akern-gkgoat-fork/ableos/src/arch/riscv/drivers/uart.rs

130 lines
4.9 KiB
Rust

use core::fmt::{Error, Write};
/// Initialize the UART driver by setting
/// the word length, FIFOs, and interrupts
pub fn uart_init(base_addr: usize) {
let ptr = base_addr as *mut u8;
unsafe {
// First, set the word length, which
// are bits 0, and 1 of the line control register (LCR)
// which is at base_address + 3
// We can easily write the value 3 here or 0b11, but I'm
// extending it so that it is clear we're setting two individual
// fields
// Word 0 Word 1
// ~~~~~~ ~~~~~~
let lcr = (1 << 0) | (1 << 1);
ptr.add(3).write_volatile(lcr);
// Now, enable the FIFO, which is bit index 0 of the FIFO
// control register (FCR at offset 2).
// Again, we can just write 1 here, but when we use left shift,
// it's easier to see that we're trying to write bit index #0.
ptr.add(2).write_volatile(1 << 0);
// Enable receiver buffer interrupts, which is at bit index
// 0 of the interrupt enable register (IER at offset 1).
ptr.add(1).write_volatile(1 << 0);
// If we cared about the divisor, the code below would set the divisor
// from a global clock rate of 22.729 MHz (22,729,000 cycles per second)
// to a signaling rate of 2400 (BAUD). We usually have much faster signalling
// rates nowadays, but this demonstrates what the divisor actually does.
// The formula given in the NS16500A specification for calculating the divisor
// is:
// divisor = ceil( (clock_hz) / (baud_sps x 16) )
// So, we substitute our values and get:
// divisor = ceil( 22_729_000 / (2400 x 16) )
// divisor = ceil( 22_729_000 / 38_400 )
// divisor = ceil( 591.901 ) = 592
// The divisor register is two bytes (16 bits), so we need to split the value
// 592 into two bytes. Typically, we would calculate this based on measuring
// the clock rate, but again, for our purposes [qemu], this doesn't really do
// anything.
let divisor: u16 = 592;
let divisor_least: u8 = (divisor & 0xff).try_into().unwrap();
let divisor_most: u8 = (divisor >> 8).try_into().unwrap();
// Notice that the divisor register DLL (divisor latch least) and DLM (divisor
// latch most) have the same base address as the receiver/transmitter and the
// interrupt enable register. To change what the base address points to, we
// open the "divisor latch" by writing 1 into the Divisor Latch Access Bit
// (DLAB), which is bit index 7 of the Line Control Register (LCR) which
// is at base_address + 3.
ptr.add(3).write_volatile(lcr | 1 << 7);
// Now, base addresses 0 and 1 point to DLL and DLM, respectively.
// Put the lower 8 bits of the divisor into DLL
ptr.add(0).write_volatile(divisor_least);
ptr.add(1).write_volatile(divisor_most);
// Now that we've written the divisor, we never have to touch this again. In
// hardware, this will divide the global clock (22.729 MHz) into one suitable
// for 2,400 signals per second. So, to once again get access to the
// RBR/THR/IER registers, we need to close the DLAB bit by clearing it to 0.
ptr.add(3).write_volatile(lcr);
}
}
fn uart_get(base_addr: usize) -> Option<u8> {
let ptr = base_addr as *mut u8;
unsafe {
// Bit index #5 is the Line Control Register.
if ptr.add(5).read_volatile() & 1 == 0 {
// The DR bit is 0, meaning no data
None
} else {
// The DR bit is 1, meaning data!
Some(ptr.add(0).read_volatile())
}
}
}
fn uart_put(base_addr: usize, c: u8) {
let ptr = base_addr as *mut u8;
unsafe {
// If we get here, the transmitter is empty, so transmit
// our stuff!
ptr.add(0).write_volatile(c);
}
}
pub struct Uart {
base_address: usize,
}
impl Uart {
pub fn new(base_address: usize) -> Self {
Uart { base_address }
}
pub fn get(&self) -> Option<u8> {
uart_get(self.base_address)
}
pub fn put(&self, c: u8) {
uart_put(self.base_address, c);
}
pub fn init(&self) {
uart_init(self.base_address);
}
}
// This is a slightly different syntax. Write is this "trait", meaning it is much like
// an interface where we're just guaranteeing a certain function signature. In the Write
// trait, one is absolutely required to be implemented, which is write_str. There are other
// functions, but they all rely on write_str(), so their default implementation is OK for now.
impl Write for Uart {
// The trait Write expects us to write the function write_str
// which looks like:
fn write_str(&mut self, s: &str) -> Result<(), Error> {
for c in s.bytes() {
self.put(c);
}
// Return that we succeeded.
Ok(())
}
}