akern-gkgoat-fork/qrcode-rust/src/optimize.rs

685 lines
24 KiB
Rust
Raw Normal View History

2022-07-29 09:46:09 -05:00
//! Find the optimal data mode sequence to encode a piece of data.
use crate::types::{Mode, Version};
2022-08-10 14:47:33 -05:00
2022-07-29 09:46:09 -05:00
use core::slice::Iter;
#[cfg(feature = "bench")]
extern crate test;
//------------------------------------------------------------------------------
//{{{ Segment
/// A segment of data committed to an encoding mode.
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
pub struct Segment {
/// The encoding mode of the segment of data.
pub mode: Mode,
/// The start index of the segment.
pub begin: usize,
/// The end index (exclusive) of the segment.
pub end: usize,
}
impl Segment {
/// Compute the number of bits (including the size of the mode indicator and
/// length bits) when this segment is encoded.
pub fn encoded_len(&self, version: Version) -> usize {
let byte_size = self.end - self.begin;
let chars_count = if self.mode == Mode::Kanji { byte_size / 2 } else { byte_size };
let mode_bits_count = version.mode_bits_count();
let length_bits_count = self.mode.length_bits_count(version);
let data_bits_count = self.mode.data_bits_count(chars_count);
mode_bits_count + length_bits_count + data_bits_count
}
}
//}}}
//------------------------------------------------------------------------------
//{{{ Parser
/// This iterator is basically equivalent to
///
/// ```ignore
/// data.map(|c| ExclCharSet::from_u8(*c))
/// .chain(Some(ExclCharSet::End).move_iter())
/// .enumerate()
/// ```
///
/// But the type is too hard to write, thus the new type.
///
struct EcsIter<I> {
base: I,
index: usize,
ended: bool,
}
impl<'a, I: Iterator<Item = &'a u8>> Iterator for EcsIter<I> {
type Item = (usize, ExclCharSet);
fn next(&mut self) -> Option<(usize, ExclCharSet)> {
if self.ended {
return None;
}
match self.base.next() {
None => {
self.ended = true;
Some((self.index, ExclCharSet::End))
}
Some(c) => {
let old_index = self.index;
self.index += 1;
Some((old_index, ExclCharSet::from_u8(*c)))
}
}
}
}
/// QR code data parser to classify the input into distinct segments.
pub struct Parser<'a> {
ecs_iter: EcsIter<Iter<'a, u8>>,
state: State,
begin: usize,
pending_single_byte: bool,
}
impl<'a> Parser<'a> {
/// Creates a new iterator which parse the data into segments that only
/// contains their exclusive subsets. No optimization is done at this point.
///
/// use qrcode::optimize::{Parser, Segment};
/// use qrcode::types::Mode::{Alphanumeric, Numeric, Byte};
///
/// let parse_res = Parser::new(b"ABC123abcd").collect::<Vec<Segment>>();
/// assert_eq!(parse_res, vec![Segment { mode: Alphanumeric, begin: 0, end: 3 },
/// Segment { mode: Numeric, begin: 3, end: 6 },
/// Segment { mode: Byte, begin: 6, end: 10 }]);
///
pub fn new(data: &[u8]) -> Parser {
Parser {
ecs_iter: EcsIter { base: data.iter(), index: 0, ended: false },
state: State::Init,
begin: 0,
pending_single_byte: false,
}
}
}
impl<'a> Iterator for Parser<'a> {
type Item = Segment;
fn next(&mut self) -> Option<Segment> {
if self.pending_single_byte {
self.pending_single_byte = false;
self.begin += 1;
return Some(Segment { mode: Mode::Byte, begin: self.begin - 1, end: self.begin });
}
loop {
let (i, ecs) = match self.ecs_iter.next() {
None => return None,
Some(a) => a,
};
let (next_state, action) = STATE_TRANSITION[self.state as usize + ecs as usize];
self.state = next_state;
let old_begin = self.begin;
let push_mode = match action {
Action::Idle => continue,
Action::Numeric => Mode::Numeric,
Action::Alpha => Mode::Alphanumeric,
Action::Byte => Mode::Byte,
Action::Kanji => Mode::Kanji,
Action::KanjiAndSingleByte => {
let next_begin = i - 1;
if self.begin == next_begin {
Mode::Byte
} else {
self.pending_single_byte = true;
self.begin = next_begin;
return Some(Segment { mode: Mode::Kanji, begin: old_begin, end: next_begin });
}
}
};
self.begin = i;
return Some(Segment { mode: push_mode, begin: old_begin, end: i });
}
}
}
#[cfg(test)]
mod parse_tests {
use alloc::vec::Vec;
2022-07-29 09:46:09 -05:00
use crate::optimize::{Parser, Segment};
use crate::types::Mode;
fn parse(data: &[u8]) -> Vec<Segment> {
Parser::new(data).collect()
}
#[test]
fn test_parse_1() {
let segs = parse(b"01049123451234591597033130128%10ABC123");
assert_eq!(
segs,
vec![
Segment { mode: Mode::Numeric, begin: 0, end: 29 },
Segment { mode: Mode::Alphanumeric, begin: 29, end: 30 },
Segment { mode: Mode::Numeric, begin: 30, end: 32 },
Segment { mode: Mode::Alphanumeric, begin: 32, end: 35 },
Segment { mode: Mode::Numeric, begin: 35, end: 38 },
]
);
}
#[test]
fn test_parse_shift_jis_example_1() {
let segs = parse(b"\x82\xa0\x81\x41\x41\xb1\x81\xf0"); // "あ、AアÅ"
assert_eq!(
segs,
vec![
Segment { mode: Mode::Kanji, begin: 0, end: 4 },
Segment { mode: Mode::Alphanumeric, begin: 4, end: 5 },
Segment { mode: Mode::Byte, begin: 5, end: 6 },
Segment { mode: Mode::Kanji, begin: 6, end: 8 },
]
);
}
#[test]
fn test_parse_utf_8() {
// Mojibake?
let segs = parse(b"\xe3\x81\x82\xe3\x80\x81A\xef\xbd\xb1\xe2\x84\xab");
assert_eq!(
segs,
vec![
Segment { mode: Mode::Kanji, begin: 0, end: 4 },
Segment { mode: Mode::Byte, begin: 4, end: 5 },
Segment { mode: Mode::Kanji, begin: 5, end: 7 },
Segment { mode: Mode::Byte, begin: 7, end: 10 },
Segment { mode: Mode::Kanji, begin: 10, end: 12 },
Segment { mode: Mode::Byte, begin: 12, end: 13 },
]
);
}
#[test]
fn test_not_kanji_1() {
let segs = parse(b"\x81\x30");
assert_eq!(
segs,
vec![Segment { mode: Mode::Byte, begin: 0, end: 1 }, Segment { mode: Mode::Numeric, begin: 1, end: 2 },]
);
}
#[test]
fn test_not_kanji_2() {
// Note that it's implementation detail that the byte seq is split into
// two. Perhaps adjust the test to check for this.
let segs = parse(b"\xeb\xc0");
assert_eq!(
segs,
vec![Segment { mode: Mode::Byte, begin: 0, end: 1 }, Segment { mode: Mode::Byte, begin: 1, end: 2 },]
);
}
#[test]
fn test_not_kanji_3() {
let segs = parse(b"\x81\x7f");
assert_eq!(
segs,
vec![Segment { mode: Mode::Byte, begin: 0, end: 1 }, Segment { mode: Mode::Byte, begin: 1, end: 2 },]
);
}
#[test]
fn test_not_kanji_4() {
let segs = parse(b"\x81\x40\x81");
assert_eq!(
segs,
vec![Segment { mode: Mode::Kanji, begin: 0, end: 2 }, Segment { mode: Mode::Byte, begin: 2, end: 3 },]
);
}
}
//}}}
//------------------------------------------------------------------------------
//{{{ Optimizer
pub struct Optimizer<I> {
parser: I,
last_segment: Segment,
last_segment_size: usize,
version: Version,
ended: bool,
}
impl<I: Iterator<Item = Segment>> Optimizer<I> {
/// Optimize the segments by combining adjacent segments when possible.
///
/// Currently this method uses a greedy algorithm by combining segments from
/// left to right until the new segment is longer than before. This method
/// does *not* use Annex J from the ISO standard.
///
pub fn new(mut segments: I, version: Version) -> Self {
match segments.next() {
None => Self {
parser: segments,
last_segment: Segment { mode: Mode::Numeric, begin: 0, end: 0 },
last_segment_size: 0,
version,
ended: true,
},
Some(segment) => Self {
parser: segments,
last_segment: segment,
last_segment_size: segment.encoded_len(version),
version,
ended: false,
},
}
}
}
impl<'a> Parser<'a> {
pub fn optimize(self, version: Version) -> Optimizer<Parser<'a>> {
Optimizer::new(self, version)
}
}
impl<I: Iterator<Item = Segment>> Iterator for Optimizer<I> {
type Item = Segment;
fn next(&mut self) -> Option<Segment> {
if self.ended {
return None;
}
loop {
match self.parser.next() {
None => {
self.ended = true;
return Some(self.last_segment);
}
Some(segment) => {
let seg_size = segment.encoded_len(self.version);
let new_segment = Segment {
mode: self.last_segment.mode.max(segment.mode),
begin: self.last_segment.begin,
end: segment.end,
};
let new_size = new_segment.encoded_len(self.version);
if self.last_segment_size + seg_size >= new_size {
self.last_segment = new_segment;
self.last_segment_size = new_size;
} else {
let old_segment = self.last_segment;
self.last_segment = segment;
self.last_segment_size = seg_size;
return Some(old_segment);
}
}
}
}
}
}
/// Computes the total encoded length of all segments.
pub fn total_encoded_len(segments: &[Segment], version: Version) -> usize {
segments.iter().map(|seg| seg.encoded_len(version)).sum()
}
#[cfg(test)]
mod optimize_tests {
use alloc::vec::Vec;
use crate::optimize::{total_encoded_len, Optimizer, Segment};
use crate::types::{Mode, Version};
fn test_optimization_result(given: Vec<Segment>, expected: Vec<Segment>, version: Version) {
2022-08-10 14:47:33 -05:00
let prev_len = total_encoded_len(&given, version);
let opt_segs = Optimizer::new(given.iter().copied(), version).collect::<Vec<_>>();
let new_len = total_encoded_len(&opt_segs, version);
2022-07-29 09:46:09 -05:00
if given != opt_segs {
assert!(prev_len > new_len, "{} > {}", prev_len, new_len);
}
assert!(
opt_segs == expected,
"Optimization gave something better: {} < {} ({:?})",
new_len,
2022-08-10 14:47:33 -05:00
total_encoded_len(&expected, version),
2022-07-29 09:46:09 -05:00
opt_segs
);
}
#[test]
fn test_example_1() {
test_optimization_result(
vec![
Segment { mode: Mode::Alphanumeric, begin: 0, end: 3 },
Segment { mode: Mode::Numeric, begin: 3, end: 6 },
Segment { mode: Mode::Byte, begin: 6, end: 10 },
],
vec![
Segment { mode: Mode::Alphanumeric, begin: 0, end: 6 },
Segment { mode: Mode::Byte, begin: 6, end: 10 },
],
Version::Normal(1),
);
}
#[test]
fn test_example_2() {
test_optimization_result(
vec![
Segment { mode: Mode::Numeric, begin: 0, end: 29 },
Segment { mode: Mode::Alphanumeric, begin: 29, end: 30 },
Segment { mode: Mode::Numeric, begin: 30, end: 32 },
Segment { mode: Mode::Alphanumeric, begin: 32, end: 35 },
Segment { mode: Mode::Numeric, begin: 35, end: 38 },
],
vec![
Segment { mode: Mode::Numeric, begin: 0, end: 29 },
Segment { mode: Mode::Alphanumeric, begin: 29, end: 38 },
],
Version::Normal(9),
);
}
#[test]
fn test_example_3() {
test_optimization_result(
vec![
Segment { mode: Mode::Kanji, begin: 0, end: 4 },
Segment { mode: Mode::Alphanumeric, begin: 4, end: 5 },
Segment { mode: Mode::Byte, begin: 5, end: 6 },
Segment { mode: Mode::Kanji, begin: 6, end: 8 },
],
vec![Segment { mode: Mode::Byte, begin: 0, end: 8 }],
Version::Normal(1),
);
}
#[test]
fn test_example_4() {
test_optimization_result(
vec![Segment { mode: Mode::Kanji, begin: 0, end: 10 }, Segment { mode: Mode::Byte, begin: 10, end: 11 }],
vec![Segment { mode: Mode::Kanji, begin: 0, end: 10 }, Segment { mode: Mode::Byte, begin: 10, end: 11 }],
Version::Normal(1),
);
}
#[test]
fn test_annex_j_guideline_1a() {
test_optimization_result(
vec![
Segment { mode: Mode::Numeric, begin: 0, end: 3 },
Segment { mode: Mode::Alphanumeric, begin: 3, end: 4 },
],
vec![
Segment { mode: Mode::Numeric, begin: 0, end: 3 },
Segment { mode: Mode::Alphanumeric, begin: 3, end: 4 },
],
Version::Micro(2),
);
}
#[test]
fn test_annex_j_guideline_1b() {
test_optimization_result(
vec![
Segment { mode: Mode::Numeric, begin: 0, end: 2 },
Segment { mode: Mode::Alphanumeric, begin: 2, end: 4 },
],
vec![Segment { mode: Mode::Alphanumeric, begin: 0, end: 4 }],
Version::Micro(2),
);
}
#[test]
fn test_annex_j_guideline_1c() {
test_optimization_result(
vec![
Segment { mode: Mode::Numeric, begin: 0, end: 3 },
Segment { mode: Mode::Alphanumeric, begin: 3, end: 4 },
],
vec![Segment { mode: Mode::Alphanumeric, begin: 0, end: 4 }],
Version::Micro(3),
);
}
}
#[cfg(feature = "bench")]
#[bench]
fn bench_optimize(bencher: &mut test::Bencher) {
use crate::types::Version;
let data = b"QR\x83R\x81[\x83h\x81i\x83L\x83\x85\x81[\x83A\x81[\x83\x8b\x83R\x81[\x83h\x81j\
\x82\xc6\x82\xcd\x81A1994\x94N\x82\xc9\x83f\x83\x93\x83\\\x81[\x82\xcc\x8aJ\
\x94\xad\x95\x94\x96\xe5\x81i\x8c\xbb\x8d\xdd\x82\xcd\x95\xaa\x97\xa3\x82\xb5\x83f\
\x83\x93\x83\\\x81[\x83E\x83F\x81[\x83u\x81j\x82\xaa\x8aJ\x94\xad\x82\xb5\x82\xbd\
\x83}\x83g\x83\x8a\x83b\x83N\x83X\x8c^\x93\xf1\x8e\x9f\x8c\xb3\x83R\x81[\x83h\
\x82\xc5\x82\xa0\x82\xe9\x81B\x82\xc8\x82\xa8\x81AQR\x83R\x81[\x83h\x82\xc6\
\x82\xa2\x82\xa4\x96\xbc\x8f\xcc\x81i\x82\xa8\x82\xe6\x82\xd1\x92P\x8c\xea\x81j\
\x82\xcd\x83f\x83\x93\x83\\\x81[\x83E\x83F\x81[\x83u\x82\xcc\x93o\x98^\x8f\xa4\
\x95W\x81i\x91\xe64075066\x8d\x86\x81j\x82\xc5\x82\xa0\x82\xe9\x81BQR\x82\xcd\
Quick Response\x82\xc9\x97R\x97\x88\x82\xb5\x81A\x8d\x82\x91\xac\x93\xc7\x82\xdd\
\x8e\xe6\x82\xe8\x82\xaa\x82\xc5\x82\xab\x82\xe9\x82\xe6\x82\xa4\x82\xc9\x8aJ\
\x94\xad\x82\xb3\x82\xea\x82\xbd\x81B\x93\x96\x8f\x89\x82\xcd\x8e\xa9\x93\xae\
\x8e\xd4\x95\x94\x95i\x8dH\x8f\xea\x82\xe2\x94z\x91\x97\x83Z\x83\x93\x83^\x81[\
\x82\xc8\x82\xc7\x82\xc5\x82\xcc\x8eg\x97p\x82\xf0\x94O\x93\xaa\x82\xc9\x8aJ\
\x94\xad\x82\xb3\x82\xea\x82\xbd\x82\xaa\x81A\x8c\xbb\x8d\xdd\x82\xc5\x82\xcd\x83X\
\x83}\x81[\x83g\x83t\x83H\x83\x93\x82\xcc\x95\x81\x8by\x82\xc8\x82\xc7\x82\xc9\
\x82\xe6\x82\xe8\x93\xfa\x96{\x82\xc9\x8c\xc0\x82\xe7\x82\xb8\x90\xa2\x8aE\x93I\
\x82\xc9\x95\x81\x8by\x82\xb5\x82\xc4\x82\xa2\x82\xe9\x81B";
bencher.iter(|| Parser::new(data).optimize(Version::Normal(15)));
}
//}}}
//------------------------------------------------------------------------------
//{{{ Internal types and data for parsing
/// All values of `u8` can be split into 9 different character sets when
/// determining which encoding to use. This enum represents these groupings for
/// parsing purpose.
#[derive(Copy, Clone)]
enum ExclCharSet {
/// The end of string.
End = 0,
/// All symbols supported by the Alphanumeric encoding, i.e. space, `$`, `%`,
/// `*`, `+`, `-`, `.`, `/` and `:`.
Symbol = 1,
/// All numbers (09).
Numeric = 2,
/// All uppercase letters (AZ). These characters may also appear in the
/// second byte of a Shift JIS 2-byte encoding.
Alpha = 3,
/// The first byte of a Shift JIS 2-byte encoding, in the range 0x810x9f.
KanjiHi1 = 4,
/// The first byte of a Shift JIS 2-byte encoding, in the range 0xe00xea.
KanjiHi2 = 5,
/// The first byte of a Shift JIS 2-byte encoding, of value 0xeb. This is
/// different from the other two range that the second byte has a smaller
/// range.
KanjiHi3 = 6,
/// The second byte of a Shift JIS 2-byte encoding, in the range 0x400xbf,
/// excluding letters (covered by `Alpha`), 0x810x9f (covered by `KanjiHi1`),
/// and the invalid byte 0x7f.
KanjiLo1 = 7,
/// The second byte of a Shift JIS 2-byte encoding, in the range 0xc00xfc,
/// excluding the range 0xe00xeb (covered by `KanjiHi2` and `KanjiHi3`).
/// This half of byte-pair cannot appear as the second byte leaded by
/// `KanjiHi3`.
KanjiLo2 = 8,
/// Any other values not covered by the above character sets.
Byte = 9,
}
impl ExclCharSet {
/// Determines which character set a byte is in.
fn from_u8(c: u8) -> Self {
match c {
0x20 | 0x24 | 0x25 | 0x2a | 0x2b | 0x2d..=0x2f | 0x3a => ExclCharSet::Symbol,
0x30..=0x39 => ExclCharSet::Numeric,
0x41..=0x5a => ExclCharSet::Alpha,
0x81..=0x9f => ExclCharSet::KanjiHi1,
0xe0..=0xea => ExclCharSet::KanjiHi2,
0xeb => ExclCharSet::KanjiHi3,
0x40 | 0x5b..=0x7e | 0x80 | 0xa0..=0xbf => ExclCharSet::KanjiLo1,
0xc0..=0xdf | 0xec..=0xfc => ExclCharSet::KanjiLo2,
_ => ExclCharSet::Byte,
}
}
}
/// The current parsing state.
#[derive(Copy, Clone)]
enum State {
/// Just initialized.
Init = 0,
/// Inside a string that can be exclusively encoded as Numeric.
Numeric = 10,
/// Inside a string that can be exclusively encoded as Alphanumeric.
Alpha = 20,
/// Inside a string that can be exclusively encoded as 8-Bit Byte.
Byte = 30,
/// Just encountered the first byte of a Shift JIS 2-byte sequence of the
/// set `KanjiHi1` or `KanjiHi2`.
KanjiHi12 = 40,
/// Just encountered the first byte of a Shift JIS 2-byte sequence of the
/// set `KanjiHi3`.
KanjiHi3 = 50,
/// Inside a string that can be exclusively encoded as Kanji.
Kanji = 60,
}
/// What should the parser do after a state transition.
#[derive(Copy, Clone)]
enum Action {
/// The parser should do nothing.
Idle,
/// Push the current segment as a Numeric string, and reset the marks.
Numeric,
/// Push the current segment as an Alphanumeric string, and reset the marks.
Alpha,
/// Push the current segment as a 8-Bit Byte string, and reset the marks.
Byte,
/// Push the current segment as a Kanji string, and reset the marks.
Kanji,
/// Push the current segment excluding the last byte as a Kanji string, then
/// push the remaining single byte as a Byte string, and reset the marks.
KanjiAndSingleByte,
}
static STATE_TRANSITION: [(State, Action); 70] = [
// STATE_TRANSITION[current_state + next_character] == (next_state, what_to_do)
// Init state:
(State::Init, Action::Idle), // End
(State::Alpha, Action::Idle), // Symbol
(State::Numeric, Action::Idle), // Numeric
(State::Alpha, Action::Idle), // Alpha
(State::KanjiHi12, Action::Idle), // KanjiHi1
(State::KanjiHi12, Action::Idle), // KanjiHi2
(State::KanjiHi3, Action::Idle), // KanjiHi3
(State::Byte, Action::Idle), // KanjiLo1
(State::Byte, Action::Idle), // KanjiLo2
(State::Byte, Action::Idle), // Byte
// Numeric state:
(State::Init, Action::Numeric), // End
(State::Alpha, Action::Numeric), // Symbol
(State::Numeric, Action::Idle), // Numeric
(State::Alpha, Action::Numeric), // Alpha
(State::KanjiHi12, Action::Numeric), // KanjiHi1
(State::KanjiHi12, Action::Numeric), // KanjiHi2
(State::KanjiHi3, Action::Numeric), // KanjiHi3
(State::Byte, Action::Numeric), // KanjiLo1
(State::Byte, Action::Numeric), // KanjiLo2
(State::Byte, Action::Numeric), // Byte
// Alpha state:
(State::Init, Action::Alpha), // End
(State::Alpha, Action::Idle), // Symbol
(State::Numeric, Action::Alpha), // Numeric
(State::Alpha, Action::Idle), // Alpha
(State::KanjiHi12, Action::Alpha), // KanjiHi1
(State::KanjiHi12, Action::Alpha), // KanjiHi2
(State::KanjiHi3, Action::Alpha), // KanjiHi3
(State::Byte, Action::Alpha), // KanjiLo1
(State::Byte, Action::Alpha), // KanjiLo2
(State::Byte, Action::Alpha), // Byte
// Byte state:
(State::Init, Action::Byte), // End
(State::Alpha, Action::Byte), // Symbol
(State::Numeric, Action::Byte), // Numeric
(State::Alpha, Action::Byte), // Alpha
(State::KanjiHi12, Action::Byte), // KanjiHi1
(State::KanjiHi12, Action::Byte), // KanjiHi2
(State::KanjiHi3, Action::Byte), // KanjiHi3
(State::Byte, Action::Idle), // KanjiLo1
(State::Byte, Action::Idle), // KanjiLo2
(State::Byte, Action::Idle), // Byte
// KanjiHi12 state:
(State::Init, Action::KanjiAndSingleByte), // End
(State::Alpha, Action::KanjiAndSingleByte), // Symbol
(State::Numeric, Action::KanjiAndSingleByte), // Numeric
(State::Kanji, Action::Idle), // Alpha
(State::Kanji, Action::Idle), // KanjiHi1
(State::Kanji, Action::Idle), // KanjiHi2
(State::Kanji, Action::Idle), // KanjiHi3
(State::Kanji, Action::Idle), // KanjiLo1
(State::Kanji, Action::Idle), // KanjiLo2
(State::Byte, Action::KanjiAndSingleByte), // Byte
// KanjiHi3 state:
(State::Init, Action::KanjiAndSingleByte), // End
(State::Alpha, Action::KanjiAndSingleByte), // Symbol
(State::Numeric, Action::KanjiAndSingleByte), // Numeric
(State::Kanji, Action::Idle), // Alpha
(State::Kanji, Action::Idle), // KanjiHi1
(State::KanjiHi12, Action::KanjiAndSingleByte), // KanjiHi2
(State::KanjiHi3, Action::KanjiAndSingleByte), // KanjiHi3
(State::Kanji, Action::Idle), // KanjiLo1
(State::Byte, Action::KanjiAndSingleByte), // KanjiLo2
(State::Byte, Action::KanjiAndSingleByte), // Byte
// Kanji state:
(State::Init, Action::Kanji), // End
(State::Alpha, Action::Kanji), // Symbol
(State::Numeric, Action::Kanji), // Numeric
(State::Alpha, Action::Kanji), // Alpha
(State::KanjiHi12, Action::Idle), // KanjiHi1
(State::KanjiHi12, Action::Idle), // KanjiHi2
(State::KanjiHi3, Action::Idle), // KanjiHi3
(State::Byte, Action::Kanji), // KanjiLo1
(State::Byte, Action::Kanji), // KanjiLo2
(State::Byte, Action::Kanji), // Byte
];
//}}}