# HERE SHALL THE DOCUMENTATION RESIDE ## Enforced Political Views - worse is better - less is more - embrace `unsafe {}` - adhere `macro_rules!` - pessimization == death (put in `std::pin::Pin` and left with hungry crabs) - importing external dependencies == death (`fn(dependencies) -> ExecutionStrategy`) - above sell not be disputed, discussed, or questioned ## What hblang is Holey-Bytes-Language (hblang for short) (*.hb) is the only true language targeting hbvm byte code. hblang is low level, manually managed, and procedural. Its rumored to be better then writing hbasm and you should probably use it for complex applications. ## What hblang isnt't hblang knows what it isn't, because it knows what it is, hblang computes this by sub... ## Examples Examples are also used in tests. To add an example that runs during testing add:
#### <name>
```hb
<example>
```
and also: ```rs => README; ``` to the `run_tests` macro at the bottom of the `src/codegen.rs`. ### Tour Examples Following examples incrementally introduce language features and syntax. #### main_fn ```hb main := fn(): int { return 1; } ``` #### arithmetic ```hb main := fn(): int { return 10 - 20 / 2 + 4 * (2 + 2) - 4 * 4 + 1 << 0 } ``` #### functions ```hb main := fn(): int { return add_one(10) + add_two(20) } add_two := fn(x: int): int { return x + 2 } add_one := fn(x: int): int { return x + 1 } ``` #### comments ```hb // commant is an item main := fn(): int { // comment is a statement foo(/* comment is an exprression /* if you are crazy */ */) return 0 } foo := fn(comment: void): void return /* comment evaluates to void */ // comments might be formatted in the future ``` #### if_statements ```hb main := fn(): int { return fib(10) } fib := fn(x: int): int { if x <= 2 { return 1 } else { return fib(x - 1) + fib(x - 2) } } ``` #### variables ```hb main := fn(): int { ඞ := 1 b := 2 ඞ += 1 return ඞ - b } ``` #### loops ```hb main := fn(): int { return fib(10) } fib := fn(n: int): int { a := 0 b := 1 loop if n == 0 break else { c := a + b a = b b = c n -= 1 } return a } ``` #### pointers ```hb main := fn(): int { a := 1 b := &a modify(b) drop(a) stack_reclamation_edge_case := 0 return *b - 2 } modify := fn(a: ^int): void { *a = 2 return } drop := fn(a: int): void { return } ``` #### structs ```hb Ty := struct { a: int, b: int, } Ty2 := struct { ty: Ty, c: int, } main := fn(): int { finst := Ty2.{ty: Ty.{a: 4, b: 1}, c: 3} inst := odher_pass(finst) if inst.c == 3 { return pass(&inst.ty) } return 0 } pass := fn(t: ^Ty): int { .{a, b} := *t return a - b } odher_pass := fn(t: Ty2): Ty2 { return t } ``` #### struct_operators ```hb Point := struct { x: int, y: int, } Rect := struct { a: Point, b: Point, } main := fn(): int { a := Point.(1, 2) b := Point.(3, 4) d := Rect.(a + b, b - a) d2 := Rect.(Point.(0, 0) - b, a) d2 += d c := d2.a + d2.b return c.x + c.y } ``` #### global_variables ```hb global_var := 10 complex_global_var := fib(global_var) - 5 fib := fn(n: int): int { if 2 > n { return n } return fib(n - 1) + fib(n - 2) } main := fn(): int { return complex_global_var } ``` note: values of global variables are evaluated at compile time #### directives ```hb foo := @use("foo.hb") main := fn(): int { byte := @as(u8, 10) same_type_as_byte := @as(@TypeOf(byte), 30) wide_uint := @as(u32, 40) truncated_uint := @as(u8, @intcast(wide_uint)) size_of_Type_in_bytes := @sizeof(foo.Type) align_of_Type_in_bytes := @alignof(foo.Type) hardcoded_pointer := @as(^u8, @bitcast(10)) ecall_that_returns_int := @eca(int, 1, foo.Type.(10, 20), 5, 6) return @inline(foo.foo) } // in module: foo.hb Type := struct { brah: int, blah: int, } foo := fn(): int return 0 ``` - `@use()`: imports a module based of string, the string is passed to a loader that can be customized, default loader uses following syntax: - `((rel:|)()|git::)`: `rel:` and `''` prefixes both mean module is located at `path` relavive to the current file, `git:` takes a git url without `https://` passed as `git-addr`, `path` then refers to file within the repository - `@TypeOf()`: results into literal type of whatever the type of `` is, `` is not included in final binary - `@as(, )`: hint to the compiler that `@TypeOf() == ` - `@intcast()`: needs to be used when conversion of `@TypeOf()` would loose precision (widening of integers is implicit) - `@sizeof(), @alignof()`: I think explaining this would insult your intelligence - `@bitcast()`: tell compiler to assume `@TypeOf()` is whatever is inferred, so long as size and alignment did not change - `@eca(, ...)`: invoke `eca` instruction, where `` is the type this will return and `...` are arguments passed to the call - `@inline(, ...)`: equivalent to `(...)` but function is guaranteed to inline, compiler will otherwise never inline #### c_strings ```hb str_len := fn(str: ^u8): int { len := 0 loop if *str == 0 break else { len += 1 str += 1 } return len } main := fn(): int { // when string ends with '\0' its a C string and thus type is '^u8' some_str := "abඞ\n\r\t\{35}\{36373839}\0" len := str_len(some_str) some_other_str := "fff\0" lep := str_len(some_other_str) return lep + len } ``` #### struct_patterns ```hb .{fib, fib_iter, Fiber} := @use("fibs.hb") main := fn(): int { .{a, b} := Fiber.{a: 10, b: 10} return fib(a) - fib_iter(b) } // in module: fibs.hb Fiber := struct {a: u8, b: u8} fib := fn(n: int): int if n < 2 { return n } else { return fib(n - 1) + fib(n - 2) } fib_iter := fn(n: int): int { a := 0 b := 1 loop if n == 0 break else { c := a + b a = b b = c n -= 1 } return a } ``` #### arrays ```hb main := fn(): int { arr := [int].(1, 2, 4) return pass(&arr) } pass := fn(arr: ^[int; 3]): int { return arr[0] + arr[1] + arr[arr[1]] } ``` #### inline ```hb main := fn(): int { return @inline(foo, 1, 2, 3) - 6 } foo := fn(a: int, b: int, c: int): int { return a + b + c } ``` ### Incomplete Examples #### comptime_pointers ```hb main := fn(): int { $integer := 7 modify(&integer) return integer } modify := fn($num: ^int): void { $: *num = 0 } ``` #### generic_types ```hb MALLOC_SYS_CALL := 69 FREE_SYS_CALL := 96 malloc := fn(size: uint, align: uint): ^void return @eca(^void, MALLOC_SYS_CALL, size, align) free := fn(ptr: ^void, size: uint, align: uint): void return @eca(void, FREE_SYS_CALL, ptr, size, align) Vec := fn($Elem: type): type { return struct { data: ^Elem, len: uint, cap: uint, } } new := fn($Elem: type): Vec(Elem) return Vec(Elem).{data: @bitcast(0), len: 0, cap: 0} deinit := fn($Elem: type, vec: ^Vec(Elem)): void { free(@bitcast(vec.data), vec.cap * @sizeof(Elem), @alignof(Elem)); *vec = new(Elem) return } push := fn($Elem: type, vec: ^Vec(Elem), value: Elem): ^Elem { if vec.len == vec.cap { if vec.cap == 0 { vec.cap = 1 } else { vec.cap *= 2 } new_alloc := @as(^Elem, @bitcast(malloc(vec.cap * @sizeof(Elem), @alignof(Elem)))) if new_alloc == 0 return 0 src_cursor := vec.data dst_cursor := new_alloc end := vec.data + vec.len loop if src_cursor == end break else { *dst_cursor = *src_cursor src_cursor += 1 dst_cursor += 1 } if vec.len != 0 { free(@bitcast(vec.data), vec.len * @sizeof(Elem), @alignof(Elem)) } vec.data = new_alloc } slot := vec.data + vec.len; *slot = value vec.len += 1 return slot } main := fn(): int { vec := new(int) push(int, &vec, 69) res := *vec.data deinit(int, &vec) return res } ``` #### generic_functions ```hb add := fn($T: type, a: T, b: T): T return a + b main := fn(): int { return add(u32, 2, 2) - add(int, 1, 3) } ``` #### fb_driver ```hb arm_fb_ptr := fn(): int return 100 x86_fb_ptr := fn(): int return 100 check_platform := fn(): int { return x86_fb_ptr() } set_pixel := fn(x: int, y: int, width: int): int { pix_offset := y * width + x return 0 } main := fn(): int { fb_ptr := check_platform() width := 100 height := 30 x := 0 y := 0 loop { if x <= height + 1 { _d := set_pixel(x, y, width) x += 1 } else { _d := set_pixel(x, y, width) x = 0 y += 1 } if y == width { break } } return 0 } ``` ### Purely Testing Examples #### comptime_min_reg_leak ```hb a := @use("math.hb").min(100, 50) main := fn(): int { return a } // in module: math.hb SIZEOF_INT := 32 SHIFT := SIZEOF_INT - 1 min := fn(a: int, b: int): int { c := a - b return b + (c & c >> SHIFT) } ``` #### different_types ```hb Color := struct { r: u8, g: u8, b: u8, a: u8, } Point := struct { x: u32, y: u32, } Pixel := struct { color: Color, point: Point, } main := fn(): int { pixel := Pixel.{ color: Color.{ r: 255, g: 0, b: 0, a: 255, }, point: Point.{ x: 0, y: 2, }, } soupan := 1 if *(&pixel.point.x + soupan) != 2 { return 0 } if *(&pixel.point.y - 1) != 0 { return 64 } return pixel.point.x + pixel.point.y + pixel.color.r + pixel.color.g + pixel.color.b + pixel.color.a } ``` #### struct_return_from_module_function ```hb bar := @use("bar.hb") main := fn(): int { return 7 - bar.foo().x - bar.foo().y - bar.foo().z } // in module: bar.hb foo := fn(): Foo { return .{x: 3, y: 2, z: 2} } Foo := struct {x: int, y: u32, z: u32} ``` #### sort_something_viredly ```hb main := fn(): int { foo := sqrt return 0 } sqrt := fn(x: int): int { temp := 0 g := 0 b := 32768 bshift := 15 loop if b == 0 break else { bshift -= 1 temp = b + (g << 1) temp <<= bshift if x >= temp { g += b x -= temp } b >>= 1 } return g } ``` #### hex_octal_binary_literals ```hb main := fn(): int { hex := 0xFF decimal := 255 octal := 0o377 binary := 0b11111111 if hex == decimal & octal == decimal & binary == decimal { return 0 } return 1 } ``` #### structs_in_registers ```hb ColorBGRA := struct {b: u8, g: u8, r: u8, a: u8} MAGENTA := ColorBGRA.{b: 205, g: 0, r: 205, a: 255} main := fn(): int { color := MAGENTA return color.r } ``` #### comptime_function_from_another_file ```hb stn := @use("stn.hb") CONST_A := 100 CONST_B := 50 a := stn.math.min(CONST_A, CONST_B) main := fn(): int { return a } // in module: stn.hb math := @use("math.hb") // in module: math.hb SIZEOF_INT := 32 SHIFT := SIZEOF_INT - 1 min := fn(a: int, b: int): int { c := a - b return b + (c & c >> SHIFT) } ``` ### Just Testing Optimizations #### const_folding_with_arg ```hb main := fn(arg: int): int { // reduces to 0 return arg + 0 - arg * 1 + arg + 1 + arg + 2 + arg + 3 - arg * 3 - 6 } ``` #### branch_assignments ```hb main := fn(arg: int): int { if arg == 1 { arg = 1 } else if arg == 0 { arg = 2 } else { arg = 3 } return arg } ``` #### inline_test ```hb Point := struct {x: int, y: int} Buffer := struct {} Transform := Point ColorBGRA := Point line := fn(buffer: Buffer, p0: Point, p1: Point, color: ColorBGRA, thickness: int): void { if true { if p0.x > p1.x { @inline(line_low, buffer, p1, p0, color) } else { @inline(line_low, buffer, p0, p1, color) } } else { if p0.y > p1.y { @inline(line_high, buffer, p1, p0, color) } else { @inline(line_high, buffer, p0, p1, color) } } return } line_low := fn(buffer: Buffer, p0: Point, p1: Point, color: ColorBGRA): void { return } line_high := fn(buffer: Buffer, p0: Point, p1: Point, color: ColorBGRA): void { return } screenidx := @use("screen.hb").screenidx rect_line := fn(buffer: Buffer, pos: Point, tr: Transform, color: ColorBGRA, thickness: int): void { t := 0 y := 0 x := 0 loop if t == thickness break else { y = pos.y x = pos.x loop if y == pos.y + tr.x break else { a := 1 + @inline(screenidx, 10) a = 1 + @inline(screenidx, 2) y += 1 } t += 1 } return } random := @use("random.hb") example := fn(): void { loop { random_x := @inline(random.integer, 0, 1024) random_y := random.integer(0, 768) a := @inline(screenidx, random_x) break } return } main := fn(): int { line(.(), .(0, 0), .(0, 0), .(0, 0), 10) rect_line(.(), .(0, 0), .(0, 0), .(0, 0), 10) example() return 0 } // in module: screen.hb screenidx := fn(orange: int): int { return orange } // in module: random.hb integer := fn(min: int, max: int): int { rng := @eca(int, 3, 4) if min != 0 | max != 0 { return rng % (max - min + 1) + min } return rng } ``` #### some_generic_code ```hb some_func := fn($Elem: type): void { return } main := fn(): void { some_func(u8) return } ``` #### integer_inference_issues ```hb .{integer_range} := @use("random.hb") main := fn(): void { a := integer_range(0, 1000) return } // in module: random.hb integer_range := fn(min: uint, max: int): uint { return @eca(uint, 3, 4) % (@bitcast(max) - min + 1) + min } ``` #### exhaustive_loop_testing ```hb main := fn(): int { if multiple_breaks(0) != 3 { return 1 } if multiple_breaks(4) != 10 { return 2 } //if state_change_in_break(0) != 0 { // return 3 //} //if state_change_in_break(4) != 10 { // return 4 //} //if continue_and_state_change(0) != 10 { // return 5 //} //if continue_and_state_change(3) != 0 { // return 6 //} return 0 } multiple_breaks := fn(arg: int): int { loop if arg < 10 { arg += 1 //if arg == 3 break } else break return arg } //state_change_in_break := fn(arg: int): int { // loop if arg < 10 { // if arg == 3 { // arg = 0 // break // } // arg += 1 // } else break // return arg //} // //continue_and_state_change := fn(arg: int): int { // loop if arg < 10 { // if arg == 2 { // arg = 4 // continue // } // if arg == 3 { // arg = 0 // break // } // arg += 1 // } else break // return arg //} ```