. } => &Type::Unit,
// Get the type from the last expression in the block
// if the expression is not ended with a semicolon.
TExpr::Block { ret_ty, .. } => ret_ty,
}
}
pub fn as_fn(self) -> Option<(Vec<Type>, Type)> {
match self {
TExpr::Ident(_, Type::Func(params, ret_ty)) => Some((params, *ret_ty)),
TExpr::Lambda { params, ret_ty, .. } => {
let p = params.into_iter()
.map(|(_, ty)| ty)
.collect();
Some((p, ret_ty))
}
_ => None,
}
}
}