Compare commits

...

2 commits

Author SHA1 Message Date
Bee c8f66935c3 Tomfoolery 2023-11-22 00:23:52 -05:00
Bee 057ee6cb61 Can change word size 2023-11-21 16:50:58 -05:00
7 changed files with 223 additions and 146 deletions

View file

@ -1,15 +1,17 @@
// `include "instructions.v"
module Beepo #(
parameter FREQ = 27_000_000,
parameter UART_BAUD = 115200
parameter FREQ = 27_000_000,
parameter UART_BAUD = 115200,
parameter WORD_SIZE = 16
) (
input i_clk,
input i_button1,
input i_resume,
output [6:0] o_segments_drive,
output [3:0] o_displays_neg,
output o_breakpoint
output o_breakpoint,
output o_uart_tx
);
// State values
localparam IDLE = 0; // Start fetching instruction
@ -30,28 +32,28 @@ module Beepo #(
localparam [3:0] ARG_A = 7; // Absolute address immediate, 64 bit
localparam [3:0] ARG_N = 8; // No argument
localparam [0:31] ARG_SIZES = {4'd1, 4'd4, 4'd2, 4'd1, 4'd2, 4'd4, 4'd8, 4'd8};
localparam [0:31] ARG_SIZES = {4'h1, 4'h4, 4'h2, 4'h1, 4'h2, 4'h4, 4'h8, 4'h8};
localparam PC_START = 0;
localparam NUM_REGS = 4;
reg [2:0] r_state = IDLE;
reg [63:0] r_tick = 0;
// Registers
reg [63:0] r_pc = PC_START; // program counter
reg [63:0] r_registers [0:NUM_REGS]; // up to 255 modifiable registers
reg [7:0] r_instr; // the current instruction
reg [7:0] r_arg_regs [0:3]; // register arguments
reg [63:0] r_arg_imm = 0; // immediate argument
reg [63:0] r_arg_addr = 0; // relative/absolute address argument
reg [WORD_SIZE-1:0] r_pc = PC_START; // program counter
reg [3:0] r_inc_pc = 1;
reg [WORD_SIZE-1:0] r_registers [0:NUM_REGS]; // up to 255 modifiable registers
reg [7:0] r_instr; // the current instruction
reg [7:0] r_arg_regs [0:3]; // register arguments
reg [WORD_SIZE-1:0] r_arg_imm = 0; // immediate argument
reg [WORD_SIZE-1:0] r_arg_addr = 0; // relative/absolute address argument
reg [1:0] r_arg_index = 3; // the instruction index currently being fetched
reg [3:0] r_arg_types [0:3]; // the types of each argument to be fetched
reg [1:0] r_arg_index = 3; // the instruction index currently being fetched
reg [3:0] r_arg_types [0:3]; // the types of each argument to be fetched
reg [15:0] r_arg_types_packed = 0; // to be unpacked into r_arg_types
reg [2:0] r_arg_bytes = 0; // the number of bytes left to fetch for the current argument
reg [2:0] r_arg_bytes = 0; // the number of bytes left to fetch for the current argument
reg [3:0] r_arg_current_type = 8; // the type of the current argument
reg [5:0] r_arg_bit = 0; // the current lower bit index being fetched for the current argument
reg [5:0] r_arg_bit = 0; // the current lower bit index being fetched for the current argument
reg r_mem_wre = 0;
reg r_mem_busy = 0;
@ -59,12 +61,24 @@ module Beepo #(
reg [7:0] r_mem_in = 0;
reg [7:0] r_mem_index = 0; // the index of the byte in transfer
reg [7:0] r_mem_reg = 0; // the register currently used in transfer
wire [63:0] w_mem_addr = r_mem_trans ? r_arg_addr : r_pc;
wire [7:0] w_mem_fetch;
wire [WORD_SIZE-1:0] w_mem_addr = r_mem_trans ? r_arg_addr : r_pc;
// wire [7:0] w_mem_fetch;
wire [255:0] w_mem_fetch;
reg [7:0] r_mem_tx_size = 1;
reg r_mem_start = 0;
wire [0:0] w_mem_flags = r_mem_wre;
reg r_breakpoint = 0;
assign o_breakpoint = r_breakpoint;
reg r_uart_rst_n = 0;
reg [7:0] r_uart_data = 0;
reg r_uart_busy = 0;
reg [7:0] r_uart_left = 0;
reg [WORD_SIZE-1:0] r_uart_addr = 0;
wire w_uart_ready;
genvar i;
generate
@ -73,13 +87,13 @@ module Beepo #(
end
endgenerate
always @(posedge i_clk) r_tick <= r_tick + 1;
always @(posedge i_clk) begin
if (r_breakpoint == 1) begin
r_breakpoint = ~i_resume;
end else if (r_mem_busy == 1) begin
r_mem_busy = 0;
r_pc <= r_pc + r_inc_pc;
r_inc_pc <= 0;
r_mem_busy <= ~w_mem_ready;
end else case (r_state)
IDLE: begin
r_state <= FETCHI;
@ -92,7 +106,6 @@ module Beepo #(
r_arg_bit <= 0;
r_mem_trans <= 0;
case (w_mem_fetch)
`TX: r_arg_types_packed = `TX_ARGS;
`NOP: r_arg_types_packed = `NOP_ARGS;
@ -114,14 +127,14 @@ module Beepo #(
default: r_arg_types_packed = {ARG_N, ARG_N, ARG_N, ARG_N};
endcase
r_pc = r_pc + 1;
r_mem_busy = 1;
r_inc_pc <= 1;
r_mem_busy <= 1;
if (r_arg_types_packed[15:12] != ARG_N) begin
r_state <= FETCHA;
r_arg_bytes <= ARG_SIZES[r_arg_types_packed[15:12]*4+:4];
r_arg_current_type <= r_arg_types_packed[15:12];
r_arg_current_type = r_arg_types_packed[15:12];
r_mem_tx_size = ARG_SIZES[r_arg_current_type*4+:4];
r_arg_types[0] <= r_arg_types_packed[15:12];
r_arg_types[1] <= r_arg_types_packed[11:8];
@ -134,115 +147,134 @@ module Beepo #(
r_arg_regs[3] <= 0;
r_arg_imm <= 0;
r_arg_addr <= 0;
end else r_state <= EXEC;
end
FETCHA: begin
if (r_arg_current_type == ARG_N) r_state <= IDLE;
else begin
case (r_arg_current_type)
ARG_R: r_arg_regs[r_arg_index] <= w_mem_fetch;
ARG_O: r_arg_addr[r_arg_bit+:8] <= w_mem_fetch;
ARG_P: r_arg_addr[r_arg_bit+:8] <= w_mem_fetch;
ARG_B: r_arg_imm[r_arg_bit+:8] <= w_mem_fetch;
ARG_H: r_arg_imm[r_arg_bit+:8] <= w_mem_fetch;
ARG_W: r_arg_imm[r_arg_bit+:8] <= w_mem_fetch;
ARG_D: r_arg_imm[r_arg_bit+:8] <= w_mem_fetch;
ARG_A: r_arg_addr[r_arg_bit+:8] <= w_mem_fetch;
ARG_R: r_arg_regs[r_arg_index] <= w_mem_fetch;
ARG_O: r_arg_addr <= w_mem_fetch;
ARG_P: r_arg_addr <= w_mem_fetch;
ARG_B: r_arg_imm <= w_mem_fetch;
ARG_H: r_arg_imm <= w_mem_fetch;
ARG_W: r_arg_imm <= w_mem_fetch;
ARG_D: r_arg_imm <= w_mem_fetch;
ARG_A: r_arg_addr <= w_mem_fetch;
endcase
r_pc <= r_pc + 1;
r_mem_busy <= 1;
r_arg_bytes = r_arg_bytes - 1;
r_arg_bit <= r_arg_bit + 8;
if (r_arg_bytes == 0) begin
r_arg_index = r_arg_index + 1;
r_arg_current_type = r_arg_types[r_arg_index];
r_arg_index = r_arg_index + 1;
r_inc_pc = ARG_SIZES[r_arg_current_type*4+:4];
r_arg_current_type = r_arg_types[r_arg_index];
// Execute when there is no next argument or r_arg_index has overflowed
if (r_arg_current_type == ARG_N || r_arg_index == 0) r_state <= EXEC;
else begin
r_arg_bit <= 0;
r_arg_bytes <= ARG_SIZES[r_arg_current_type*4+:4];
end
// Execute when there is no next argument or r_arg_index has overflowed
if (r_arg_current_type == ARG_N || r_arg_index == 0) begin
r_state <= EXEC;
r_pc <= r_pc + r_inc_pc;
r_inc_pc <= 0;
end else begin
r_mem_busy <= 1;
r_mem_tx_size = ARG_SIZES[(r_arg_current_type)*4+:4];
end
end
end
EXEC: begin
r_state <= FETCHI;
case (r_instr)
`TX: r_state <= DONE;
`NOP: ;
`ADD8: set_reg_byte (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:8] + r_registers [r_arg_regs[2]][0+:8]);
`ADD16: set_reg_hword (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:16] + r_registers [r_arg_regs[2]][0+:16]);
`ADD32: set_reg_word (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:32] + r_registers [r_arg_regs[2]][0+:32]);
`ADD64: set_reg_dword (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:64] + r_registers [r_arg_regs[2]][0+:64]);
`ADDI8: set_reg_byte (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:8] + r_arg_imm [0+:8]);
`ADDI16: set_reg_hword (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:16] + r_arg_imm [0+:16]);
`ADDI32: set_reg_word (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:32] + r_arg_imm [0+:32]);
`ADDI64: set_reg_dword (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:64] + r_arg_imm [0+:64]);
`LI8: set_reg_byte (r_arg_regs[0], r_arg_imm);
`LI16: set_reg_hword (r_arg_regs[0], r_arg_imm);
`LI32: set_reg_word (r_arg_regs[0], r_arg_imm);
`LI64: set_reg_dword (r_arg_regs[0], r_arg_imm);
`LD: begin
if (r_arg_imm > 0) begin
r_arg_addr <= r_arg_addr + r_registers[r_arg_regs[1]];
r_mem_index <= 0;
r_mem_reg <= r_arg_regs[0];
r_mem_busy <= 1;
r_state <= MEMR;
r_mem_trans <= 1;
if (WORD_SIZE >= 8)
case (r_instr)
`TX: r_state <= DONE;
`NOP: ;
`ADD8: set_reg_byte (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:8] + r_registers [r_arg_regs[2]][0+:8]);
`ADDI8: set_reg_byte (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:8] + r_arg_imm [0+:8]);
`LI8: set_reg_byte (r_arg_regs[0], r_arg_imm);
`LD: begin
if (r_arg_imm > 0) begin
r_arg_addr <= r_arg_addr + r_registers[r_arg_regs[1]];
r_mem_index <= 0;
r_mem_reg <= r_arg_regs[0];
r_state <= MEMR;
r_mem_tx_size <= r_arg_imm;
r_mem_busy <= 1;
// r_mem_trans <= 1;
end
end
end
`ST: begin
if (r_arg_imm > 0) begin
r_arg_addr <= r_arg_addr + r_registers[r_arg_regs[1]];
r_mem_index <= 1;
r_mem_reg <= r_arg_regs[0];
r_mem_wre <= 1;
r_mem_in <= r_registers[r_arg_regs[0]][0+:8];
r_mem_busy <= 1;
r_state <= MEMR;
r_mem_trans <= 1;
`ST: begin
if (r_arg_imm > 0) begin
r_arg_addr <= r_arg_addr + r_registers[r_arg_regs[1]];
r_mem_reg <= r_arg_regs[0];
r_mem_wre <= 1;
r_mem_tx_size <= r_arg_imm;
r_mem_in <= r_registers[r_arg_regs[0]];
r_mem_busy <= 1;
// r_mem_index <= 1;
// r_mem_in <= r_registers[r_arg_regs[0]][0+:8];
// r_mem_busy <= 1;
// r_state <= MEMR;
// r_mem_trans <= 1;
end
end
end
`EBP: r_breakpoint = 1;
endcase
`EBP: r_breakpoint = 1;
endcase
if (WORD_SIZE >= 16)
case (r_instr)
`ADD16: set_reg_hword (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:16] + r_registers [r_arg_regs[2]][0+:16]);
`ADDI16: set_reg_hword (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:16] + r_arg_imm [0+:16]);
`LI16: set_reg_hword (r_arg_regs[0], r_arg_imm);
endcase
if (WORD_SIZE >= 32)
case (r_instr)
`ADD32: set_reg_word (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:32] + r_registers [r_arg_regs[2]][0+:32]);
`ADDI32: set_reg_word (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:32] + r_arg_imm [0+:32]);
`LI32: set_reg_word (r_arg_regs[0], r_arg_imm);
endcase
if (WORD_SIZE >= 64)
case (r_instr)
`ADD64: set_reg_dword (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:64] + r_registers [r_arg_regs[2]][0+:64]);
`ADDI64: set_reg_dword (r_arg_regs[0], r_registers[r_arg_regs[1]][0+:64] + r_arg_imm [0+:64]);
`LI64: set_reg_dword (r_arg_regs[0], r_arg_imm);
endcase
end
MEMR: begin
case (r_instr)
`LD: set_reg_part(r_mem_reg, w_mem_fetch, r_mem_index*8);
`ST: r_mem_in <= r_registers[r_mem_reg][r_mem_index*8+:8];
endcase
`LD: set_reg_dword(r_mem_reg, w_mem_fetch);
endcase
r_mem_busy <= 1;
// case (r_instr)
// `LD: set_reg_part(r_mem_reg, w_mem_fetch, r_mem_index*8);
// `ST: r_mem_in <= r_registers[r_mem_reg][r_mem_index*8+:8];
// endcase
if (r_arg_imm == 1) begin
// reached the end of the transfer
r_mem_wre <= 0;
r_mem_trans <= 0;
r_state <= FETCHI;
end else begin
r_mem_index = r_mem_index + 1;
// r_mem_busy <= 1;
if (r_mem_index == 8) begin
// reached the end of this register
r_mem_reg <= r_mem_reg + 1;
r_mem_index <= 0;
end
// if (r_arg_imm == 1) begin
// // reached the end of the transfer
// r_mem_wre <= 0;
// r_mem_trans <= 0;
// r_state <= FETCHI;
// end else begin
// r_mem_index = r_mem_index + 1;
r_arg_addr <= r_arg_addr + 1;
r_arg_imm <= r_arg_imm - 1;
end
// if (r_mem_index == WORD_SIZE / 8) begin
// // reached the end of this register
// r_mem_reg <= r_mem_reg + 1;
// r_mem_index <= 0;
// end
// r_arg_addr <= r_arg_addr + 1;
// r_arg_imm <= r_arg_imm - 1;
// end
end
endcase
end
always @(r_registers[0]) r_registers[0] <= 0;
r_registers[0] <= 0;
end
task automatic set_reg_byte(
input [7:0] being_set,
@ -267,7 +299,7 @@ module Beepo #(
task automatic set_reg_dword(
input [7:0] being_set,
input [63:0] setting_to
input [WORD_SIZE-1:0] setting_to
);
r_registers[being_set][0+:64] = setting_to;
endtask
@ -280,21 +312,43 @@ module Beepo #(
if (start_bit <= 56) r_registers[being_set][start_bit+:8] = setting_to;
endtask
Multi7 display (
Multi7 display (
.i_clk(i_clk),
.i_hex({r_registers[1][15:0]}),
.o_segments_drive(o_segments_drive),
.o_displays_neg(o_displays_neg)
);
// uart_tx #(
// .CLK_FRE(FREQ/1_000_000),
// .BAUD_RATE(115200)
// ) serial (
// .clk(i_clk),
// .rst_n(r_uart_rst_n),
// .tx_data(r_uart_data),
// .tx_data_ready(w_uart_ready),
// .tx_pin(o_uart_tx)
// );
// spMem mem (
// .clk(i_clk),
// .ad(w_mem_addr),
// .din(r_mem_in),
// .dout(w_mem_fetch),
// .oce(0),
// .ce(1),
// .reset(0),
// .wre(r_mem_wre)
// );
Mmu mem (
.i_clk(i_clk),
.i_hex({r_registers[1][15:0]}),
.o_segments_drive(o_segments_drive),
.o_displays_neg(o_displays_neg)
);
spMem mem (
.clk(i_clk),
.ad(w_mem_addr),
.din(r_mem_in),
.dout(w_mem_fetch),
.oce(0),
.ce(1),
.reset(0),
.wre(r_mem_wre)
.i_addr(w_mem_addr),
.i_in(r_mem_in),
.i_flags(w_mem_flags),
.i_size(r_mem_tx_size),
.i_start(r_mem_busy),
.o_ready(w_mem_ready),
.o_out(w_mem_fetch)
);
endmodule

View file

@ -61,5 +61,7 @@
`define JEQ 'h56
// Environment traps
`define ECA 'h5C
`define ECA_ARGS {ARG_N, ARG_N, ARG_N, ARG_N}
`define EBP 'h5D
`define EBP_ARGS {ARG_N, ARG_N, ARG_N, ARG_N}

View file

@ -11,7 +11,7 @@
// 3. Set i_flags.0 to 1
// 4. Pulse i_start high
// 5. When o_ready goes high, the transfer is complete
module Bus#(
module Mmu#(
parameter ADDR_WIDTH = 16,
parameter DATA_WIDTH = 256
) (
@ -30,41 +30,61 @@ module Bus#(
localparam S_IDLE = 0;
localparam S_BUSY = 1;
reg r_status = S_IDLE;
reg r_enable = 0;
reg r_status = S_IDLE;
reg r_enabled = 0;
reg r_ready = 0;
reg [5:0] r_tx_size = 0;
reg [5:0] r_byte_index = 0;
reg [7:0] r_in = 0;
reg [7:0] r_in = 0;
reg [ADDR_WIDTH-1:0] r_mem_addr;
reg [DATA_WIDTH-1:0] r_out = 0;
assign o_ready = r_byte_index == 0 || r_byte_index > r_tx_size;
wire [7:0] w_mem_fetch;
assign o_ready = r_ready;
assign o_out = r_out;
always @(posedge i_clk or posedge i_start) begin
if (i_start && !r_enable) begin
if (i_clk && r_ready) begin
r_ready <= 0;
end else if (i_start && !r_enabled) begin
r_mem_addr <= i_addr;
r_enable <= 1;
r_status <= S_BUSY;
r_tx_size <= i_size;
r_in <= i_in[0+:8];
r_out <= 0;
r_byte_index <= 1; // 0 is transferring now
end else if (r_status == S_BUSY) r_status <= S_IDLE;
else if (r_enable && r_byte_index > r_tx_size) r_enable <= 0;
else if (r_enable) begin
// increment address, input next byte
r_mem_addr <= r_mem_addr + 1;
r_status <= S_BUSY;
r_in <= i_in[r_byte_index*8+:8];
r_byte_index <= r_byte_index + 1;
r_enabled <= 1;
end else if (r_status == S_BUSY) begin
r_status <= S_IDLE;
end else if (r_enabled) begin
if (r_tx_size == 1) begin
r_out[(r_byte_index-1)*8+:8] = w_mem_fetch;
r_ready <= 1;
r_enabled = 0;
end else begin
// increment address, input next byte
r_status <= S_BUSY;
r_in <= i_in[r_byte_index*8+:8];
r_out[(r_byte_index-1)*8+:8] = w_mem_fetch;
r_mem_addr = r_mem_addr + 1;
r_byte_index = r_byte_index + 1;
if (r_byte_index >= r_tx_size) begin
r_ready <= 1;
r_enabled = 0;
end
end
end
end
spMem memory (
.dout(o_out), //output [7:0] dout
.dout(w_mem_fetch), //output [7:0] dout
.clk(i_clk), //input clk
.oce(1'b0), //input oce (unused)
.ce(r_enable), //input ce
.ce(r_enabled), //input ce
.reset(1'b0), //input reset
.wre(i_flags[0]), //input wre (write enable)
.wre(i_flags[0]), //input wre (write enabled)
.ad(r_mem_addr), //input [15:0] ad
.din(r_in) //input [7:0] din
);

View file

@ -5,7 +5,7 @@ HBASM = ./hbasm
SPMEM = spmem.v
INPUT_FILE = inputs.txt
BUILD_DEPS = ../src/beepo.v ../src/instructions.v ../src/uart_tx.v ../src/multi7.v ../src/bus.v
BUILD_DEPS = ../src/beepo.v ../src/instructions.v ../src/uart_tx.v ../src/multi7.v ../src/mmu.v
%.clean: %/build
rm -r $<

View file

@ -1,4 +1,4 @@
../src/instructions.v
../src/uart_tx.v
../src/multi7.v
../src/bus.v
../src/mmu.v

View file

@ -1,13 +1,13 @@
li64 (r4, 0x1020304050607080);
st (r4, r0, 0x400, 8);
ld (r1, r0, 0x400, 8); // 0x1020304050607080
ld (r1, r0, 0x400, 8);
ebp();
ld (r2, r0, 0x404, 4); // 0x0000000010203040
ld (r2, r0, 0x404, 4);
ebp();
li64 (r1, 0x1010202030304040);
li64 (r2, 0x5050606070708080);
st (r1, r0, 0x410, 16);
ld (r3, r0, 0x410, 16);
ebp();
tx();

View file

@ -21,7 +21,8 @@ module tb_beepo();
wire w_breakpoint;
Beepo #(
.FREQ(1)
.FREQ(1),
.WORD_SIZE(64)
) bep (
.i_clk(r_clk),
.i_resume(r_resume),
@ -72,7 +73,7 @@ module tb_beepo();
end
initial #100000 begin
$display("[ADDING] Timeout");
$display("[MEM] Timeout");
$finish;
end
endmodule