//! # fimg //! //! Provides fast image operations, such as rotation, flipping, and overlaying. #![feature( slice_swap_unchecked, stmt_expr_attributes, generic_const_exprs, vec_into_raw_parts, slice_as_chunks, unchecked_math, portable_simd, const_option, array_chunks, test )] #![warn( clippy::missing_docs_in_private_items, clippy::multiple_unsafe_ops_per_block, clippy::undocumented_unsafe_blocks, clippy::missing_const_for_fn, clippy::missing_safety_doc, unsafe_op_in_unsafe_fn, clippy::dbg_macro, missing_docs )] #![allow(clippy::zero_prefixed_literal, incomplete_features)] use std::{num::NonZeroU32, slice::SliceIndex}; mod affine; pub mod builder; pub mod cloner; mod drawing; mod overlay; pub mod scale; use cloner::ImageCloner; pub use overlay::{Overlay, OverlayAt}; /// like assert!(), but causes undefined behaviour at runtime when the condition is not met. /// /// # Safety /// /// UB if condition is false. macro_rules! assert_unchecked { ($cond:expr) => {{ if !$cond { #[cfg(debug_assertions)] let _ = ::core::ptr::NonNull::<()>::dangling().as_ref(); // force unsafe wrapping block #[cfg(debug_assertions)] panic!("assertion failed: {} returned false", stringify!($cond)); #[cfg(not(debug_assertions))] std::hint::unreachable_unchecked() } }}; } use assert_unchecked; impl Image<&[u8], 3> { /// Repeat self till it fills a new image of size x, y /// # Safety /// /// UB if self's width is not a multiple of x, or self's height is not a multiple of y pub unsafe fn repeated(&self, x: u32, y: u32) -> Image, 3> { let mut img = Image::alloc(x, y); // could probably optimize this a ton but eh for x in 0..(x / self.width()) { for y in 0..(y / self.height()) { let a: &mut Image<&mut [u8], 3> = &mut img.as_mut(); // SAFETY: caller upholds unsafe { a.overlay_at(self, x * self.width(), y * self.height()) }; } } img } } /// calculates a column major index, with unchecked math #[inline] unsafe fn really_unsafe_index(x: u32, y: u32, w: u32) -> usize { // y * w + x // SAFETY: FIXME make safe math let tmp = unsafe { (y as usize).unchecked_mul(w as usize) }; // SAFETY: FIXME make safe math unsafe { tmp.unchecked_add(x as usize) } } /// A image with a variable number of channels, and a nonzero size. #[derive(Debug, PartialEq, Eq)] pub struct Image { /// column order 2d slice/vec buffer: T, /// image horizontal size width: NonZeroU32, /// image vertical size height: NonZeroU32, } impl Clone for Image { /// Returns a duplicate of this image. /// ``` /// # use fimg::Image; /// # let i = Image::, 1>::alloc(5,5); /// let new_i = i.clone(); /// ``` /// If you find yourself in the pattern of /// ``` /// # use fimg::Image; /// # let i = Image::, 1>::alloc(5,5); /// let mut i = i.clone(); /// unsafe { i.rot_90() }; /// ``` /// STOP! /// /// Instead use /// ``` /// # use fimg::Image; /// # let i = Image::, 1>::alloc(5,5); /// let i = unsafe { i.cloner().rot_90() }; /// ``` fn clone(&self) -> Self { Self { buffer: self.buffer.clone(), width: self.width, height: self.height, } } } impl Image { #[inline] /// get the height as a [`u32`] pub fn height(&self) -> u32 { self.height.into() } #[inline] /// get the width as a [`u32`] pub fn width(&self) -> u32 { self.width.into() } #[inline] /// create a new image /// /// # Safety /// /// does not check that buffer.len() == w * h * C /// /// using this with invalid values may result in future UB pub const unsafe fn new(width: NonZeroU32, height: NonZeroU32, buffer: T) -> Self { Self { buffer, width, height, } } /// consumes the image, returning the image buffer pub fn take_buffer(self) -> T { self.buffer } /// returns a immutable reference to the backing buffer pub const fn buffer(&self) -> &T { &self.buffer } /// returns a mutable(!) reference to the backing buffer /// /// # Safety /// /// please do not change buffer size. pub unsafe fn buffer_mut(&mut self) -> &mut T { &mut self.buffer } } impl Image<&[T], CHANNELS> { /// Allocate a new `Image>` from this imageref. pub fn to_owned(&self) -> Image, CHANNELS> { // SAFETY: we have been constructed already, so must be valid unsafe { Image::new(self.width, self.height, self.buffer.to_vec()) } } } impl Image<&mut [T], CHANNELS> { /// Allocate a new `Image>` from this mutable imageref. pub fn to_owned(&self) -> Image, CHANNELS> { // SAFETY: we have been constructed already, so must be valid unsafe { Image::new(self.width, self.height, self.buffer.to_vec()) } } } impl Copy for Image<&[u8], CHANNELS> {} impl Image<&[u8], CHANNELS> { #[inline] #[must_use] /// Copy this ref image pub const fn copy(&self) -> Self { Self { width: self.width, height: self.height, buffer: self.buffer, } } /// Create a new immutable image of width x, y. /// /// # Panics /// /// if width || height == 0 /// /// ``` /// # use fimg::Image; /// let img = Image::make::<5, 5>(); /// # let img: Image<_, 4> = img; /// ``` pub const fn make<'a, const WIDTH: u32, const HEIGHT: u32>() -> Image<&'a [u8], CHANNELS> where [(); CHANNELS * WIDTH as usize * HEIGHT as usize]: Sized, { Image { width: NonZeroU32::new(WIDTH).expect("passed zero width to builder"), height: NonZeroU32::new(HEIGHT).expect("passed zero height to builder"), buffer: &[0; CHANNELS * WIDTH as usize * HEIGHT as usize], } } } impl, const CHANNELS: usize> Image { /// # Safety /// /// - UB if x, y is out of bounds /// - UB if buffer is too small #[inline] unsafe fn slice(&self, x: u32, y: u32) -> impl SliceIndex<[u8], Output = [u8]> { debug_assert!(x < self.width(), "x out of bounds"); debug_assert!(y < self.height(), "y out of bounds"); // SAFETY: me when uncheck math: 😧 let index = unsafe { really_unsafe_index(x, y, self.width()) }; // SAFETY: 🧐 is unsound? 😖 let index = unsafe { index.unchecked_mul(CHANNELS) }; debug_assert!(self.buffer.len() > index); // SAFETY: as long as the buffer isnt wrong, this is 😄 index..unsafe { index.unchecked_add(CHANNELS) } } /// Procure a [`ImageCloner`]. pub fn cloner(&self) -> ImageCloner<'_, CHANNELS> { ImageCloner::from(self.as_ref()) } /// Reference this image. pub fn as_ref(&self) -> Image<&[u8], CHANNELS> { // SAFETY: we got constructed okay, parameters must be valid unsafe { Image::new(self.width, self.height, &*self.buffer) } } #[inline] /// Returns a iterator over every pixel pub fn chunked(&self) -> impl DoubleEndedIterator { // SAFETY: 0 sized images illegal unsafe { assert_unchecked!(self.buffer.len() > CHANNELS) }; // SAFETY: no half pixels! unsafe { assert_unchecked!(self.buffer.len() % CHANNELS == 0) }; self.buffer.array_chunks::() } #[inline] /// Flatten the chunks of this image into a slice of slices. pub fn flatten(&mut self) -> &[[u8; CHANNELS]] { // SAFETY: buffer cannot have half pixels unsafe { self.buffer.as_chunks_unchecked::() } } /// Return a pixel at (x, y). /// # Safety /// /// - UB if x, y is out of bounds /// - UB if buffer is too small #[inline] pub unsafe fn pixel(&self, x: u32, y: u32) -> [u8; CHANNELS] { // SAFETY: we have been told x, y is in bounds let idx = unsafe { self.slice(x, y) }; // SAFETY: slice always returns a valid index let ptr = unsafe { self.buffer.get_unchecked(idx).as_ptr().cast() }; // SAFETY: slice always returns a length of `CHANNELS`, so we `cast()` it for convenience. unsafe { *ptr } } } impl, const CHANNELS: usize> Image { /// Return a mutable reference to a pixel at (x, y). /// # Safety /// /// - UB if x, y is out of bounds /// - UB if buffer is too small #[inline] pub unsafe fn pixel_mut(&mut self, x: u32, y: u32) -> &mut [u8] { // SAFETY: we have been told x, y is in bounds. let idx = unsafe { self.slice(x, y) }; // SAFETY: slice should always return a valid index unsafe { self.buffer.get_unchecked_mut(idx) } } #[inline] /// Returns a iterator over every pixel, mutably pub fn chunked_mut(&mut self) -> impl Iterator { // SAFETY: 0 sized images are not allowed unsafe { assert_unchecked!(self.buffer.len() > CHANNELS) }; // SAFETY: buffer cannot have half pixels unsafe { assert_unchecked!(self.buffer.len() % CHANNELS == 0) }; self.buffer.array_chunks_mut::() } /// Create a mutref to this image pub fn as_mut(&mut self) -> Image<&mut [u8], CHANNELS> { // SAFETY: construction went okay unsafe { Image::new(self.width, self.height, &mut self.buffer) } } #[inline] /// Flatten the chunks of this image into a mutable slice of slices. pub fn flatten_mut(&mut self) -> &mut [[u8; CHANNELS]] { // SAFETY: buffer cannot have half pixels unsafe { self.buffer.as_chunks_unchecked_mut::() } } /// Set the pixel at x, y /// /// # Safety /// /// UB if x, y is out of bounds. #[inline] pub unsafe fn set_pixel(&mut self, x: u32, y: u32, px: [u8; CHANNELS]) { // SAFETY: Caller says that x, y is in bounds let out = unsafe { self.pixel_mut(x, y) }; // SAFETY: px must be CHANNELS long unsafe { std::ptr::copy_nonoverlapping(px.as_ptr(), out.as_mut_ptr(), CHANNELS) }; } } impl Image<&mut [u8], CHANNELS> { /// Copy this ref image pub fn copy(&mut self) -> Image<&mut [u8], CHANNELS> { #[allow(clippy::undocumented_unsafe_blocks)] unsafe { Image::new(self.width, self.height, self.buffer) } } } impl Image, CHANNELS> { /// Allocates a new image /// /// # Panics /// /// if width || height == 0 #[must_use] pub fn alloc(width: u32, height: u32) -> Self { Self { width: width.try_into().unwrap(), height: height.try_into().unwrap(), buffer: vec![0; CHANNELS * width as usize * height as usize], } } } /// helper macro for defining the save() method. macro_rules! save { ($channels:literal == $clr:ident ($clrhuman:literal)) => { impl Image, $channels> { #[cfg(feature = "save")] #[doc = "Save this "] #[doc = $clrhuman] #[doc = " image."] pub fn save(&self, f: impl AsRef) { self.as_ref().save(f) } } impl Image<&[u8], $channels> { #[cfg(feature = "save")] #[doc = "Save this "] #[doc = $clrhuman] #[doc = " image."] pub fn save(&self, f: impl AsRef) { let p = std::fs::File::create(f).unwrap(); let w = &mut std::io::BufWriter::new(p); let mut enc = png::Encoder::new(w, self.width(), self.height()); enc.set_color(png::ColorType::$clr); enc.set_depth(png::BitDepth::Eight); enc.set_source_gamma(png::ScaledFloat::new(1.0 / 2.2)); enc.set_source_chromaticities(png::SourceChromaticities::new( (0.31270, 0.32900), (0.64000, 0.33000), (0.30000, 0.60000), (0.15000, 0.06000), )); let mut writer = enc.write_header().unwrap(); writer.write_image_data(self.buffer).unwrap(); } } }; } impl Image, CHANNELS> { #[cfg(feature = "save")] /// Open a PNG image pub fn open(f: impl AsRef) -> Self { let p = std::fs::File::open(f).unwrap(); let r = std::io::BufReader::new(p); let dec = png::Decoder::new(r); let mut reader = dec.read_info().unwrap(); let mut buf = vec![0; reader.output_buffer_size()]; let info = reader.next_frame(&mut buf).unwrap(); use png::ColorType::*; match info.color_type { Indexed | Grayscale => { assert_eq!(CHANNELS, 1, "indexed | grayscale requires one channel") } Rgb => assert_eq!(CHANNELS, 3, "rgb requires three channels"), Rgba => assert_eq!(CHANNELS, 4, "rgba requires four channels"), GrayscaleAlpha => assert_eq!(CHANNELS, 2, "ya requires two channels"), } Self::build(info.width, info.height).buf(buf) } } save!(3 == Rgb("RGB")); save!(4 == Rgba("RGBA")); save!(2 == GrayscaleAlpha("YA")); save!(1 == Grayscale("Y")); #[cfg(test)] macro_rules! img { [[$($v:literal),+] [$($v2:literal),+]] => { Image::, 1>::build(2,2).buf(vec![$($v,)+ $($v2,)+]) } } #[cfg(test)] use img; #[cfg(test)] mod tests { use super::*; #[test] fn repeat() { let x: Image<&[u8], 3> = Image::build(8, 8).buf(include_bytes!("../benches/3_8x8.imgbuf")); unsafe { x.repeated(128, 128) }; // repeat 16 times } }