pub use self::reg::{RET_ADDR, STACK_PTR, ZERO}; use { crate::{ ident::{self, Ident}, instrs::{self, *}, lexer::TokenKind, parser::{ self, find_symbol, idfl, CommentOr, CtorField, Expr, ExprRef, FileId, Pos, StructField, }, ty::{self, TyCheck}, Field, Func, Global, LoggedMem, OffsetIter, ParamAlloc, Reloc, Sig, Struct, SymKey, TypedReloc, Types, HEADER_SIZE, }, alloc::{boxed::Box, string::String, vec::Vec}, core::{fmt::Display, u16}, }; type Offset = u32; type Size = u32; type ArrayLen = u32; fn load_value(ptr: *const u8, size: u32) -> u64 { let mut dst = [0u8; 8]; dst[..size as usize] .copy_from_slice(unsafe { core::slice::from_raw_parts(ptr, size as usize) }); u64::from_ne_bytes(dst) } fn ensure_loaded(value: CtValue, derefed: bool, size: u32) -> u64 { if derefed { load_value(value.0 as *const u8, size) } else { value.0 } } mod stack { use { super::{Offset, Size}, alloc::vec::Vec, core::num::NonZeroU32, }; impl crate::Reloc { pub fn pack_srel(id: &Id, off: u32) -> u64 { ((id.repr() as u64) << 32) | (off as u64) } pub fn apply_stack_offset(&self, code: &mut [u8], stack: &Alloc) { let bytes = &code[self.offset as usize + self.sub_offset as usize..][..self.width as usize]; let (id, off) = Self::unpack_srel(u64::from_ne_bytes(bytes.try_into().unwrap())); self.write_offset(code, stack.final_offset(id, off) as i64); } pub fn unpack_srel(id: u64) -> (u32, u32) { ((id >> 32) as u32, id as u32) } } #[derive(Debug, PartialEq, Eq)] pub struct Id(NonZeroU32); impl Id { fn index(&self) -> usize { (self.0.get() as usize - 1) & !(1 << 31) } pub fn repr(&self) -> u32 { self.0.get() } pub fn as_ref(&self) -> Self { Self(unsafe { NonZeroU32::new_unchecked(self.0.get() | 1 << 31) }) } pub fn is_ref(&self) -> bool { self.0.get() & (1 << 31) != 0 } } impl Drop for Id { fn drop(&mut self) { let is_panicking = { #[cfg(feature = "std")] { std::thread::panicking() } #[cfg(not(feature = "std"))] { false } }; if !is_panicking && !self.is_ref() { unreachable!("stack id leaked: {:?}", self.0); } } } #[derive(PartialEq)] struct Meta { size: Size, offset: Offset, rc: u32, } #[derive(Default)] pub struct Alloc { height: Size, pub max_height: Size, meta: Vec, } impl Alloc { pub fn allocate(&mut self, size: Size) -> Id { self.meta.push(Meta { size, offset: 0, rc: 1 }); self.height += size; self.max_height = self.max_height.max(self.height); Id(unsafe { NonZeroU32::new_unchecked(self.meta.len() as u32) }) } pub fn free(&mut self, id: Id) { core::mem::forget(id); //if id.is_ref() {} //let meta = &mut self.meta[id.index()]; //meta.rc -= 1; //if meta.rc != 0 { // return; //} //meta.offset = self.height; //self.height -= meta.size; } pub fn dup_id(&mut self, id: &Id) -> Id { if id.is_ref() { return id.as_ref(); } self.meta[id.index()].rc += 1; Id(id.0) } pub fn finalize_leaked(&mut self) { for meta in self.meta.iter_mut().filter(|m| m.rc > 0) { meta.offset = self.height; self.height -= meta.size; } } pub fn clear(&mut self) { self.height = 0; self.max_height = 0; self.meta.clear(); } pub fn final_offset(&self, id: u32, extra_offset: Offset) -> Offset { debug_assert_ne!(id, 0); (self.max_height - self.meta[(id as usize - 1) & !(1 << 31)].offset) + extra_offset } } } mod reg { use alloc::vec::Vec; pub const STACK_PTR: Reg = 254; pub const ZERO: Reg = 0; pub const RET: Reg = 1; pub const RET_ADDR: Reg = 31; type Reg = u8; #[cfg(all(debug_assertions, feature = "std"))] type Bt = std::backtrace::Backtrace; #[cfg(not(all(debug_assertions, feature = "std")))] type Bt = (); #[derive(Default, Debug)] pub struct Id(Reg, Option); impl PartialEq for Id { fn eq(&self, other: &Self) -> bool { self.0 == other.0 } } impl Eq for Id {} impl Id { pub const RET: Self = Id(RET, None); pub fn get(&self) -> Reg { self.0 } pub fn as_ref(&self) -> Self { Self(self.0, None) } pub fn is_ref(&self) -> bool { self.1.is_none() } } impl From for Id { fn from(value: u8) -> Self { Self(value, None) } } #[cfg(all(debug_assertions, feature = "std"))] impl Drop for Id { fn drop(&mut self) { let is_panicking = { #[cfg(all(debug_assertions, feature = "std"))] { std::thread::panicking() } #[cfg(not(all(debug_assertions, feature = "std")))] { false } }; if !is_panicking && let Some(bt) = self.1.take() { unreachable!("reg id leaked: {:?} {bt}", self.0); } } } #[derive(Default, PartialEq, Eq)] pub struct Alloc { free: Vec, max_used: Reg, } impl Alloc { pub fn init(&mut self) { self.free.clear(); self.free.extend((32..=253).rev()); self.max_used = RET_ADDR; } pub fn allocate(&mut self) -> Id { let reg = self.free.pop().expect("TODO: we need to spill"); self.max_used = self.max_used.max(reg); Id( reg, #[cfg(all(debug_assertions, feature = "std"))] Some(std::backtrace::Backtrace::capture()), #[cfg(not(all(debug_assertions, feature = "std")))] Some(()), ) } pub fn free(&mut self, mut reg: Id) { if reg.1.take().is_some() { self.free.push(reg.0); core::mem::forget(reg); } } pub fn pushed_size(&self) -> usize { ((self.max_used as usize).saturating_sub(RET_ADDR as usize) + 1) * 8 } } } struct Value { ty: ty::Id, loc: Loc, } impl Value { fn new(ty: impl Into, loc: impl Into) -> Self { Self { ty: ty.into(), loc: loc.into() } } fn void() -> Self { Self { ty: ty::Id::VOID, loc: Loc::ct(0) } } fn imm(value: u64) -> Self { Self { ty: ty::Id::UINT, loc: Loc::ct(value) } } fn ty(ty: ty::Id) -> Self { Self { ty: ty::Id::TYPE, loc: Loc::ct(ty.repr() as u64) } } } enum LocCow<'a> { Ref(&'a Loc), Owned(Loc), } impl LocCow<'_> { fn as_ref(&self) -> &Loc { match self { Self::Ref(value) => value, Self::Owned(value) => value, } } } impl<'a> From<&'a Loc> for LocCow<'a> { fn from(value: &'a Loc) -> Self { Self::Ref(value) } } impl From for LocCow<'_> { fn from(value: Loc) -> Self { Self::Owned(value) } } #[repr(packed)] #[derive(Debug, PartialEq, Eq, Clone, Copy)] struct CtValue(u64); #[derive(Debug, PartialEq, Eq)] enum Loc { Rt { derefed: bool, reg: reg::Id, stack: Option, offset: Offset }, Ct { derefed: bool, value: CtValue }, } impl Loc { fn stack(stack: stack::Id) -> Self { Self::Rt { stack: Some(stack), reg: reg::STACK_PTR.into(), derefed: true, offset: 0 } } fn reg(reg: impl Into) -> Self { let reg = reg.into(); assert!(reg.get() != 0); Self::Rt { derefed: false, reg, stack: None, offset: 0 } } fn ct(value: u64) -> Self { Self::Ct { value: CtValue(value), derefed: false } } fn ct_ptr(value: u64) -> Self { Self::Ct { value: CtValue(value), derefed: true } } fn ty(ty: ty::Id) -> Self { Self::ct(ty.repr() as _) } fn offset(mut self, offset: u32) -> Self { match &mut self { Self::Rt { offset: off, .. } => *off += offset, Self::Ct { derefed: false, value } => value.0 += offset as u64, _ => unreachable!("offseting constant"), } self } fn as_ref(&self) -> Self { match *self { Loc::Rt { derefed, ref reg, ref stack, offset } => Loc::Rt { derefed, reg: reg.as_ref(), stack: stack.as_ref().map(stack::Id::as_ref), offset, }, Loc::Ct { value, derefed } => Self::Ct { derefed, value }, } } fn into_derefed(mut self) -> Self { match &mut self { Self::Rt { derefed, .. } => *derefed = true, val => unreachable!("{val:?}"), } self } fn assert_valid(&self) { assert!(!matches!(self, Self::Rt { reg, .. } if reg.get() == 0)); } fn take_owned(&mut self) -> Option { if self.is_ref() { return None; } Some(core::mem::replace(self, self.as_ref())) } fn is_ref(&self) -> bool { matches!(self, Self::Rt { reg, stack, .. } if reg.is_ref() && stack.as_ref().map_or(true, stack::Id::is_ref)) } fn to_ty(&self) -> Option { match *self { Self::Ct { derefed: false, value } => Some(ty::Id::from(value.0)), Self::Ct { derefed: true, value } => { Some(unsafe { core::ptr::read(value.0 as *const u8 as _) }) } Self::Rt { .. } => None, } } fn is_stack(&self) -> bool { matches!(self, Self::Rt { derefed: true, reg, stack: Some(_), offset: 0 } if reg.get() == STACK_PTR) } fn is_reg(&self) -> bool { matches!(self, Self::Rt { derefed: false, reg: _, stack: None, offset: 0 }) } } impl From for Loc { fn from(reg: reg::Id) -> Self { Loc::reg(reg) } } impl Default for Loc { fn default() -> Self { Self::ct(0) } } #[derive(Clone, Copy)] struct Loop { var_count: u32, offset: u32, reloc_base: u32, } struct Variable { id: Ident, value: Value, } struct ItemCtxSnap { stack_relocs: usize, ret_relocs: usize, loop_relocs: usize, code: usize, relocs: usize, } #[derive(Default)] struct ItemCtx { file: FileId, id: ty::Kind, ret: Option, ret_reg: reg::Id, inline_ret_loc: Loc, task_base: usize, stack: stack::Alloc, regs: reg::Alloc, loops: Vec, vars: Vec, stack_relocs: Vec, ret_relocs: Vec, loop_relocs: Vec, code: Vec, relocs: Vec, } impl ItemCtx { fn write_trap(&mut self, kind: trap::Trap) { self.emit(eca()); self.code.push(255); self.code.extend(kind.as_slice()); } fn snap(&self) -> ItemCtxSnap { ItemCtxSnap { stack_relocs: self.stack_relocs.len(), ret_relocs: self.ret_relocs.len(), loop_relocs: self.loop_relocs.len(), code: self.code.len(), relocs: self.relocs.len(), } } fn revert(&mut self, snap: ItemCtxSnap) { self.stack_relocs.truncate(snap.stack_relocs); self.ret_relocs.truncate(snap.ret_relocs); self.loop_relocs.truncate(snap.loop_relocs); self.code.truncate(snap.code); self.relocs.truncate(snap.relocs); } fn emit_addi(&mut self, dest: u8, op: u8, delta: u64) { if delta == 0 { if dest != op { self.emit(cp(dest, op)); } return; } self.emit(addi64(dest, op, delta)); } fn emit(&mut self, (len, instr): (usize, [u8; instrs::MAX_SIZE])) { self.code.extend_from_slice(&instr[..len]); } fn emit_prelude(&mut self) { self.emit(instrs::addi64(STACK_PTR, STACK_PTR, 0)); self.emit(instrs::st(RET_ADDR, STACK_PTR, 0, 0)); } fn emit_entry_prelude(&mut self) { self.emit(jal(RET_ADDR, reg::ZERO, 0)); self.emit(tx()); } pub fn dup_loc(&mut self, loc: &Loc) -> Loc { match *loc { Loc::Rt { derefed, ref reg, ref stack, offset } => Loc::Rt { reg: reg.as_ref(), derefed, stack: stack.as_ref().map(|s| self.stack.dup_id(s)), offset, }, ref loc => loc.as_ref(), } } fn finalize(&mut self) { if let Some(last_ret) = self.ret_relocs.last() && last_ret.offset as usize == self.code.len() - 5 { self.code.truncate(self.code.len() - 5); self.ret_relocs.pop(); } let len = self.code.len() as Offset; self.stack.finalize_leaked(); for rel in self.stack_relocs.drain(..) { rel.apply_stack_offset(&mut self.code, &self.stack) } for rel in self.ret_relocs.drain(..) { let off = rel.apply_jump(&mut self.code, len, 0); debug_assert!(off > 0); } let pushed = self.regs.pushed_size() as i64; let stack = self.stack.max_height as i64; write_reloc(&mut self.code, 3, -(pushed + stack), 8); write_reloc(&mut self.code, 3 + 8 + 3, stack, 8); write_reloc(&mut self.code, 3 + 8 + 3 + 8, pushed, 2); self.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _)); self.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _)); self.stack.clear(); debug_assert!(self.loops.is_empty()); debug_assert!(self.loop_relocs.is_empty()); debug_assert!(self.vars.is_empty()); } fn free_loc(&mut self, src: impl Into) { if let LocCow::Owned(Loc::Rt { reg, stack, .. }) = src.into() { self.regs.free(reg); if let Some(stack) = stack { self.stack.free(stack); } } } } fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) { let value = value.to_ne_bytes(); doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]); } mod task { use super::Offset; pub fn unpack(offset: Offset) -> Result { if offset >> 31 != 0 { Err((offset & !(1 << 31)) as usize) } else { Ok(offset) } } pub fn id(index: usize) -> Offset { 1 << 31 | index as u32 } } #[derive(Debug)] struct FTask { file: FileId, id: ty::Func, } #[derive(Default, Debug)] struct Ctx { loc: Option, ty: Option, check: TyCheck, } impl Ctx { pub fn with_loc(self, loc: Loc) -> Self { Self { loc: Some(loc), ..self } } pub fn with_ty(self, ty: impl Into) -> Self { Self { ty: Some(ty.into()), ..self } } pub fn with_check(self, check: TyCheck) -> Self { Self { check, ..self } } fn into_value(self) -> Option { Some(Value { ty: self.ty.unwrap(), loc: self.loc? }) } } impl From for Ctx { fn from(value: Value) -> Self { Self { loc: Some(value.loc), ty: Some(value.ty), ..Default::default() } } } #[derive(Default)] struct Pool { cis: Vec, arg_locs: Vec, } const VM_STACK_SIZE: usize = 1024 * 64; pub struct Comptime { pub vm: hbvm::Vm, stack: Box<[u8; VM_STACK_SIZE]>, code: Vec, } impl Comptime { fn reset(&mut self) { let ptr = unsafe { self.stack.as_mut_ptr().cast::().add(VM_STACK_SIZE) as u64 }; self.vm.registers.fill(hbvm::value::Value(0)); self.vm.write_reg(STACK_PTR, ptr); self.vm.pc = hbvm::mem::Address::new(self.code.as_ptr() as u64 + HEADER_SIZE as u64); } } impl Default for Comptime { fn default() -> Self { let mut stack = Box::<[u8; VM_STACK_SIZE]>::new_uninit(); let mut vm = hbvm::Vm::default(); let ptr = unsafe { stack.as_mut_ptr().cast::().add(VM_STACK_SIZE) as u64 }; vm.write_reg(STACK_PTR, ptr); Self { vm, stack: unsafe { stack.assume_init() }, code: Default::default() } } } mod trap { use { super::ty, crate::parser::{ExprRef, FileId}, }; macro_rules! gen_trap { ( #[derive(Trap)] $vis:vis enum $name:ident { $($variant:ident { $($fname:ident: $fty:ty,)* },)* } ) => { #[repr(u8)] $vis enum $name { $($variant($variant),)* } impl $name { $vis fn size(&self) -> usize { 1 + match self { $(Self::$variant(_) => core::mem::size_of::<$variant>(),)* } } } $( #[repr(packed)] $vis struct $variant { $($vis $fname: $fty,)* } )* }; } gen_trap! { #[derive(Trap)] pub enum Trap { MakeStruct { file: FileId, struct_expr: ExprRef, }, MomizedCall { func: ty::Func, }, } } impl Trap { pub fn as_slice(&self) -> &[u8] { unsafe { core::slice::from_raw_parts(self as *const _ as _, self.size()) } } } } #[derive(Default)] pub struct Codegen { pub files: Vec, tasks: Vec>, tys: Types, ci: ItemCtx, pool: Pool, ct: Comptime, } impl Codegen { pub fn push_embeds(&mut self, embeds: Vec>) { self.tys.ins.globals = embeds .into_iter() .map(|data| Global { ty: self.tys.make_array(ty::Id::U8, data.len() as _), data, ..Default::default() }) .collect(); } pub fn generate(&mut self, root: FileId) { self.ci.emit_entry_prelude(); self.find_or_declare(0, root, Err("main"), ""); self.make_func_reachable(0); self.complete_call_graph(); } fn expr(&mut self, expr: &Expr) -> Option { self.expr_ctx(expr, Ctx::default()) } fn build_struct( &mut self, file: FileId, pos: Option, explicit_alignment: Option, fields: &[CommentOr], ) -> ty::Struct { let sym = pos.map(|pos| SymKey::Struct(file, pos)); if let Some(sym) = sym && let Some(&ty) = self.tys.syms.get(sym, &self.tys.ins) { return ty.expand().inner(); } let prev_tmp = self.tys.tmp.fields.len(); for sf in fields.iter().filter_map(CommentOr::or) { let f = Field { name: self.tys.names.intern(sf.name), ty: self.ty(&sf.ty) }; self.tys.tmp.fields.push(f); } self.tys.ins.structs.push(Struct { field_start: self.tys.ins.fields.len() as _, pos: pos.unwrap_or(Pos::MAX), explicit_alignment, file, ..Default::default() }); self.tys.ins.fields.extend(self.tys.tmp.fields.drain(prev_tmp..)); if let Some(sym) = sym { self.tys.syms.insert( sym, ty::Kind::Struct(self.tys.ins.structs.len() as u32 - 1).compress(), &self.tys.ins, ); } self.tys.ins.structs.len() as u32 - 1 } fn expr_ctx(&mut self, expr: &Expr, mut ctx: Ctx) -> Option { use {Expr as E, TokenKind as T}; let value = match *expr { E::Mod { id, .. } => Some(Value::ty(ty::Kind::Module(id).compress())), E::Embed { id, .. } => self.handle_global(id), E::Struct { captured, packed, fields, pos, .. } => { if captured.is_empty() { Some(Value::ty( ty::Kind::Struct(self.build_struct( self.ci.file, Some(pos), packed.then_some(1), fields, )) .compress(), )) } else { let values = captured .iter() .map(|&id| E::Ident { pos: 0, is_ct: false, id, is_first: false }) .map(|expr| self.expr(&expr)) .collect::>>()?; let values_size = values.iter().map(|value| 4 + self.tys.size_of(value.ty)).sum::(); let stack = self.ci.stack.allocate(values_size); let mut ptr = Loc::stack(stack.as_ref()); for value in values { self.store_sized(Loc::ty(value.ty), &ptr, 4); ptr = ptr.offset(4); let size = self.tys.size_of(value.ty); self.store_sized(value.loc, &ptr, size); ptr = ptr.offset(size); } self.stack_offset(2, STACK_PTR, Some(&stack), 0); let val = self.eca( trap::Trap::MakeStruct(trap::MakeStruct { file: self.ci.file, struct_expr: ExprRef::new(expr), }), ty::TYPE, ); self.ci.free_loc(Loc::stack(stack)); Some(val) } } E::Slice { size, item, .. } => { let ty = self.ty(item); let len = size.map_or(ArrayLen::MAX, |expr| self.eval_const(expr, ty::U32) as _); Some(Value::ty(self.tys.make_array(ty, len))) } E::Index { base, index } => { // TODO: we need to check if index is in bounds on debug builds let mut base_val = self.expr(base)?; if base_val.ty.is_pointer() { base_val.loc = self.make_loc_owned(base_val.loc, base_val.ty); } let index_val = self.expr(index)?; _ = self.assert_ty( index.pos(), index_val.ty, ty::Id::INT, TyCheck::BinOp, "subsctipt", ); if let Some(ty) = self.tys.base_of(base_val.ty) { base_val.ty = ty; base_val.loc = base_val.loc.into_derefed(); } match base_val.ty.expand() { ty::Kind::Slice(arr) => { let ty = self.tys.ins.arrays[arr as usize].ty; let item_size = self.tys.size_of(ty); let Loc::Rt { derefed: true, ref mut reg, ref stack, offset } = base_val.loc else { unreachable!() }; if reg.is_ref() { let new_reg = self.ci.regs.allocate(); self.stack_offset(new_reg.get(), reg.get(), stack.as_ref(), offset); *reg = new_reg; } else { self.stack_offset(reg.get(), reg.get(), stack.as_ref(), offset); } let idx = self.loc_to_reg(index_val.loc, 8); if item_size != 1 { self.ci.emit(muli64(idx.get(), idx.get(), item_size as _)); } self.ci.emit(add64(reg.get(), reg.get(), idx.get())); self.ci.regs.free(idx); Some(Value::new(ty, base_val.loc)) } _ => self.report( base.pos(), format_args!( "compiler did not (yet) learn how to index into '{}'", self.ty_display(base_val.ty) ), ), } } E::Directive { name: "inline", args: [func_ast, args @ ..], .. } => { let ty::Kind::Func(mut func) = self.ty(func_ast).expand() else { self.report(func_ast.pos(), "first argument of inline needs to be a function"); }; let fuc = &self.tys.ins.funcs[func as usize]; let ast = self.files[fuc.file as usize].clone(); let E::BinOp { right: &E::Closure { args: cargs, body, .. }, .. } = fuc.expr.get(&ast).unwrap() else { unreachable!(); }; let scope = self.ci.vars.len(); let sig = self.compute_signature(&mut func, func_ast.pos(), args)?; self.ci.vars.truncate(scope); self.assert_arg_count(expr.pos(), args.len(), cargs.len(), "inline function call"); let mut sig_args = sig.args.range(); for (arg, carg) in args.iter().zip(cargs) { let ty = self.tys.ins.args[sig_args.next().unwrap()]; let sym = parser::find_symbol(&ast.symbols, carg.id); let loc = match sym.flags & idfl::COMPTIME != 0 { true => Loc::ty(self.tys.ins.args[sig_args.next().unwrap()]), false => self.expr_ctx(arg, Ctx::default().with_ty(ty))?.loc, }; self.ci.vars.push(Variable { id: carg.id, value: Value { ty, loc } }); } let ret_reloc_base = self.ci.ret_relocs.len(); let loc = self.alloc_ret(sig.ret, ctx, true); let prev_ret_reg = core::mem::replace(&mut self.ci.inline_ret_loc, loc); let fuc = &self.tys.ins.funcs[func as usize]; let prev_file = core::mem::replace(&mut self.ci.file, fuc.file); let prev_ret = core::mem::replace(&mut self.ci.ret, Some(sig.ret)); self.expr(body); let loc = core::mem::replace(&mut self.ci.inline_ret_loc, prev_ret_reg); self.ci.file = prev_file; self.ci.ret = prev_ret; let mut vars = core::mem::take(&mut self.ci.vars); for var in vars.drain(scope..) { self.ci.free_loc(var.value.loc); } self.ci.vars = vars; if let Some(last_ret) = self.ci.ret_relocs.last() && last_ret.offset as usize == self.ci.code.len() - 5 { self.ci.code.truncate(self.ci.code.len() - 5); self.ci.ret_relocs.pop(); } let len = self.ci.code.len() as u32; for rel in self.ci.ret_relocs.drain(ret_reloc_base..) { rel.apply_jump(&mut self.ci.code, len, 0); } return Some(Value { ty: sig.ret, loc }); } E::Directive { name: "TypeOf", args: [expr], .. } => { Some(Value::ty(self.infer_type(expr))) } E::Directive { name: "eca", args, pos } => { let Some(ty) = ctx.ty else { self.report( pos, "type to return form eca is unknown, use `@as(, @eca(...))`", ); }; let mut parama = self.tys.parama(ty); let base = self.pool.arg_locs.len(); for arg in args { let arg = self.expr(arg)?; if arg.ty == ty::Id::from(ty::TYPE) { self.report(pos, "na na na nana, no passing types to ecas"); } self.pass_arg(&arg, &mut parama); self.pool.arg_locs.push(arg.loc); } for value in self.pool.arg_locs.drain(base..) { self.ci.free_loc(value); } let loc = self.alloc_ret(ty, ctx, false); self.ci.emit(eca()); self.load_ret(ty, &loc); return Some(Value { ty, loc }); } E::Directive { name: "sizeof", args: [ty], .. } => { let ty = self.ty(ty); return Some(Value::imm(self.tys.size_of(ty) as _)); } E::Directive { name: "alignof", args: [ty], .. } => { let ty = self.ty(ty); return Some(Value::imm(self.tys.align_of(ty) as _)); } E::Directive { name: "intcast", args: [val], .. } => { let Some(ty) = ctx.ty else { self.report( expr.pos(), "type to cast to is unknown, use `@as(, @intcast())`", ); }; let mut val = self.expr(val)?; let from_size = self.tys.size_of(val.ty); let to_size = self.tys.size_of(ty); if from_size < to_size && val.ty.is_signed() { let reg = self.loc_to_reg(val.loc, from_size); let op = [sxt8, sxt16, sxt32][from_size.ilog2() as usize]; self.ci.emit(op(reg.get(), reg.get())); val.loc = Loc::reg(reg); } Some(Value { ty, loc: val.loc }) } E::Directive { name: "bitcast", args: [val], .. } => { let Some(ty) = ctx.ty else { self.report( expr.pos(), "type to cast to is unknown, use `@as(, @bitcast())`", ); }; let size = self.tys.size_of(ty); ctx.ty = None; let val = self.expr_ctx(val, ctx)?; if self.tys.size_of(val.ty) != size { self.report( expr.pos(), format_args!( "cannot bitcast {} to {} (different sizes: {} != {size})", self.ty_display(val.ty), self.ty_display(ty), self.tys.size_of(val.ty), ), ); } debug_assert_eq!( self.tys.align_of(val.ty), self.tys.align_of(ty), "TODO: might need stack relocation" ); return Some(Value { ty, loc: val.loc }); } E::Directive { name: "as", args: [ty, val], .. } => { let ty = self.ty(ty); ctx.ty = Some(ty); return self.expr_ctx(val, ctx); } E::Bool { value, .. } => Some(Value { ty: ty::Id::BOOL, loc: Loc::ct(value as u64) }), E::Idk { pos } => { let Some(ty) = ctx.ty else { self.report( pos, "`idk` can be used only when type can be inferred, use @as(, idk)", ); }; if ctx.loc.is_some() { // self.report( // pos, // format_args!( // "`idk` would be written to an existing memory location \ // which at ths point does notthing so its prohibited. TODO: make debug \ // builds write 0xAA instead. Info for weak people: {:?}", // ctx.loc // ), // ); } let loc = match self.tys.size_of(ty) { 0 => Loc::default(), 1..=8 => Loc::reg(self.ci.regs.allocate()), size => Loc::stack(self.ci.stack.allocate(size)), }; Some(Value { ty, loc }) } E::String { pos, mut literal } => { literal = &literal[1..literal.len() - 1]; if !literal.ends_with("\\0") { self.report(pos, "string literal must end with null byte (for now)"); } let report = |bytes: &core::str::Bytes, message| { self.report(pos + (literal.len() - bytes.len()) as u32 - 1, message) }; let mut str = Vec::::with_capacity(literal.len()); let decode_braces = |str: &mut Vec, bytes: &mut core::str::Bytes| { while let Some(b) = bytes.next() && b != b'}' { let c = bytes .next() .unwrap_or_else(|| report(bytes, "incomplete escape sequence")); let decode = |b: u8| match b { b'0'..=b'9' => b - b'0', b'a'..=b'f' => b - b'a' + 10, b'A'..=b'F' => b - b'A' + 10, _ => report(bytes, "expected hex digit or '}'"), }; str.push(decode(b) << 4 | decode(c)); } }; let mut bytes = literal.bytes(); while let Some(b) = bytes.next() { if b != b'\\' { str.push(b); continue; } let b = match bytes .next() .unwrap_or_else(|| report(&bytes, "incomplete escape sequence")) { b'n' => b'\n', b'r' => b'\r', b't' => b'\t', b'\\' => b'\\', b'\'' => b'\'', b'"' => b'"', b'0' => b'\0', b'{' => { decode_braces(&mut str, &mut bytes); continue; } _ => report(&bytes, "unknown escape sequence, expected [nrt\\\"'{0]"), }; str.push(b); } let reloc = Reloc::new(self.ci.code.len() as _, 3, 4); let glob = self.tys.ins.globals.len() as ty::Global; self.tys.ins.globals.push(Global { data: str, ..Default::default() }); self.ci .relocs .push(TypedReloc { target: ty::Kind::Global(glob).compress(), reloc }); let reg = self.ci.regs.allocate(); self.ci.emit(instrs::lra(reg.get(), 0, 0)); Some(Value::new(self.tys.make_ptr(ty::U8.into()), reg)) } E::Ctor { pos, ty, fields, .. } => { let (ty, loc) = self.prepare_struct_ctor(pos, &mut ctx, ty, fields.len()); let ty::Kind::Struct(stru) = ty.expand() else { self.report( pos, "our current technology does not (yet) allow\ us to construct '{}' with struct constructor", ); }; for &CtorField { pos, name, ref value, .. } in fields { let Some((offset, ty)) = OffsetIter::offset_of(&self.tys, stru, name) else { self.report(pos, format_args!("field not found: {name:?}")); }; let loc = loc.as_ref().offset(offset); let value = self.expr_ctx(value, Ctx::default().with_loc(loc).with_ty(ty))?; self.ci.free_loc(value.loc); } if let Some(dst_loc) = ctx.loc { self.store_typed(loc, &dst_loc, ty); return Some(Value { ty, loc: dst_loc }); } else { return Some(Value { ty, loc }); } } E::Tupl { pos, ty, fields, .. } => { let (ty, loc) = self.prepare_struct_ctor(pos, &mut ctx, ty, fields.len()); match ty.expand() { ty::Kind::Struct(stru) => { let mut oiter = OffsetIter::new(stru, &self.tys); for field in fields { let (ty, offset) = oiter.next_ty(&self.tys).unwrap(); let loc = loc.as_ref().offset(offset); let ctx = Ctx::default().with_loc(loc).with_ty(ty); let value = self.expr_ctx(field, ctx)?; self.ci.free_loc(value.loc); } } ty::Kind::Slice(arr) => { let arr = self.tys.ins.arrays[arr as usize]; let item_size = self.tys.size_of(arr.ty); for (i, value) in fields.iter().enumerate() { let loc = loc.as_ref().offset(i as u32 * item_size); let value = self.expr_ctx(value, Ctx::default().with_loc(loc).with_ty(arr.ty))?; self.ci.free_loc(value.loc); } } _ => self.report( pos, format_args!( "compiler does not (yet) know how to initialize\ '{}' with tuple constructor", self.ty_display(ty) ), ), } if let Some(dst_loc) = ctx.loc { self.store_typed(loc, &dst_loc, ty); return Some(Value { ty, loc: dst_loc }); } else { return Some(Value { ty, loc }); } } E::Field { target, name: field, pos } => { let checkpoint = self.ci.snap(); let mut tal = self.expr(target)?; if let Some(ty) = self.tys.base_of(tal.ty) { tal.ty = ty; tal.loc = tal.loc.into_derefed(); } match tal.ty.expand() { ty::Kind::Struct(idx) => { let Some((offset, ty)) = OffsetIter::offset_of(&self.tys, idx, field) else { self.report(pos, format_args!("field not found: {field:?}")); }; Some(Value { ty, loc: tal.loc.offset(offset) }) } ty::Kind::Builtin(ty::TYPE) => { self.ci.free_loc(tal.loc); self.ci.revert(checkpoint); match self.ty(target).expand() { ty::Kind::Module(idx) => { match self.find_or_declare(pos, idx, Err(field), "") { ty::Kind::Global(idx) => self.handle_global(idx), e => Some(Value::ty(e.compress())), } } ty::Kind::Global(idx) => self.handle_global(idx), e => unimplemented!("{e:?}"), } } _ => self.report( target.pos(), format_args!( "the field operation is not supported: {}", self.ty_display(tal.ty) ), ), } } E::UnOp { op: T::Sub, val, pos } => { let value = self.expr(val)?; if !value.ty.is_integer() { self.report(pos, format_args!("cant negate '{}'", self.ty_display(value.ty))); } let size = self.tys.size_of(value.ty); let (oper, dst, drop_loc) = if let Some(dst) = &ctx.loc && dst.is_reg() && let Some(dst) = ctx.loc.take() { ( self.loc_to_reg(&value.loc, size), if dst.is_ref() { self.loc_to_reg(&dst, size) } else { self.loc_to_reg(dst, size) }, value.loc, ) } else { let oper = self.loc_to_reg(value.loc, size); (oper.as_ref(), oper, Loc::default()) }; self.ci.emit(neg(dst.get(), oper.get())); self.ci.free_loc(drop_loc); self.ci.regs.free(oper); Some(Value::new(value.ty, dst)) } E::UnOp { op: T::Xor, val, .. } => { let val = self.ty(val); Some(Value::ty(self.tys.make_ptr(val))) } E::UnOp { op: T::Band, val, pos } => { let mut val = self.expr(val)?; let Loc::Rt { derefed: drfd @ true, reg, stack, offset } = &mut val.loc else { self.report( pos, format_args!( "cant take pointer of {} ({:?})", self.ty_display(val.ty), val.loc ), ); }; *drfd = false; let offset = core::mem::take(offset) as _; if reg.is_ref() { let new_reg = self.ci.regs.allocate(); self.stack_offset(new_reg.get(), reg.get(), stack.as_ref(), offset); *reg = new_reg; } else { self.stack_offset(reg.get(), reg.get(), stack.as_ref(), offset); } // FIXME: we might be able to track this but it will be pain core::mem::forget(stack.take()); Some(Value { ty: self.tys.make_ptr(val.ty), loc: val.loc }) } E::UnOp { op: T::Mul, val, pos } => { let val = self.expr(val)?; match self.tys.base_of(val.ty) { Some(ty) => Some(Value { ty, loc: Loc::reg(self.loc_to_reg(val.loc, self.tys.size_of(val.ty))) .into_derefed(), }), _ => self.report( pos, format_args!("expected pointer, got {}", self.ty_display(val.ty)), ), } } E::BinOp { left, op: T::Decl, right } if self.has_ct(left) => { let slot_base = self.ct.vm.read_reg(reg::STACK_PTR).0; let (cnt, ty) = self.eval_const_low(right, None); if self.assign_ct_pattern(left, ty, cnt as _) { self.ct.vm.write_reg(reg::STACK_PTR, slot_base); } Some(Value::void()) } E::BinOp { left, op: T::Decl, right } => { let value = self.expr(right)?; self.assign_pattern(left, value) } E::Call { func: fast, args, .. } => { log::trace!("call {}", self.ast_display(fast)); let func_ty = self.ty(fast); let ty::Kind::Func(mut func) = func_ty.expand() else { self.report(fast.pos(), "can't call this, maybe in the future"); }; // TODO: this will be usefull but not now let scope = self.ci.vars.len(); let sig = self.compute_signature(&mut func, expr.pos(), args)?; self.ci.vars.truncate(scope); let fuc = &self.tys.ins.funcs[func as usize]; let ast = self.files[fuc.file as usize].clone(); let E::BinOp { right: &E::Closure { args: cargs, .. }, .. } = fuc.expr.get(&ast).unwrap() else { unreachable!(); }; let mut parama = self.tys.parama(sig.ret); let base = self.pool.arg_locs.len(); let mut sig_args = sig.args.range(); let mut should_momize = !args.is_empty() && sig.ret == ty::Id::from(ty::TYPE); self.assert_arg_count(expr.pos(), args.len(), cargs.len(), "function call"); for (i, (arg, carg)) in args.iter().zip(cargs).enumerate() { let ty = self.tys.ins.args[sig_args.next().unwrap()]; let sym = parser::find_symbol(&ast.symbols, carg.id); if sym.flags & idfl::COMPTIME != 0 { sig_args.next().unwrap(); continue; } // TODO: pass the arg as dest let varg = self.expr_ctx(arg, Ctx::default().with_ty(ty))?; _ = self.assert_ty( arg.pos(), varg.ty, ty, TyCheck::Assign, format_args!("argument({i})"), ); self.pass_arg(&varg, &mut parama); self.pool.arg_locs.push(varg.loc); should_momize = false; } for value in self.pool.arg_locs.drain(base..) { self.ci.free_loc(value); } let loc = self.alloc_ret(sig.ret, ctx, true); if should_momize { self.ci.write_trap(trap::Trap::MomizedCall(trap::MomizedCall { func })); } let reloc = Reloc::new(self.ci.code.len(), 3, 4); self.ci.relocs.push(TypedReloc { target: ty::Kind::Func(func).compress(), reloc }); self.ci.emit(jal(RET_ADDR, ZERO, 0)); self.make_func_reachable(func); if should_momize { self.ci.emit(tx()); } self.load_ret(sig.ret, &loc); return Some(Value { ty: sig.ret, loc }); } E::Ident { id, .. } if ident::is_null(id) => Some(Value::ty(id.into())), E::Ident { id, .. } if let Some((var_index, var)) = self.ci.vars.iter_mut().enumerate().rfind(|(_, v)| v.id == id) => { let loc = var.value.loc.as_ref(); Some(Value { ty: self.ci.vars[var_index].value.ty, loc }) } E::Ident { id, .. } => { let cfile = self.cfile().clone(); match self.find_or_declare( ident::pos(id), self.ci.file, Ok(id), cfile.ident_str(id), ) { ty::Kind::Global(id) => self.handle_global(id), tk => Some(Value::ty(tk.compress())), } } E::Return { pos, val, .. } => { let size = self.ci.ret.map_or(17, |ty| self.tys.size_of(ty)); let loc = match size { _ if self.ci.inline_ret_loc != Loc::default() => { Some(self.ci.inline_ret_loc.as_ref()) } 0 => None, 1..=16 => Some(Loc::reg(1)), _ => Some(Loc::reg(self.ci.ret_reg.as_ref()).into_derefed()), }; let value = if let Some(val) = val { self.expr_ctx(val, Ctx { ty: self.ci.ret, loc, ..Default::default() })? } else { Value::void() }; match self.ci.ret { None => self.ci.ret = Some(value.ty), Some(ret) => { _ = self.assert_ty(pos, value.ty, ret, TyCheck::Assign, "return type") } } self.ci.ret_relocs.push(Reloc::new(self.ci.code.len(), 1, 4)); self.ci.emit(jmp(0)); None } E::Block { stmts, .. } => { for stmt in stmts { let val = self.expr(stmt)?; self.ci.free_loc(val.loc); } Some(Value::void()) } E::Number { value, pos, .. } => Some(Value { ty: { let ty = ctx.ty.map(ty::Id::strip_pointer).unwrap_or(ty::Id::INT); if !ty.is_integer() && !ty.is_pointer() { self.report( pos, format_args!( "this integer was inferred to be '{}'", self.ty_display(ty) ), ); } ty }, loc: Loc::ct(value as u64), }), E::If { cond, then, mut else_, .. } => { let mut then = Some(then); let jump_offset; if let &E::BinOp { left, op, right } = cond && let ty = self.infer_type(left) && let Some((op, swapped)) = op.cond_op(ty.is_signed()) { let left = self.expr_ctx(left, Ctx::default())?; let right = self.expr_ctx(right, Ctx::default())?; let lsize = self.tys.size_of(left.ty); let rsize = self.tys.size_of(right.ty); let left_reg = self.loc_to_reg(&left.loc, lsize); let right_reg = self.loc_to_reg(&right.loc, rsize); jump_offset = self.ci.code.len(); self.ci.emit(op(left_reg.get(), right_reg.get(), 0)); self.ci.free_loc(left.loc); self.ci.free_loc(right.loc); self.ci.regs.free(left_reg); self.ci.regs.free(right_reg); if swapped { core::mem::swap(&mut then, &mut else_); } } else { let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?; let reg = self.loc_to_reg(&cond.loc, 1); jump_offset = self.ci.code.len(); self.ci.emit(jeq(reg.get(), 0, 0)); self.ci.free_loc(cond.loc); self.ci.regs.free(reg); } let then_unreachable = if let Some(then) = then { self.expr(then).is_none() } else { false }; let mut else_unreachable = false; let mut jump = self.ci.code.len() as i64 - jump_offset as i64; if let Some(else_) = else_ { let else_jump_offset = self.ci.code.len(); if !then_unreachable { self.ci.emit(jmp(0)); jump = self.ci.code.len() as i64 - jump_offset as i64; } else_unreachable = self.expr(else_).is_none(); if !then_unreachable { let jump = self.ci.code.len() as i64 - else_jump_offset as i64; write_reloc(&mut self.ci.code, else_jump_offset + 1, jump, 4); } } write_reloc(&mut self.ci.code, jump_offset + 3, jump, 2); (!then_unreachable || !else_unreachable).then_some(Value::void()) } E::Loop { body, .. } => 'a: { let loop_start = self.ci.code.len(); self.ci.loops.push(Loop { var_count: self.ci.vars.len() as _, offset: loop_start as _, reloc_base: self.ci.loop_relocs.len() as u32, }); let body_unreachable = self.expr(body).is_none(); if !body_unreachable { let loop_end = self.ci.code.len(); self.ci.emit(jmp(loop_start as i32 - loop_end as i32)); } let loop_end = self.ci.code.len() as u32; let loopa = self.ci.loops.pop().unwrap(); let is_unreachable = loopa.reloc_base == self.ci.loop_relocs.len() as u32; for reloc in self.ci.loop_relocs.drain(loopa.reloc_base as usize..) { let off = reloc.apply_jump(&mut self.ci.code, loop_end, 0); debug_assert!(off > 0); } let mut vars = core::mem::take(&mut self.ci.vars); for var in vars.drain(loopa.var_count as usize..) { self.ci.free_loc(var.value.loc); } self.ci.vars = vars; if is_unreachable { break 'a None; } Some(Value::void()) } E::Break { .. } => { self.ci.loop_relocs.push(Reloc::new(self.ci.code.len(), 1, 4)); self.ci.emit(jmp(0)); None } E::Continue { .. } => { let loop_ = self.ci.loops.last().unwrap(); let offset = self.ci.code.len(); self.ci.emit(jmp(loop_.offset as i32 - offset as i32)); None } E::BinOp { left, op: op @ (T::And | T::Or), right } => { let lhs = self.expr_ctx(left, Ctx::default().with_ty(ty::BOOL))?; let lhs = self.loc_to_reg(lhs.loc, 1); let jump_offset = self.ci.code.len() + 3; let op = if op == T::And { jeq } else { jne }; self.ci.emit(op(lhs.get(), 0, 0)); if let Some(rhs) = self.expr_ctx(right, Ctx::default().with_ty(ty::BOOL)) { let rhs = self.loc_to_reg(rhs.loc, 1); self.ci.emit(cp(lhs.get(), rhs.get())); } let jump = self.ci.code.len() as i64 - jump_offset as i64; write_reloc(&mut self.ci.code, jump_offset, jump, 2); Some(Value { ty: ty::Id::BOOL, loc: Loc::reg(lhs) }) } E::BinOp { left, op, right } if op != T::Decl => 'ops: { let left = self.expr_ctx(left, Ctx { ty: ctx.ty.filter(|_| op.is_homogenous()), check: ctx.check, ..Default::default() })?; if op == T::Assign { let value = self.expr_ctx(right, Ctx::from(left)).unwrap(); self.ci.free_loc(value.loc); return Some(Value::void()); } if let ty::Kind::Struct(_) = left.ty.expand() { let right = self.expr_ctx(right, Ctx::default().with_ty(left.ty))?; _ = self.assert_ty( expr.pos(), right.ty, left.ty, TyCheck::Assign, "right struct operand", ); return self.struct_op(op, left.ty, ctx, left.loc, right.loc); } let lsize = self.tys.size_of(left.ty); let (mut lhs, dst, drop_loc) = if let Some(dst) = &ctx.loc && dst.is_reg() && let Some(dst) = ctx.loc.take() { ( self.loc_to_reg(&left.loc, lsize), if dst.is_ref() { self.loc_to_reg(&dst, lsize) } else { self.loc_to_reg(dst, lsize) }, left.loc, ) } else { let lhs = self.loc_to_reg(left.loc, lsize); (lhs.as_ref(), lhs, Loc::default()) }; let right = self .expr_ctx(right, Ctx::default().with_ty(left.ty).with_check(TyCheck::BinOp))?; let rsize = self.tys.size_of(right.ty); let ty = self.assert_ty( expr.pos(), right.ty, left.ty, TyCheck::BinOp, "right sclalar operand", ); let size = self.tys.size_of(ty); let signed = ty.is_signed(); if let Loc::Ct { value: CtValue(mut imm), derefed } = right.loc && let Some(oper) = op.imm_binop(signed, size) { if derefed { let mut dst = [0u8; 8]; dst[..size as usize].copy_from_slice(unsafe { core::slice::from_raw_parts(imm as _, rsize as usize) }); imm = u64::from_ne_bytes(dst); } if matches!(op, T::Add | T::Sub) && let Some(ty) = self.tys.base_of(ty) { imm *= self.tys.size_of(ty) as u64; } self.ci.emit(oper(dst.get(), lhs.get(), imm)); self.ci.regs.free(lhs); self.ci.free_loc(drop_loc); break 'ops Some(Value::new(ty, dst)); } let mut rhs = self.loc_to_reg(&right.loc, rsize); if matches!(op, T::Add | T::Sub) { let min_size = lsize.min(rsize); if ty.is_signed() && min_size < size { let operand = if lsize < rsize { lhs = self.cow_reg(lhs); lhs.get() } else { rhs = self.cow_reg(rhs); rhs.get() }; let op = [sxt8, sxt16, sxt32][min_size.ilog2() as usize]; self.ci.emit(op(operand, operand)); } if left.ty.is_pointer() ^ right.ty.is_pointer() { let (offset, ty) = if left.ty.is_pointer() { rhs = self.cow_reg(rhs); (rhs.get(), left.ty) } else { lhs = self.cow_reg(lhs); (lhs.get(), right.ty) }; let ty = self.tys.base_of(ty).unwrap(); let size = self.tys.size_of(ty); self.ci.emit(muli64(offset, offset, size as _)); } } if let Some(op) = op.binop(signed, size) { self.ci.emit(op(dst.get(), lhs.get(), rhs.get())); self.ci.regs.free(lhs); self.ci.regs.free(rhs); self.ci.free_loc(right.loc); self.ci.free_loc(drop_loc); break 'ops Some(Value::new(ty, dst)); } 'cmp: { let against = match op { T::Le | T::Gt => 1, T::Ne | T::Eq => 0, T::Ge | T::Lt => (-1i64) as _, _ => break 'cmp, }; let op_fn = if signed { cmps } else { cmpu }; self.ci.emit(op_fn(dst.get(), lhs.get(), rhs.get())); self.ci.emit(cmpui(dst.get(), dst.get(), against)); if matches!(op, T::Eq | T::Lt | T::Gt) { self.ci.emit(not(dst.get(), dst.get())); } self.ci.regs.free(lhs); self.ci.regs.free(rhs); self.ci.free_loc(right.loc); self.ci.free_loc(drop_loc); break 'ops Some(Value::new(ty::BOOL, dst)); } unimplemented!("{:#?}", op) } E::Comment { .. } => Some(Value::void()), ref ast => self.report_unhandled_ast(ast, "something"), }?; if let Some(ty) = ctx.ty { _ = self.assert_ty(expr.pos(), value.ty, ty, ctx.check, "something"); } Some(match ctx.loc { Some(dest) => { self.store_sized( value.loc, dest, self.tys.size_of(ctx.ty.unwrap_or(value.ty)).min(self.tys.size_of(value.ty)), ); Value { ty: value.ty, loc: Loc::ct(0) } } None => value, }) } fn compute_signature(&mut self, func: &mut ty::Func, pos: Pos, args: &[Expr]) -> Option { let fuc = &self.tys.ins.funcs[*func as usize]; let fast = self.files[fuc.file as usize].clone(); let Expr::BinOp { right: &Expr::Closure { args: cargs, ret, .. }, .. } = fuc.expr.get(&fast).unwrap() else { unreachable!(); }; Some(if let Some(sig) = fuc.sig { sig } else { let arg_base = self.tys.tmp.args.len(); for (arg, carg) in args.iter().zip(cargs) { let ty = self.ty(&carg.ty); self.tys.tmp.args.push(ty); let sym = parser::find_symbol(&fast.symbols, carg.id); let loc = if sym.flags & idfl::COMPTIME == 0 { // FIXME: could fuck us Loc::default() } else { debug_assert_eq!( ty, ty::Id::TYPE, "TODO: we dont support anything except type generics" ); let arg = self.expr_ctx(arg, Ctx::default().with_ty(ty))?; self.tys.tmp.args.push(arg.loc.to_ty().unwrap()); arg.loc }; self.ci.vars.push(Variable { id: carg.id, value: Value { ty, loc } }); } let args = self.pack_args(pos, arg_base); let ret = self.ty(ret); let sym = SymKey::FuncInst(*func, args); let ct = |ins: &mut crate::TypeIns| { let func_id = ins.funcs.len(); let fuc = &ins.funcs[*func as usize]; ins.funcs.push(Func { file: fuc.file, name: fuc.name, base: Some(*func), sig: Some(Sig { args, ret }), expr: fuc.expr, ..Default::default() }); ty::Kind::Func(func_id as _).compress() }; *func = self.tys.syms.get_or_insert(sym, &mut self.tys.ins, ct).expand().inner(); Sig { args, ret } }) } fn has_ct(&self, expr: &Expr) -> bool { expr.has_ct(&self.cfile().symbols) } fn infer_type(&mut self, expr: &Expr) -> ty::Id { // FIXME: very inneficient let mut ci = ItemCtx { file: self.ci.file, id: self.ci.id, ret: self.ci.ret, task_base: self.ci.task_base, ..self.pool.cis.pop().unwrap_or_default() }; ci.loops.extend(self.ci.loops.iter()); ci.vars.extend(self.ci.vars.iter().map(|v| Variable { id: v.id, value: Value { ty: v.value.ty, loc: v.value.loc.as_ref() }, })); ci.stack_relocs.extend(self.ci.stack_relocs.iter()); ci.ret_relocs.extend(self.ci.ret_relocs.iter()); ci.loop_relocs.extend(self.ci.loop_relocs.iter()); ci.regs.init(); core::mem::swap(&mut self.ci, &mut ci); let value = self.expr(expr).unwrap(); self.ci.free_loc(value.loc); core::mem::swap(&mut self.ci, &mut ci); ci.loops.clear(); ci.vars.clear(); ci.stack_relocs.clear(); ci.ret_relocs.clear(); ci.loop_relocs.clear(); ci.code.clear(); ci.relocs.clear(); self.pool.cis.push(ci); value.ty } fn eval_const(&mut self, expr: &Expr, ty: impl Into) -> u64 { self.eval_const_low(expr, Some(ty.into())).0 } fn eval_const_low(&mut self, expr: &Expr, mut ty: Option) -> (u64, ty::Id) { let mut ci = ItemCtx { file: self.ci.file, id: ty::Kind::Builtin(u32::MAX), ret: ty, ..self.pool.cis.pop().unwrap_or_default() }; ci.vars.append(&mut self.ci.vars); let loc = self.ct_eval(ci, |s, prev| { s.ci.emit_prelude(); if s.ci.ret.map_or(true, |r| s.tys.size_of(r) > 16) { let reg = s.ci.regs.allocate(); s.ci.emit(instrs::cp(reg.get(), 1)); s.ci.ret_reg = reg; }; let ctx = Ctx { ty: s.ci.ret, ..Default::default() }; if s.expr_ctx(&Expr::Return { pos: 0, val: Some(expr) }, ctx).is_some() { s.report(expr.pos(), "we fucked up"); }; ty = s.ci.ret; s.complete_call_graph(); prev.vars.append(&mut s.ci.vars); s.ci.finalize(); s.ci.emit(tx()); Ok(1) }); match loc { Ok(i) | Err(i) => { (self.ct.vm.read_reg(i).cast::(), ty.expect("you have died (in brahmaputra)")) } } } fn assign_ct_pattern(&mut self, pat: &Expr, ty: ty::Id, offset: *mut u8) -> bool { let size = self.tys.size_of(ty); match *pat { Expr::Ident { id, .. } if find_symbol(&self.cfile().symbols, id).flags & idfl::REFERENCED == 0 && size <= 8 => { let loc = Loc::ct(load_value(offset, size)); self.ci.vars.push(Variable { id, value: Value { ty, loc } }); true } Expr::Ident { id, .. } => { let var = Variable { id, value: Value { ty, loc: Loc::ct_ptr(offset as _) } }; self.ci.vars.push(var); false } ref pat => self.report_unhandled_ast(pat, "comptime pattern"), } } fn assign_pattern(&mut self, pat: &Expr, right: Value) -> Option { match *pat { Expr::Ident { id, .. } => { let mut loc = self.make_loc_owned(right.loc, right.ty); let sym = parser::find_symbol(&self.cfile().symbols, id).flags; if sym & idfl::REFERENCED != 0 { loc = self.spill(loc, self.tys.size_of(right.ty)); } self.ci.vars.push(Variable { id, value: Value { ty: right.ty, loc } }); } Expr::Ctor { pos, fields, .. } => { let ty::Kind::Struct(idx) = right.ty.expand() else { self.report(pos, "can't use struct destruct on non struct value (TODO: shold work with modules)"); }; for &CtorField { pos, name, ref value } in fields { let Some((offset, ty)) = OffsetIter::offset_of(&self.tys, idx, name) else { self.report(pos, format_args!("field not found: {name:?}")); }; let loc = self.ci.dup_loc(&right.loc).offset(offset); self.assign_pattern(value, Value::new(ty, loc)); } self.ci.free_loc(right.loc); } ref pat => self.report_unhandled_ast(pat, "pattern"), }; Some(Value::void()) } fn prepare_struct_ctor( &mut self, pos: Pos, ctx: &mut Ctx, ty: Option<&Expr>, field_len: usize, ) -> (ty::Id, Loc) { let Some(mut ty) = ty.map(|ty| self.ty(ty)).or(ctx.ty) else { self.report(pos, "expected type, (it cannot be inferred)"); }; if let Some(expected) = ctx.ty { _ = self.assert_ty(pos, ty, expected, TyCheck::Assign, "struct"); } match ty.expand() { ty::Kind::Struct(stru) => { let field_count = self.tys.struct_field_range(stru).len(); if field_count != field_len { self.report( pos, format_args!("expected {field_count} fields, got {field_len}"), ); } } ty::Kind::Slice(arr) => { let arr = &self.tys.ins.arrays[arr as usize]; if arr.len == ArrayLen::MAX { ty = self.tys.make_array(arr.ty, field_len as _); } else if arr.len != field_len as u32 { self.report( pos, format_args!( "literal has {} elements, but explicit array type has {} elements", arr.len, field_len ), ); } } _ => self.report( pos, format_args!( "expected expression to evaluate to struct (or array maybe) but it evaluated to {}", self.ty_display(ty) ), ), } let size = self.tys.size_of(ty); if ctx.loc.as_ref().map_or(true, |l| l.is_reg()) { (ty, Loc::stack(self.ci.stack.allocate(size))) } else { (ty, ctx.loc.take().unwrap_or_else(|| Loc::stack(self.ci.stack.allocate(size)))) } } fn struct_op( &mut self, op: TokenKind, ty: ty::Id, ctx: Ctx, left: Loc, mut right: Loc, ) -> Option { if let ty::Kind::Struct(stuct) = ty.expand() { let loc = ctx .loc .or_else(|| right.take_owned()) .unwrap_or_else(|| Loc::stack(self.ci.stack.allocate(self.tys.size_of(ty)))); let mut oiter = OffsetIter::new(stuct, &self.tys); while let Some((ty, offset)) = oiter.next_ty(&self.tys) { let ctx = Ctx::from(Value { ty, loc: loc.as_ref().offset(offset) }); let left = left.as_ref().offset(offset); let right = right.as_ref().offset(offset); let value = self.struct_op(op, ty, ctx, left, right)?; self.ci.free_loc(value.loc); } self.ci.free_loc(left); self.ci.free_loc(right); return Some(Value { ty, loc }); } let size = self.tys.size_of(ty); let signed = ty.is_signed(); let lhs = self.loc_to_reg(left, size); if let Loc::Ct { value, derefed: false } = right && let Some(op) = op.imm_binop(signed, size) { self.ci.emit(op(lhs.get(), lhs.get(), value.0)); return Some(if let Some(value) = ctx.into_value() { self.store_typed(Loc::reg(lhs.as_ref()), value.loc, value.ty); Value::void() } else { Value { ty, loc: Loc::reg(lhs) } }); } let rhs = self.loc_to_reg(right, size); if let Some(op) = op.binop(signed, size) { self.ci.emit(op(lhs.get(), lhs.get(), rhs.get())); self.ci.regs.free(rhs); return if let Some(value) = ctx.into_value() { self.store_typed(Loc::reg(lhs), value.loc, value.ty); Some(Value::void()) } else { Some(Value { ty, loc: Loc::reg(lhs) }) }; } unimplemented!("{:#?}", op) } fn handle_global(&mut self, id: ty::Global) -> Option { let ptr = self.ci.regs.allocate(); let reloc = Reloc::new(self.ci.code.len(), 3, 4); let global = &mut self.tys.ins.globals[id as usize]; self.ci.relocs.push(TypedReloc { target: ty::Kind::Global(id).compress(), reloc }); self.ci.emit(instrs::lra(ptr.get(), 0, 0)); Some(Value { ty: global.ty, loc: Loc::reg(ptr).into_derefed() }) } fn spill(&mut self, loc: Loc, size: Size) -> Loc { if loc.is_ref() || !loc.is_stack() { let stack = Loc::stack(self.ci.stack.allocate(size)); self.store_sized(loc, &stack, size); stack } else { loc } } fn make_loc_owned(&mut self, loc: Loc, ty: ty::Id) -> Loc { let size = self.tys.size_of(ty); match size { 0 => Loc::default(), 1..=8 => Loc::reg(self.loc_to_reg(loc, size)), _ if loc.is_ref() => { let new_loc = Loc::stack(self.ci.stack.allocate(size)); self.store_sized(loc, &new_loc, size); new_loc } _ => loc, } } fn complete_call_graph(&mut self) { while self.ci.task_base < self.tasks.len() && let Some(task_slot) = self.tasks.pop() { let Some(task) = task_slot else { continue }; self.handle_task(task); } } fn handle_task(&mut self, FTask { file, id }: FTask) { let func = &self.tys.ins.funcs[id as usize]; debug_assert!(func.file == file); let sig = func.sig.unwrap(); let ast = self.files[file as usize].clone(); let expr = func.expr.get(&ast).unwrap(); let ct_stack_base = self.ct.vm.read_reg(reg::STACK_PTR).0; let repl = ItemCtx { file, id: ty::Kind::Func(id), ret: Some(sig.ret), ..self.pool.cis.pop().unwrap_or_default() }; let prev_ci = core::mem::replace(&mut self.ci, repl); self.ci.regs.init(); let Expr::BinOp { left: Expr::Ident { .. }, op: TokenKind::Decl, right: &Expr::Closure { body, args, .. }, } = expr else { unreachable!("{}", self.ast_display(expr)) }; self.ci.emit_prelude(); let mut parama = self.tys.parama(sig.ret); let mut sig_args = sig.args.range(); for arg in args.iter() { let ty = self.tys.ins.args[sig_args.next().unwrap()]; let sym = parser::find_symbol(&ast.symbols, arg.id).flags; let loc = match sym & idfl::COMPTIME != 0 { true => Loc::ty(self.tys.ins.args[sig_args.next().unwrap()]), false => self.load_arg(sym, ty, &mut parama), }; self.ci.vars.push(Variable { id: arg.id, value: Value { ty, loc } }); } if self.tys.size_of(sig.ret) > 16 { let reg = self.ci.regs.allocate(); self.ci.emit(instrs::cp(reg.get(), 1)); self.ci.ret_reg = reg; } else { self.ci.ret_reg = reg::Id::RET; } if self.expr(body).is_some() { self.report(body.pos(), "expected all paths in the fucntion to return"); } let mut vars = core::mem::take(&mut self.ci.vars); for var in vars.drain(..) { self.ci.free_loc(var.value.loc); } self.ci.vars = vars; self.ci.finalize(); self.ci.emit(jala(ZERO, RET_ADDR, 0)); self.ci.regs.free(core::mem::take(&mut self.ci.ret_reg)); self.tys.ins.funcs[id as usize].code.append(&mut self.ci.code); self.tys.ins.funcs[id as usize].relocs = self.ci.relocs.drain(..).collect(); self.pool.cis.push(core::mem::replace(&mut self.ci, prev_ci)); self.ct.vm.write_reg(reg::STACK_PTR, ct_stack_base); } fn load_arg(&mut self, flags: parser::IdentFlags, ty: ty::Id, parama: &mut ParamAlloc) -> Loc { let size = self.tys.size_of(ty) as Size; if size == 0 { return Loc::default(); } let (src, dst) = match size { 0 => (Loc::default(), Loc::default()), ..=8 if flags & idfl::REFERENCED == 0 => { (Loc::reg(parama.next()), Loc::reg(self.ci.regs.allocate())) } 1..=8 => (Loc::reg(parama.next()), Loc::stack(self.ci.stack.allocate(size))), 9..=16 => (Loc::reg(parama.next_wide()), Loc::stack(self.ci.stack.allocate(size))), _ if flags & (idfl::MUTABLE | idfl::REFERENCED) == 0 => { let ptr = parama.next(); let reg = self.ci.regs.allocate(); self.ci.emit(instrs::cp(reg.get(), ptr)); return Loc::reg(reg).into_derefed(); } _ => (Loc::reg(parama.next()).into_derefed(), Loc::stack(self.ci.stack.allocate(size))), }; self.store_sized(src, &dst, size); dst } fn eca(&mut self, trap: trap::Trap, ret: impl Into) -> Value { self.ci.write_trap(trap); Value { ty: ret.into(), loc: Loc::reg(1) } } fn alloc_ret(&mut self, ret: ty::Id, ctx: Ctx, custom_ret_reg: bool) -> Loc { let size = self.tys.size_of(ret); if size == 0 { debug_assert!(ctx.loc.is_none(), "{}", self.ty_display(ret)); return Loc::default(); } if ctx.loc.is_some() && size < 16 { return ctx.loc.unwrap(); } match size { 0 => Loc::default(), 1..=8 if custom_ret_reg => Loc::reg(self.ci.regs.allocate()), 1..=8 => Loc::reg(1), 9..=16 => Loc::stack(self.ci.stack.allocate(size)), 17.. => { let loc = ctx.loc.unwrap_or_else(|| Loc::stack(self.ci.stack.allocate(size))); let Loc::Rt { reg, stack, offset, .. } = &loc else { todo!("old man with the beard looks at the sky scared"); }; self.stack_offset(1, reg.get(), stack.as_ref(), *offset); loc } } } fn loc_to_reg(&mut self, loc: impl Into, size: Size) -> reg::Id { match loc.into() { LocCow::Owned(Loc::Rt { derefed: false, mut reg, offset, stack }) => { debug_assert!(stack.is_none(), "TODO"); assert_eq!(offset, 0, "TODO"); if reg.is_ref() { let new_reg = self.ci.regs.allocate(); debug_assert_ne!(reg.get(), 0); self.ci.emit(cp(new_reg.get(), reg.get())); reg = new_reg; } reg } LocCow::Ref(&Loc::Rt { derefed: false, ref reg, offset, ref stack }) => { debug_assert!(stack.is_none(), "TODO"); assert_eq!(offset, 0, "TODO"); reg.as_ref() } loc => { let reg = self.ci.regs.allocate(); self.store_sized(loc, Loc::reg(reg.as_ref()), size); reg } } } fn load_ret(&mut self, ty: ty::Id, loc: &Loc) { let size = self.tys.size_of(ty); if let 1..=16 = size { self.store_sized(Loc::reg(1), loc, size); } } fn pass_arg(&mut self, value: &Value, parama: &mut ParamAlloc) { self.pass_arg_low(&value.loc, self.tys.size_of(value.ty), parama) } fn pass_arg_low(&mut self, loc: &Loc, size: Size, parama: &mut ParamAlloc) { if size > 16 { let Loc::Rt { reg, stack, offset, .. } = loc else { unreachable!() }; self.stack_offset(parama.next(), reg.get(), stack.as_ref(), *offset as _); return; } let dst = match size { 0 => return, 9..=16 => Loc::reg(parama.next_wide()), _ => Loc::reg(parama.next()), }; self.store_sized(loc, dst, size); } fn store_typed(&mut self, src: impl Into, dst: impl Into, ty: ty::Id) { self.store_sized(src, dst, self.tys.size_of(ty) as _) } fn store_sized(&mut self, src: impl Into, dst: impl Into, size: Size) { self.store_sized_low(src.into(), dst.into(), size); } fn store_sized_low(&mut self, src: LocCow, dst: LocCow, mut size: Size) { macro_rules! lpat { ($der:literal, $reg:ident, $off:pat, $sta:pat) => { &Loc::Rt { derefed: $der, reg: ref $reg, offset: $off, stack: $sta } }; } if size == 0 { return; } src.as_ref().assert_valid(); dst.as_ref().assert_valid(); match (src.as_ref(), dst.as_ref()) { (&Loc::Ct { value, derefed }, lpat!(true, reg, off, ref sta)) => { let ct = self.ci.regs.allocate(); self.ci.emit(li64(ct.get(), ensure_loaded(value, derefed, size))); let off = self.opt_stack_reloc(sta.as_ref(), off, 3); self.ci.emit(st(ct.get(), reg.get(), off, size as _)); self.ci.regs.free(ct); } (&Loc::Ct { value, derefed }, lpat!(false, reg, 0, None)) => { self.ci.emit(li64(reg.get(), ensure_loaded(value, derefed, size))) } (&Loc::Ct { value, derefed }, lpat!(false, reg, 8, None)) if reg.get() == 1 && size == 8 => { self.ci.emit(li64(reg.get() + 1, ensure_loaded(value, derefed, size))); } (&Loc::Ct { value, derefed }, lpat!(false, reg, off, None)) if reg.get() == 1 => { let freg = reg.get() + (off / 8) as u8; let mask = !(((1u64 << (8 * size)) - 1) << (8 * (off % 8))); self.ci.emit(andi(freg, freg, mask)); let value = ensure_loaded(value, derefed, size) << (8 * (off % 8)); self.ci.emit(ori(freg, freg, value)); } (lpat!(true, src, soff, ref ssta), lpat!(true, dst, doff, ref dsta)) => { // TODO: some oportuinies to ellit more optimal code let src_off = if src.is_ref() { self.ci.regs.allocate() } else { src.as_ref() }; let dst_off = if dst.is_ref() { self.ci.regs.allocate() } else { dst.as_ref() }; self.stack_offset(src_off.get(), src.get(), ssta.as_ref(), soff); self.stack_offset(dst_off.get(), dst.get(), dsta.as_ref(), doff); loop { match u16::try_from(size) { Ok(o) => { self.ci.emit(bmc(src_off.get(), dst_off.get(), o)); break; } Err(_) => { self.ci.emit(bmc(src_off.get(), dst_off.get(), u16::MAX)); self.ci.emit(addi64(src_off.get(), src_off.get(), u16::MAX as _)); self.ci.emit(addi64(dst_off.get(), dst_off.get(), u16::MAX as _)); size -= u16::MAX as u32; } } } self.ci.regs.free(src_off); self.ci.regs.free(dst_off); } (lpat!(false, src, 0, None), lpat!(false, dst, 0, None)) => { if src != dst { debug_assert_ne!(src.get(), 0); self.ci.emit(cp(dst.get(), src.get())); } } (lpat!(true, src, soff, ref ssta), lpat!(false, dst, 0, None)) => { if size < 8 { self.ci.emit(cp(dst.get(), 0)); } let off = self.opt_stack_reloc(ssta.as_ref(), soff, 3); self.ci.emit(ld(dst.get(), src.get(), off, size as _)); } (lpat!(false, src, 0, None), lpat!(true, dst, doff, ref dsta)) => { let off = self.opt_stack_reloc(dsta.as_ref(), doff, 3); self.ci.emit(st(src.get(), dst.get(), off, size as _)) } (a, b) => unreachable!("{a:?} {b:?}"), } self.ci.free_loc(src); self.ci.free_loc(dst); } fn stack_offset(&mut self, dst: u8, op: u8, stack: Option<&stack::Id>, off: Offset) { let Some(stack) = stack else { self.ci.emit_addi(dst, op, off as _); return; }; let off = self.stack_reloc(stack, off, 3); self.ci.emit(addi64(dst, op, off)); } fn opt_stack_reloc(&mut self, stack: Option<&stack::Id>, off: Offset, sub_offset: u8) -> u64 { stack.map(|s| self.stack_reloc(s, off, sub_offset)).unwrap_or(off as _) } fn stack_reloc(&mut self, stack: &stack::Id, off: Offset, sub_offset: u8) -> u64 { let offset = self.ci.code.len(); self.ci.stack_relocs.push(Reloc::new(offset, sub_offset, 8)); Reloc::pack_srel(stack, off) } fn ty(&mut self, expr: &Expr) -> ty::Id { let ty = self.tys.ty(self.ci.file, expr, &self.files); let evaled_ty = ty::Id::from(self.eval_const(expr, ty::TYPE)); if let Some(ty) = ty { debug_assert_eq!( ty, evaled_ty, "{} {}", self.ty_display(ty), self.ty_display(evaled_ty) ); } evaled_ty } fn read_trap(addr: u64) -> Option<&'static trap::Trap> { // TODO: make this debug only if unsafe { *(addr as *const u8) } != 255 { return None; } Some(unsafe { &*((addr + 1) as *const trap::Trap) }) } fn handle_ecall(&mut self) { let trap = Self::read_trap(self.ct.vm.pc.get()).unwrap(); self.ct.vm.pc = self.ct.vm.pc.wrapping_add(trap.size() + 1); let mut code_index = self.ct.vm.pc.get() as usize - self.ct.code.as_ptr() as usize; debug_assert!(code_index < self.ct.code.len()); match *trap { trap::Trap::MakeStruct(trap::MakeStruct { file, struct_expr }) => { let cfile = self.files[file as usize].clone(); let &Expr::Struct { fields, captured, packed, .. } = struct_expr.get(&cfile).unwrap() else { unreachable!() }; let prev_len = self.ci.vars.len(); let mut values = self.ct.vm.read_reg(2).0 as *const u8; for &id in captured { let ty: ty::Id = unsafe { core::ptr::read_unaligned(values.cast()) }; unsafe { values = values.add(4) }; let size = self.tys.size_of(ty) as usize; let mut imm = [0u8; 8]; assert!(size <= imm.len(), "TODO"); unsafe { core::ptr::copy_nonoverlapping(values, imm.as_mut_ptr(), size) }; self.ci.vars.push(Variable { id, value: Value::new(ty, Loc::ct(u64::from_ne_bytes(imm))), }); } let stru = ty::Kind::Struct(self.build_struct( self.ci.file, packed.then_some(1), None, fields, )) .compress(); self.ci.vars.truncate(prev_len); self.ct.vm.write_reg(1, stru.repr() as u64); } trap::Trap::MomizedCall(trap::MomizedCall { func }) => { if let Some(ty) = self.tys.ins.funcs[func as usize].computed { self.ct.vm.write_reg(1, ty.repr()); } else { self.run_vm(); self.tys.ins.funcs[func as usize].computed = Some(self.ct.vm.read_reg(1).0.into()); } code_index += jal(0, 0, 0).0 + tx().0; } } let offset = code_index + self.ct.code.as_ptr() as usize; self.ct.vm.pc = hbvm::mem::Address::new(offset as _); } fn find_or_declare( &mut self, pos: Pos, file: FileId, name: Result, lit_name: &str, ) -> ty::Kind { log::trace!("find_or_declare: {lit_name} {file}"); if let Some(ty) = self.tys.find_type(file, name, &self.files) { return ty.expand(); } let f = self.files[file as usize].clone(); let Some((expr, ident)) = f.find_decl(name) else { match name { Ok(_) => self.report(pos, format_args!("undefined identifier: {lit_name}")), Err("main") => self.report(pos, format_args!("missing main function")), Err(name) => self.report(pos, format_args!("undefined indentifier: {name}")), } }; let key = SymKey::Decl(file, ident); if let Some(existing) = self.tys.syms.get(key, &self.tys.ins) { if let ty::Kind::Func(id) = existing.expand() && let func = &mut self.tys.ins.funcs[id as usize] && let Err(idx) = task::unpack(func.offset) && idx < self.tasks.len() { func.offset = task::id(self.tasks.len()); let task = self.tasks[idx].take(); self.tasks.push(task); } return existing.expand(); } let prev_file = core::mem::replace(&mut self.ci.file, file); let sym = match expr { Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right: &Expr::Closure { pos, args, ret, .. }, } => { let func = Func { file, name: id, sig: 'b: { let arg_base = self.tys.tmp.args.len(); for arg in args { let sym = find_symbol(&self.files[file as usize].symbols, arg.id); if sym.flags & idfl::COMPTIME != 0 { self.tys.tmp.args.truncate(arg_base); break 'b None; } let ty = self.ty(&arg.ty); self.tys.tmp.args.push(ty); } let args = self.pack_args(pos, arg_base); let ret = self.ty(ret); Some(Sig { args, ret }) }, expr: { let refr = ExprRef::new(expr); debug_assert!(refr.get(&f).is_some()); refr }, ..Default::default() }; let id = self.tys.ins.funcs.len() as _; self.tys.ins.funcs.push(func); ty::Kind::Func(id) } Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right: stru @ Expr::Struct { .. }, } => { let str = self.ty(stru).expand().inner(); self.tys.ins.structs[str as usize].name = id; ty::Kind::Struct(str) } Expr::BinOp { left, op: TokenKind::Decl, right } => { let gid = self.tys.ins.globals.len() as ty::Global; self.tys.ins.globals.push(Global { file, name: ident, ..Default::default() }); let ci = ItemCtx { file, id: ty::Kind::Builtin(u32::MAX), ..self.pool.cis.pop().unwrap_or_default() }; _ = left.find_pattern_path(ident, right, |expr| { self.tys.ins.globals[gid as usize] = self .ct_eval(ci, |s, _| Ok::<_, !>(s.generate_global(expr, file, ident))) .into_ok(); }); ty::Kind::Global(gid) } e => unimplemented!("{e:#?}"), }; self.ci.file = prev_file; self.tys.syms.insert(key, sym.compress(), &self.tys.ins); sym } fn make_func_reachable(&mut self, func: ty::Func) { let fuc = &mut self.tys.ins.funcs[func as usize]; if fuc.offset == u32::MAX { fuc.offset = task::id(self.tasks.len() as _); self.tasks.push(Some(FTask { file: fuc.file, id: func })); } } fn generate_global(&mut self, expr: &Expr, file: FileId, name: Ident) -> Global { self.ci.emit_prelude(); let ret = self.ci.regs.allocate(); self.ci.emit(instrs::cp(ret.get(), 1)); self.ci.task_base = self.tasks.len(); let ctx = Ctx::default().with_loc(Loc::reg(ret).into_derefed()); let Some(ret) = self.expr_ctx(expr, ctx) else { self.report(expr.pos(), "expression is not reachable"); }; self.complete_call_graph(); let mut data = vec![0; self.tys.size_of(ret.ty) as usize]; self.ci.finalize(); self.ci.emit(tx()); self.ct.vm.write_reg(1, data.as_mut_ptr() as u64); self.ci.free_loc(ret.loc); Global { ty: ret.ty, file, name, data, ..Default::default() } } fn ct_eval( &mut self, ci: ItemCtx, compile: impl FnOnce(&mut Self, &mut ItemCtx) -> Result, ) -> Result { log::trace!("eval"); let mut prev_ci = core::mem::replace(&mut self.ci, ci); self.ci.task_base = self.tasks.len(); self.ci.regs.init(); let ret = compile(self, &mut prev_ci); let mut rr = core::mem::take(&mut self.ci.ret_reg); let is_on_stack = !rr.is_ref(); if !rr.is_ref() { self.ci.emit(instrs::cp(1, rr.get())); let rref = rr.as_ref(); self.ci.regs.free(core::mem::replace(&mut rr, rref)); } if ret.is_ok() { let last_fn = self.tys.ins.funcs.len(); self.tys.ins.funcs.push(Default::default()); self.tys.ins.funcs[last_fn].code = core::mem::take(&mut self.ci.code); self.tys.ins.funcs[last_fn].relocs = core::mem::take(&mut self.ci.relocs); if is_on_stack { let size = self.tys.size_of(self.ci.ret.expect("you have died (colaterall fuck up)")); let slot = self.ct.vm.read_reg(reg::STACK_PTR).0; self.ct.vm.write_reg(reg::STACK_PTR, slot.wrapping_add(size as _)); self.ct.vm.write_reg(1, slot); } self.tys.dump_reachable(last_fn as _, &mut self.ct.code); let entry = &mut self.ct.code[self.tys.ins.funcs[last_fn].offset as usize] as *mut _ as _; let prev_pc = core::mem::replace(&mut self.ct.vm.pc, hbvm::mem::Address::new(entry)) - self.ct.code.as_ptr() as usize; #[cfg(debug_assertions)] { let mut vc = String::new(); if let Err(e) = self.tys.disasm(&self.ct.code, &self.files, &mut vc, |bts| { if let Some(trap) = Self::read_trap(bts.as_ptr() as _) { bts.take(..trap.size() + 1).unwrap(); } }) { panic!("{e} {}", vc); } else { log::trace!("{}", vc); } } self.run_vm(); self.ct.vm.pc = prev_pc + self.ct.code.as_ptr() as usize; let func = self.tys.ins.funcs.pop().unwrap(); self.ci.code = func.code; self.ci.code.clear(); self.ci.relocs = func.relocs; self.ci.relocs.clear(); } self.pool.cis.push(core::mem::replace(&mut self.ci, prev_ci)); log::trace!("eval-end"); ret } pub fn disasm(&mut self, output: &mut String) -> Result<(), DisasmError> { let mut bin = Vec::new(); self.assemble(&mut bin); self.tys.disasm(&bin, &self.files, output, |_| {}) } fn run_vm(&mut self) { loop { match self.ct.vm.run().unwrap_or_else(|e| panic!("{e:?}")) { hbvm::VmRunOk::End => break, hbvm::VmRunOk::Timer => unreachable!(), hbvm::VmRunOk::Ecall => self.handle_ecall(), hbvm::VmRunOk::Breakpoint => unreachable!(), } } } fn ty_display(&self, ty: ty::Id) -> ty::Display { ty::Display::new(&self.tys, &self.files, ty) } fn ast_display<'a>(&'a self, ast: &'a Expr<'a>) -> parser::Display<'a> { parser::Display::new(&self.cfile().file, ast) } #[must_use] #[track_caller] fn assert_ty( &self, pos: Pos, ty: ty::Id, expected: ty::Id, kind: TyCheck, hint: impl Display, ) -> ty::Id { if let Some(res) = ty.try_upcast(expected, kind) { res } else { let dty = self.ty_display(ty); let dexpected = self.ty_display(expected); log::info!("mode: {:?}", kind); self.report(pos, format_args!("expected {hint} of type {dexpected}, got {dty}",)); } } fn assert_arg_count(&self, pos: Pos, got: usize, expected: usize, hint: impl Display) { if got != expected { let s = if expected != 1 { "s" } else { "" }; self.report(pos, format_args!("{hint} expected {expected} argument{s}, got {got}")) } } #[track_caller] fn report(&self, pos: Pos, msg: impl core::fmt::Display) -> ! { log::error!("{}", self.cfile().report(pos, msg)); unreachable!(); } #[track_caller] fn report_unhandled_ast(&self, ast: &Expr, hint: &str) -> ! { log::debug!("{ast:#?}"); self.report(ast.pos(), format_args!("compiler does not (yet) know how to handle ({hint})",)) } fn cfile(&self) -> &parser::Ast { &self.files[self.ci.file as usize] } fn pack_args(&mut self, pos: Pos, arg_base: usize) -> ty::Tuple { let base = self.tys.ins.args.len(); self.tys.ins.args.extend(self.tys.tmp.args.drain(arg_base..)); let needle = &self.tys.ins.args[base..]; if needle.is_empty() { return ty::Tuple::empty(); } let len = needle.len(); // FIXME: maybe later when this becomes a bottleneck we use more // efficient search (SIMD?, indexing?) let sp = self.tys.ins.args.windows(needle.len()).position(|val| val == needle).unwrap(); self.tys.ins.args.truncate((sp + needle.len()).max(base)); ty::Tuple::new(sp, len) .unwrap_or_else(|| self.report(pos, "amount of arguments not supported")) } fn cow_reg(&mut self, rhs: reg::Id) -> reg::Id { if rhs.is_ref() { let reg = self.ci.regs.allocate(); self.ci.emit(cp(reg.get(), rhs.get())); reg } else { rhs } } pub fn assemble(&mut self, buf: &mut Vec) { self.tys.reassemble(buf); } pub fn assemble_comptime(mut self) -> Comptime { self.ct.code.clear(); self.tys.reassemble(&mut self.ct.code); self.ct.reset(); self.ct } } #[cfg(test)] mod tests { use alloc::{string::String, vec::Vec}; fn generate(ident: &'static str, input: &'static str, output: &mut String) { _ = log::set_logger(&crate::fs::Logger); log::set_max_level(log::LevelFilter::Debug); let mut codegen = super::Codegen { files: crate::test_parse_files(ident, input), ..Default::default() }; codegen.generate(0); let mut out = Vec::new(); codegen.assemble(&mut out); let err = codegen.tys.disasm(&out, &codegen.files, output, |_| {}); if err.is_err() { return; } crate::test_run_vm(&out, output); } crate::run_tests! { generate: arithmetic; variables; functions; comments; if_statements; loops; //fb_driver; pointers; structs; different_types; struct_operators; directives; global_variables; generic_types; generic_functions; inlined_generic_functions; c_strings; idk; struct_patterns; arrays; struct_return_from_module_function; //comptime_pointers; sort_something_viredly; hex_octal_binary_literals; //comptime_min_reg_leak; // structs_in_registers; comptime_function_from_another_file; inline; inline_test; some_generic_code; integer_inference_issues; writing_into_string; request_page; tests_ptr_to_ptr_copy; wide_ret; } }