skylang/src/codegen/fasm.rs

250 lines
8.2 KiB
Rust

use crate::parse::ast::*;
use skylang::temp;
const REGISTERS: [&str; 9] = ["r10", "r11", "r12", "r13", "r14", "r15", "rax", "rdi", "rsi"];
pub struct FasmCodegen {
register_counter: usize
}
impl FasmCodegen {
pub fn new() -> Self {
FasmCodegen {
register_counter: 0,
}
}
pub fn fasm_codegen(&mut self, exprs: &Vec<Expr>, not_a_function: bool) -> String {
macro_rules! fasm_codegen {
// Macro to make calling fasm_codegen function easier.
($exprs:expr) => {{
self.fasm_codegen($exprs, true)
}};
(fun: $exprs:expr) => {{
self.fasm_codegen($exprs, false)
}};
}
// Define asm_func, used for functions.
let mut asm_func = String::new();
// Define asm_data, used for variables.
let mut asm_data = String::new();
// Define asm_start, used for the entry point.
let mut asm_start = String::new();
macro_rules! unwrap {
($item:expr) => {
asm_start.push_str(fasm_codegen!(fun: &vec![$item.as_ref().clone()]).as_str());
}
}
// If not_a_function, push necessary headers to the asm_start variable.
if not_a_function {
asm_start.push_str("format ELF64 executable 3\n");
asm_start.push_str("segment readable executable\n");
asm_start.push_str("entry _start\n");
asm_start.push_str("_start:\n");
asm_data.push_str("\nsegment readable writable\n");
}
// Iterate over expressions.
for expr in exprs.iter() {
// Use patern matching on `expr`.
match expr {
// If the expression is a math expression.
Expr::MathExpr(e) => {
unwrap!(e.left);
self.register_counter += 1;
asm_start.push_str(format!("\tmov {}, rax\n", REGISTERS[self.register_counter]).as_str());
unwrap!(e.right);
self.register_counter += 1;
asm_start.push_str(format!("\tmov {}, rax\n", REGISTERS[self.register_counter]).as_str());
match e.operator {
// If the operator is addition.
MathOperator::OP_ADD => {
asm_start.push_str(format!("\tadd {}, {}\n", REGISTERS[self.register_counter - 1], REGISTERS[self.register_counter]).as_str());
asm_start.push_str(format!("\tmov rax, {}\n", REGISTERS[self.register_counter - 1]).as_str());
// r10 ← r10 + r11; rax ← r10;
// The sum will now be stored in the %rax register.
},
// If the operator is multiplication.
MathOperator::OP_MULT => {
asm_start.push_str(format!("\timul {}, {}\n", REGISTERS[self.register_counter - 1], REGISTERS[self.register_counter]).as_str());
asm_start.push_str(format!("\tmov rax, {}\n", REGISTERS[self.register_counter - 1]).as_str());
// r10 ← r10 * r11; rax ← r10;
// The product will now be stored in the %rax register.
},
// If the operator is division.
MathOperator::OP_DIV => {
asm_start.push_str("\tmov rax, r10\n");
asm_start.push_str("\txor rdx, rdx\n");
asm_start.push_str("\tidiv r11\n");
// rax ← r10; rdx ← 0; rax ← concat(rax, rdx) / r11;
// The quotient will now be stored in the %rax register.
},
// If the operators is subtraction.
MathOperator::OP_SUB => {
asm_start.push_str("\tsub r10, r11\n");
asm_start.push_str("\tmov rax, r10\n");
// r10 ← r10 - r11; rax ← r10;
// The difference will now be stored in the %rax register.
},
// If the operator is modulo.
MathOperator::OP_MOD => {
asm_start.push_str("\tmov rax, r10\n");
asm_start.push_str("\txor rdx, rdx\n");
asm_start.push_str("\tidiv r11\n");
asm_start.push_str("\tmov rax, rdx\n");
// rax ← r10; rdx ← 0; rdx ← concat(rax, rdx) % r11; rax ← rdx;
// The remainder will now be stored in the %rax register.
}
}
},
// If the expression is a function call.
Expr::FunCall(e) => {
for (i, p) in e.params.iter().enumerate() {
match i {
0 => {
// First parameter. Put in %rdi.
unwrap!(p);
asm_start.push_str(format!("\tmov rdi, rax\n").as_str());
// rdi ← e.params[0];
},
1 => {
// Second parameter. Put in %rsi.
unwrap!(p);
asm_start.push_str(format!("\tmov rsi, rax\n").as_str());
// rsi ← e.params[1];
},
2 => {
// Third parameter. Put in %rdx.
unwrap!(p);
asm_start.push_str(format!("\tmov rdx, rax\n").as_str());
// rdx ← e.params[2];
},
3 => {
// Fourth parameter. Put in %rcx.
unwrap!(p);
asm_start.push_str(format!("\tmov rcx, rax\n").as_str());
// rcx ← e.params[3];
},
4 => {
// Fifth parameter. Put in %r8.
unwrap!(p);
asm_start.push_str(format!("\tmov r8, rax").as_str());
// r8 ← e.params[4];
},
5 => {
// Sixth parameter. Put in %r9.
unwrap!(p);
asm_start.push_str(format!("\tmov r9, rax\n").as_str());
// r9 ← e.params[5];
},
_ => {
// Parameters after the sixth parameter are pushed to the stack.
unwrap!(p);
asm_start.push_str(format!("\tpush rax\n").as_str());
// STACK_TOP ← e.params[(6+)];
}
}
}
// Call the function.
asm_start.push_str(format!("\tcall {}\n", e.name).as_str());
},
// Define a global variable.
Expr::GlobalDefinition(e) => {
// Define a 64-bit global variable.
asm_data.push_str(format!("\t{} dq {}", e.name, e.value).as_str());
},
// Breakpoint.
Expr::Breakpoint => {
// Write the interrupt for a debugger breakpoint.
asm_start.push_str("\tint3\n");
},
// Return something from a function.
Expr::Return(e) => {
// Do the operation that should later be returned.
asm_start.push_str(fasm_codegen!(fun: &e).as_str());
// Move the return value to rbp + 8.
// [rbp + 8] ← return_value
},
// A function defenition.
Expr::FunDefinition(e) => {
// In x86-64 assembly, a function is defined as <function_name>:. Push this to the `asm_func`.
asm_func.push_str(format!("{}:\n", e.name).as_str());
// Call the function itself specifying that you are defining a function, and push the returned value to `asm_func`.
asm_func.push_str(fasm_codegen!(fun: &e.contents).as_str());
// Use the ret instruction to return from the procedure.
asm_func.push_str("\tret\n");
},
Expr::If(e) => {
// Increment the temporary variable/function counter.
// Compare the left and right value.
unwrap!(e.left);
asm_start.push_str("mov rdi, rax");
unwrap!(e.right);
asm_start.push_str("mov rsi, rax");
asm_start.push_str(format!("\tcmp rdi, rsi\n").as_str());
// Check what the condition is.
match e.cond {
COND_OP::EQ => {
// If the compared values are equal to each other jump to the temporary function.
asm_start.push_str(format!("je .{}", temp!()).as_str());
},
COND_OP::NE => {
// If the compared values are not equal to eachother jump to the temporary function.
asm_start.push_str(format!("jne .{}", temp!()).as_str());
}
}
// Create the temporary function.
asm_func.push_str(format!(".{}:\n", temp!()).as_str());
asm_func.push_str(fasm_codegen!(fun: &e.action).as_str());
asm_func.push_str("\tret\n");
},
Expr::Number(n) => {
asm_func.push_str(format!("\tmov rax, {}\n", n).as_str())
},
no => unsafe {
// Write some data I randomly typed to your memory because don't going around playing with something that I haven't implemented yet.
println!("{:?} is not. implemented.", no);
let mut ptr = 0x00 as *mut f64;
::std::ptr::write(ptr, 124010240120401240.12410240124120401240);
},
}
}
if not_a_function {
// Use the exit syscall to leave the program. If you don't do this, you will get a segmentation fault.
asm_start.push_str("\tmov rax, 60 ; 60 is the system call number for exit.\n");
asm_start.push_str("\txor rdi, rdi ; 0 is the exit code we want.\n");
asm_start.push_str("\tsyscall ; this is the instruction to actually perform the system call.\n");
}
// Get the final `asm` string derived from all of the other strings that we have manipulated (finally!).
let asm = format!("{}{}{}", asm_start, asm_func, asm_data);
// Return the final `asm` string.
asm
}
}