use {
    super::{HbvmBackend, Nid, Nodes},
    crate::{
        lexer::TokenKind,
        parser, reg,
        son::{debug_assert_matches, Kind, ARG_START, MEM, NEVER, VOID},
        ty::{self, Arg, Loc},
        utils::{BitSet, Vc},
        HashMap, Offset, PLoc, Reloc, Sig, TypedReloc, Types,
    },
    alloc::{borrow::ToOwned, vec::Vec},
    core::mem,
    hbbytecode::{self as instrs},
};

pub struct Regalloc {
    env: regalloc2::MachineEnv,
    ctx: regalloc2::Ctx,
}

impl Default for Regalloc {
    fn default() -> Self {
        Self {
            env: regalloc2::MachineEnv {
                preferred_regs_by_class: [
                    (1..13).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(),
                    vec![],
                    vec![],
                ],
                non_preferred_regs_by_class: [
                    (13..64).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(),
                    vec![],
                    vec![],
                ],
                scratch_by_class: Default::default(),
                fixed_stack_slots: Default::default(),
            },
            ctx: Default::default(),
        }
    }
}

impl HbvmBackend {
    pub fn emit_body_code(
        &mut self,
        nodes: &mut Nodes,
        sig: Sig,
        tys: &Types,
        files: &[parser::Ast],
    ) -> (usize, bool) {
        let mut ralloc = mem::take(&mut self.ralloc);

        let fuc = Function::new(nodes, tys, sig);
        log::info!("{:?}", fuc);
        if !fuc.tail {
            mem::swap(
                &mut ralloc.env.preferred_regs_by_class,
                &mut ralloc.env.non_preferred_regs_by_class,
            );
        };

        let options = regalloc2::RegallocOptions {
            verbose_log: false,
            validate_ssa: cfg!(debug_assertions),
            algorithm: regalloc2::Algorithm::Ion,
        };
        regalloc2::run_with_ctx(&fuc, &ralloc.env, &options, &mut ralloc.ctx).unwrap_or_else(
            |err| {
                if let regalloc2::RegAllocError::SSA(vreg, inst) = err {
                    fuc.nodes[vreg.vreg() as Nid].lock_rc = Nid::MAX;
                    fuc.nodes[fuc.instrs[inst.index()].nid].lock_rc = Nid::MAX - 1;
                }
                fuc.nodes.graphviz_in_browser(ty::Display::new(tys, files, ty::Id::VOID));
                panic!("{err}")
            },
        );

        if !fuc.tail {
            mem::swap(
                &mut ralloc.env.preferred_regs_by_class,
                &mut ralloc.env.non_preferred_regs_by_class,
            );
        };

        let mut saved_regs = HashMap::<u8, u8>::default();
        let mut atr = |allc: regalloc2::Allocation| {
            debug_assert!(allc.is_reg());
            let hvenc = regalloc2::PReg::from_index(allc.index()).hw_enc() as u8;
            if hvenc <= 12 {
                return hvenc;
            }
            let would_insert = saved_regs.len() as u8 + reg::RET_ADDR + 1;
            *saved_regs.entry(hvenc).or_insert(would_insert)
        };

        '_open_function: {
            self.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0));
            self.emit(instrs::st(reg::RET_ADDR + fuc.tail as u8, reg::STACK_PTR, 0, 0));
        }

        let (retl, mut parama) = tys.parama(sig.ret);
        let mut typs = sig.args.args();
        let mut args = fuc.nodes[VOID].outputs[ARG_START..].iter();
        while let Some(aty) = typs.next(tys) {
            let Arg::Value(ty) = aty else { continue };
            let Some(loc) = parama.next(ty, tys) else { continue };
            let &arg = args.next().unwrap();
            let (rg, size) = match loc {
                PLoc::WideReg(rg, size) => (rg, size),
                PLoc::Reg(rg, size) if ty.loc(tys) == Loc::Stack => (rg, size),
                PLoc::Reg(..) | PLoc::Ref(..) => continue,
            };
            self.emit(instrs::st(rg, reg::STACK_PTR, self.offsets[arg as usize] as _, size));
            if fuc.nodes[arg].lock_rc == 0 {
                self.emit(instrs::addi64(rg, reg::STACK_PTR, self.offsets[arg as usize] as _));
            }
        }

        for (i, block) in fuc.blocks.iter().enumerate() {
            let blk = regalloc2::Block(i as _);
            self.offsets[block.nid as usize] = self.code.len() as _;
            for instr_or_edit in ralloc.ctx.output.block_insts_and_edits(&fuc, blk) {
                let inst = match instr_or_edit {
                    regalloc2::InstOrEdit::Inst(inst) => inst,
                    regalloc2::InstOrEdit::Edit(&regalloc2::Edit::Move { from, to }) => {
                        self.emit(instrs::cp(atr(to), atr(from)));
                        continue;
                    }
                };

                let nid = fuc.instrs[inst.index()].nid;
                if nid == NEVER {
                    continue;
                };
                let allocs = ralloc.ctx.output.inst_allocs(inst);
                let node = &fuc.nodes[nid];
                let backref = fuc.backrefs[nid as usize];

                let mut extend = |base: ty::Id, dest: ty::Id, from: usize, to: usize| {
                    let (bsize, dsize) = (tys.size_of(base), tys.size_of(dest));
                    debug_assert!(bsize <= 8, "{}", ty::Display::new(tys, files, base));
                    debug_assert!(dsize <= 8, "{}", ty::Display::new(tys, files, dest));
                    if bsize == dsize {
                        return Default::default();
                    }
                    match (base.is_signed(), dest.is_signed()) {
                        (true, true) => {
                            let op = [instrs::sxt8, instrs::sxt16, instrs::sxt32]
                                [bsize.ilog2() as usize];
                            op(atr(allocs[to]), atr(allocs[from]))
                        }
                        _ => {
                            let mask = (1u64 << (bsize * 8)) - 1;
                            instrs::andi(atr(allocs[to]), atr(allocs[from]), mask)
                        }
                    }
                };

                match node.kind {
                    Kind::If => {
                        let &[_, cnd] = node.inputs.as_slice() else { unreachable!() };
                        if let Kind::BinOp { op } = fuc.nodes[cnd].kind
                            && let Some((op, swapped)) =
                                op.cond_op(fuc.nodes[fuc.nodes[cnd].inputs[1]].ty)
                        {
                            let &[lhs, rhs] = allocs else { unreachable!() };
                            let &[_, lh, rh] = fuc.nodes[cnd].inputs.as_slice() else {
                                unreachable!()
                            };

                            self.emit(extend(fuc.nodes[lh].ty, fuc.nodes[lh].ty.extend(), 0, 0));
                            self.emit(extend(fuc.nodes[rh].ty, fuc.nodes[rh].ty.extend(), 1, 1));

                            let rel = Reloc::new(self.code.len(), 3, 2);
                            self.jump_relocs.push((node.outputs[!swapped as usize], rel));
                            self.emit(op(atr(lhs), atr(rhs), 0));
                        } else {
                            self.emit(extend(fuc.nodes[cnd].ty, fuc.nodes[cnd].ty.extend(), 0, 0));
                            let rel = Reloc::new(self.code.len(), 3, 2);
                            self.jump_relocs.push((node.outputs[0], rel));
                            self.emit(instrs::jne(atr(allocs[0]), reg::ZERO, 0));
                        }
                    }
                    Kind::Loop | Kind::Region => {
                        if backref as usize != i + 1 {
                            let rel = Reloc::new(self.code.len(), 1, 4);
                            self.jump_relocs.push((nid, rel));
                            self.emit(instrs::jmp(0));
                        }
                    }
                    Kind::Return => {
                        match retl {
                            Some(PLoc::Reg(r, size)) if sig.ret.loc(tys) == Loc::Stack => {
                                self.emit(instrs::ld(r, atr(allocs[0]), 0, size))
                            }
                            None | Some(PLoc::Reg(..)) => {}
                            Some(PLoc::WideReg(r, size)) => {
                                self.emit(instrs::ld(r, atr(allocs[0]), 0, size))
                            }
                            Some(PLoc::Ref(_, size)) => {
                                let [src, dst] = [atr(allocs[0]), atr(allocs[1])];
                                if let Ok(size) = u16::try_from(size) {
                                    self.emit(instrs::bmc(src, dst, size));
                                } else {
                                    for _ in 0..size / u16::MAX as u32 {
                                        self.emit(instrs::bmc(src, dst, u16::MAX));
                                        self.emit(instrs::addi64(src, src, u16::MAX as _));
                                        self.emit(instrs::addi64(dst, dst, u16::MAX as _));
                                    }
                                    self.emit(instrs::bmc(src, dst, size as u16));
                                    self.emit(instrs::addi64(src, src, size.wrapping_neg() as _));
                                    self.emit(instrs::addi64(dst, dst, size.wrapping_neg() as _));
                                }
                            }
                        }

                        if i != fuc.blocks.len() - 1 {
                            let rel = Reloc::new(self.code.len(), 1, 4);
                            self.ret_relocs.push(rel);
                            self.emit(instrs::jmp(0));
                        }
                    }
                    Kind::Die => {
                        self.emit(instrs::un());
                    }
                    Kind::CInt { value } if node.ty.is_float() => {
                        self.emit(match node.ty {
                            ty::Id::F32 => instrs::li32(
                                atr(allocs[0]),
                                (f64::from_bits(value as _) as f32).to_bits(),
                            ),
                            ty::Id::F64 => instrs::li64(atr(allocs[0]), value as _),
                            _ => unreachable!(),
                        });
                    }
                    Kind::CInt { value } => self.emit(match tys.size_of(node.ty) {
                        1 => instrs::li8(atr(allocs[0]), value as _),
                        2 => instrs::li16(atr(allocs[0]), value as _),
                        4 => instrs::li32(atr(allocs[0]), value as _),
                        _ => instrs::li64(atr(allocs[0]), value as _),
                    }),
                    Kind::UnOp { op } => {
                        let op = op
                            .unop(node.ty, fuc.nodes[node.inputs[1]].ty)
                            .expect("TODO: unary operator not supported");
                        let &[dst, oper] = allocs else { unreachable!() };
                        self.emit(op(atr(dst), atr(oper)));
                    }
                    Kind::BinOp { .. } if node.lock_rc != 0 => {}
                    Kind::BinOp { op } => {
                        let &[.., lh, rh] = node.inputs.as_slice() else { unreachable!() };

                        if let Kind::CInt { value } = fuc.nodes[rh].kind
                            && fuc.nodes[rh].lock_rc != 0
                            && let Some(op) = op.imm_binop(node.ty)
                        {
                            let &[dst, lhs] = allocs else { unreachable!() };
                            self.emit(op(atr(dst), atr(lhs), value as _));
                        } else if let Some(op) =
                            op.binop(node.ty).or(op.float_cmp(fuc.nodes[lh].ty))
                        {
                            let &[dst, lhs, rhs] = allocs else { unreachable!() };
                            self.emit(op(atr(dst), atr(lhs), atr(rhs)));
                        } else if let Some(against) = op.cmp_against() {
                            let op_ty = fuc.nodes[rh].ty;

                            self.emit(extend(fuc.nodes[lh].ty, fuc.nodes[lh].ty.extend(), 1, 1));
                            self.emit(extend(fuc.nodes[rh].ty, fuc.nodes[rh].ty.extend(), 2, 2));
                            let &[dst, lhs, rhs] = allocs else { unreachable!() };

                            if op_ty.is_float() && matches!(op, TokenKind::Le | TokenKind::Ge) {
                                let opop = match op {
                                    TokenKind::Le => TokenKind::Gt,
                                    TokenKind::Ge => TokenKind::Lt,
                                    _ => unreachable!(),
                                };
                                let op_fn = opop.float_cmp(op_ty).unwrap();
                                self.emit(op_fn(atr(dst), atr(lhs), atr(rhs)));
                                self.emit(instrs::not(atr(dst), atr(dst)));
                            } else {
                                let op_fn =
                                    if op_ty.is_signed() { instrs::cmps } else { instrs::cmpu };
                                self.emit(op_fn(atr(dst), atr(lhs), atr(rhs)));
                                self.emit(instrs::cmpui(atr(dst), atr(dst), against));
                                if matches!(op, TokenKind::Eq | TokenKind::Lt | TokenKind::Gt) {
                                    self.emit(instrs::not(atr(dst), atr(dst)));
                                }
                            }
                        } else {
                            todo!("unhandled operator: {op}");
                        }
                    }
                    Kind::Call { args, func } => {
                        let (ret, mut parama) = tys.parama(node.ty);
                        let has_ret = ret.is_some() as usize;
                        let mut args = args.args();
                        let mut allocs = allocs[has_ret..].iter();
                        while let Some(arg) = args.next(tys) {
                            let Arg::Value(ty) = arg else { continue };
                            let Some(loc) = parama.next(ty, tys) else { continue };

                            let &arg = allocs.next().unwrap();
                            let (rg, size) = match loc {
                                PLoc::Reg(rg, size) if ty.loc(tys) == Loc::Stack => (rg, size),
                                PLoc::WideReg(rg, size) => (rg, size),
                                PLoc::Ref(..) | PLoc::Reg(..) => continue,
                            };
                            if size > 8 {
                                allocs.next().unwrap();
                            }
                            self.emit(instrs::ld(rg, atr(arg), 0, size));
                        }

                        debug_assert!(
                            !matches!(ret, Some(PLoc::Ref(..))) || allocs.next().is_some()
                        );

                        if func == ty::Func::ECA {
                            self.emit(instrs::eca());
                        } else {
                            self.relocs.push(TypedReloc {
                                target: ty::Kind::Func(func).compress(),
                                reloc: Reloc::new(self.code.len(), 3, 4),
                            });
                            self.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0));
                        }

                        if let Some(PLoc::WideReg(r, size)) = ret {
                            debug_assert_eq!(
                                fuc.nodes[*node.inputs.last().unwrap()].kind,
                                Kind::Stck
                            );
                            let stck = self.offsets[*node.inputs.last().unwrap() as usize];
                            self.emit(instrs::st(r, reg::STACK_PTR, stck as _, size));
                        }
                        if let Some(PLoc::Reg(r, size)) = ret
                            && node.ty.loc(tys) == Loc::Stack
                        {
                            debug_assert_eq!(
                                fuc.nodes[*node.inputs.last().unwrap()].kind,
                                Kind::Stck
                            );
                            let stck = self.offsets[*node.inputs.last().unwrap() as usize];
                            self.emit(instrs::st(r, reg::STACK_PTR, stck as _, size));
                        }
                    }
                    Kind::Global { global } => {
                        let reloc = Reloc::new(self.code.len(), 3, 4);
                        self.relocs.push(TypedReloc {
                            target: ty::Kind::Global(global).compress(),
                            reloc,
                        });
                        self.emit(instrs::lra(atr(allocs[0]), 0, 0));
                    }
                    Kind::Stck => {
                        let base = reg::STACK_PTR;
                        let offset = self.offsets[nid as usize];
                        self.emit(instrs::addi64(atr(allocs[0]), base, offset as _));
                    }
                    Kind::Load => {
                        let mut region = node.inputs[1];
                        let mut offset = 0;
                        if fuc.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add })
                            && let Kind::CInt { value } =
                                fuc.nodes[fuc.nodes[region].inputs[2]].kind
                        {
                            region = fuc.nodes[region].inputs[1];
                            offset = value as Offset;
                        }
                        let size = tys.size_of(node.ty);
                        if node.ty.loc(tys) != Loc::Stack {
                            let (base, offset) = match fuc.nodes[region].kind {
                                Kind::Stck => {
                                    (reg::STACK_PTR, self.offsets[region as usize] + offset)
                                }
                                _ => (atr(allocs[1]), offset),
                            };
                            self.emit(instrs::ld(atr(allocs[0]), base, offset as _, size as _));
                        }
                    }
                    Kind::Stre if node.inputs[1] == VOID => {}
                    Kind::Stre => {
                        let mut region = node.inputs[2];
                        let mut offset = 0;
                        let size = u16::try_from(tys.size_of(node.ty)).expect("TODO");
                        if fuc.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add })
                            && let Kind::CInt { value } =
                                fuc.nodes[fuc.nodes[region].inputs[2]].kind
                            && node.ty.loc(tys) == Loc::Reg
                        {
                            region = fuc.nodes[region].inputs[1];
                            offset = value as Offset;
                        }
                        let nd = &fuc.nodes[region];
                        let (base, offset, src) = match nd.kind {
                            Kind::Stck if node.ty.loc(tys) == Loc::Reg => {
                                (reg::STACK_PTR, self.offsets[region as usize] + offset, allocs[0])
                            }
                            _ => (atr(allocs[0]), offset, allocs[1]),
                        };

                        match node.ty.loc(tys) {
                            Loc::Reg => self.emit(instrs::st(atr(src), base, offset as _, size)),
                            Loc::Stack => {
                                debug_assert_eq!(offset, 0);
                                self.emit(instrs::bmc(atr(src), base, size))
                            }
                        }
                    }
                    Kind::Start
                    | Kind::Assert { .. }
                    | Kind::Entry
                    | Kind::Mem
                    | Kind::End
                    | Kind::Loops
                    | Kind::Then
                    | Kind::Else
                    | Kind::Phi
                    | Kind::Arg => unreachable!(),
                }
            }
        }

        self.ralloc = ralloc;

        (saved_regs.len(), fuc.tail)
    }
}

#[derive(Debug)]
struct Block {
    nid: Nid,
    preds: Vec<regalloc2::Block>,
    succs: Vec<regalloc2::Block>,
    instrs: regalloc2::InstRange,
    params: Vec<regalloc2::VReg>,
    branch_blockparams: Vec<regalloc2::VReg>,
}

#[derive(Debug)]
struct Instr {
    nid: Nid,
    ops: Vec<regalloc2::Operand>,
}

pub struct Function<'a> {
    sig: Sig,
    nodes: &'a mut Nodes,
    tys: &'a Types,
    tail: bool,
    visited: BitSet,
    backrefs: Vec<u16>,
    blocks: Vec<Block>,
    instrs: Vec<Instr>,
}

impl core::fmt::Debug for Function<'_> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        for (i, block) in self.blocks.iter().enumerate() {
            writeln!(f, "sb{i}{:?}-{:?}:", block.params, block.preds)?;

            for inst in block.instrs.iter() {
                let instr = &self.instrs[inst.index()];
                writeln!(f, "{}: i{:?}:{:?}", inst.index(), self.nodes[instr.nid].kind, instr.ops)?;
            }

            writeln!(f, "eb{i}{:?}-{:?}:", block.branch_blockparams, block.succs)?;
        }
        Ok(())
    }
}

impl<'a> Function<'a> {
    fn new(nodes: &'a mut Nodes, tys: &'a Types, sig: Sig) -> Self {
        let mut s = Self {
            tys,
            sig,
            tail: true,
            visited: Default::default(),
            backrefs: vec![u16::MAX; nodes.values.len()],
            blocks: Default::default(),
            instrs: Default::default(),
            nodes,
        };
        s.visited.clear(s.nodes.values.len());
        s.emit_node(VOID, VOID);
        s.add_block(0);
        s.blocks.pop();
        s
    }

    fn add_block(&mut self, nid: Nid) -> u16 {
        if let Some(prev) = self.blocks.last_mut() {
            prev.instrs = regalloc2::InstRange::new(
                prev.instrs.first(),
                regalloc2::Inst::new(self.instrs.len()),
            );
        }

        self.blocks.push(Block {
            nid,
            preds: Default::default(),
            succs: Default::default(),
            instrs: regalloc2::InstRange::new(
                regalloc2::Inst::new(self.instrs.len()),
                regalloc2::Inst::new(self.instrs.len() + 1),
            ),
            params: Default::default(),
            branch_blockparams: Default::default(),
        });
        self.blocks.len() as u16 - 1
    }

    fn add_instr(&mut self, nid: Nid, ops: Vec<regalloc2::Operand>) {
        self.instrs.push(Instr { nid, ops });
    }

    fn urg(&mut self, nid: Nid) -> regalloc2::Operand {
        regalloc2::Operand::reg_use(self.rg(nid))
    }

    fn drg(&mut self, nid: Nid) -> regalloc2::Operand {
        regalloc2::Operand::reg_def(self.rg(nid))
    }

    fn rg(&self, nid: Nid) -> regalloc2::VReg {
        debug_assert!(
            !self.nodes.is_cfg(nid) || matches!(self.nodes[nid].kind, Kind::Call { .. }),
            "{:?}",
            self.nodes[nid]
        );
        debug_assert_eq!(self.nodes[nid].lock_rc, 0, "{nid} {:?}", self.nodes[nid]);
        debug_assert!(self.nodes[nid].kind != Kind::Phi || self.nodes[nid].ty != ty::Id::VOID);
        regalloc2::VReg::new(nid as _, regalloc2::RegClass::Int)
    }

    fn emit_node(&mut self, nid: Nid, prev: Nid) {
        if matches!(self.nodes[nid].kind, Kind::Region | Kind::Loop) {
            let prev_bref = self.backrefs[prev as usize];
            let node = self.nodes[nid].clone();

            let idx = 1 + node.inputs.iter().position(|&i| i == prev).unwrap();

            for ph in node.outputs {
                if self.nodes[ph].kind != Kind::Phi || self.nodes[ph].ty == ty::Id::VOID {
                    continue;
                }

                let rg = self.rg(self.nodes[ph].inputs[idx]);
                self.blocks[prev_bref as usize].branch_blockparams.push(rg);
            }

            self.add_instr(nid, vec![]);

            match (self.nodes[nid].kind, self.visited.set(nid)) {
                (Kind::Loop, false) => {
                    for i in node.inputs {
                        self.bridge(i, nid);
                    }
                    return;
                }
                (Kind::Region, true) => return,
                _ => {}
            }
        } else if !self.visited.set(nid) {
            return;
        }

        if self.nodes.is_never_used(nid, self.tys) {
            self.nodes.lock(nid);
            return;
        }

        let mut node = self.nodes[nid].clone();
        match node.kind {
            Kind::Start => {
                debug_assert_matches!(self.nodes[node.outputs[0]].kind, Kind::Entry);
                self.emit_node(node.outputs[0], VOID)
            }
            Kind::If => {
                self.backrefs[nid as usize] = self.backrefs[prev as usize];

                let &[_, cond] = node.inputs.as_slice() else { unreachable!() };
                let &[mut then, mut else_] = node.outputs.as_slice() else { unreachable!() };

                if let Kind::BinOp { op } = self.nodes[cond].kind
                    && let Some((_, swapped)) = op.cond_op(node.ty)
                {
                    if swapped {
                        mem::swap(&mut then, &mut else_);
                    }
                    let &[_, lhs, rhs] = self.nodes[cond].inputs.as_slice() else { unreachable!() };
                    let ops = vec![self.urg(lhs), self.urg(rhs)];
                    self.add_instr(nid, ops);
                } else {
                    mem::swap(&mut then, &mut else_);
                    let ops = vec![self.urg(cond)];
                    self.add_instr(nid, ops);
                }

                self.emit_node(then, nid);
                self.emit_node(else_, nid);
            }
            Kind::Region | Kind::Loop => {
                self.backrefs[nid as usize] = self.add_block(nid);
                if node.kind == Kind::Region {
                    for i in node.inputs {
                        self.bridge(i, nid);
                    }
                }
                let mut block = vec![];
                for ph in node.outputs.clone() {
                    if self.nodes[ph].kind != Kind::Phi || self.nodes[ph].ty == ty::Id::VOID {
                        continue;
                    }
                    block.push(self.rg(ph));
                }
                self.blocks[self.backrefs[nid as usize] as usize].params = block;
                self.reschedule_block(nid, &mut node.outputs);
                for o in node.outputs.into_iter().rev() {
                    self.emit_node(o, nid);
                }
            }
            Kind::Return => {
                let ops = match self.tys.parama(self.sig.ret).0 {
                    None => vec![],
                    Some(PLoc::Reg(..)) if self.sig.ret.loc(self.tys) == Loc::Stack => {
                        vec![self.urg(self.nodes[node.inputs[1]].inputs[1])]
                    }
                    Some(PLoc::Reg(r, ..)) => {
                        vec![regalloc2::Operand::reg_fixed_use(
                            self.rg(node.inputs[1]),
                            regalloc2::PReg::new(r as _, regalloc2::RegClass::Int),
                        )]
                    }
                    Some(PLoc::WideReg(..)) => {
                        vec![self.urg(self.nodes[node.inputs[1]].inputs[1])]
                    }
                    Some(PLoc::Ref(..)) => {
                        vec![self.urg(self.nodes[node.inputs[1]].inputs[1]), self.urg(MEM)]
                    }
                };

                self.add_instr(nid, ops);
                self.emit_node(node.outputs[0], nid);
            }
            Kind::Die => {
                self.add_instr(nid, vec![]);
                self.emit_node(node.outputs[0], nid);
            }
            Kind::CInt { .. } => {
                let ops = vec![self.drg(nid)];
                self.add_instr(nid, ops);
            }
            Kind::Entry => {
                self.backrefs[nid as usize] = self.add_block(nid);

                let (ret, mut parama) = self.tys.parama(self.sig.ret);
                let mut typs = self.sig.args.args();
                #[expect(clippy::unnecessary_to_owned)]
                let mut args = self.nodes[VOID].outputs[ARG_START..].to_owned().into_iter();
                while let Some(ty) = typs.next_value(self.tys) {
                    let arg = args.next().unwrap();
                    debug_assert_eq!(self.nodes[arg].kind, Kind::Arg);
                    match parama.next(ty, self.tys) {
                        None => {}
                        Some(PLoc::Reg(r, _) | PLoc::WideReg(r, _) | PLoc::Ref(r, _)) => {
                            self.add_instr(NEVER, vec![regalloc2::Operand::reg_fixed_def(
                                self.rg(arg),
                                regalloc2::PReg::new(r as _, regalloc2::RegClass::Int),
                            )]);
                        }
                    }
                }

                if let Some(PLoc::Ref(r, ..)) = ret {
                    self.add_instr(NEVER, vec![regalloc2::Operand::reg_fixed_def(
                        self.rg(MEM),
                        regalloc2::PReg::new(r as _, regalloc2::RegClass::Int),
                    )]);
                }

                self.reschedule_block(nid, &mut node.outputs);
                for o in node.outputs.into_iter().rev() {
                    self.emit_node(o, nid);
                }
            }
            Kind::Then | Kind::Else => {
                self.backrefs[nid as usize] = self.add_block(nid);
                self.bridge(prev, nid);
                self.reschedule_block(nid, &mut node.outputs);
                for o in node.outputs.into_iter().rev() {
                    self.emit_node(o, nid);
                }
            }
            Kind::BinOp { .. } => {
                let &[_, lhs, rhs] = node.inputs.as_slice() else { unreachable!() };

                let ops = if let Kind::CInt { .. } = self.nodes[rhs].kind
                    && self.nodes[rhs].lock_rc != 0
                {
                    vec![self.drg(nid), self.urg(lhs)]
                } else {
                    vec![self.drg(nid), self.urg(lhs), self.urg(rhs)]
                };
                self.add_instr(nid, ops);
            }
            Kind::UnOp { .. } => {
                let ops = vec![self.drg(nid), self.urg(node.inputs[1])];
                self.add_instr(nid, ops);
            }
            Kind::Call { args, func } => {
                self.tail &= func == ty::Func::ECA;
                self.backrefs[nid as usize] = self.backrefs[prev as usize];
                let mut ops = vec![];

                let (ret, mut parama) = self.tys.parama(node.ty);
                if ret.is_some() {
                    ops.push(regalloc2::Operand::reg_fixed_def(
                        self.rg(nid),
                        regalloc2::PReg::new(1, regalloc2::RegClass::Int),
                    ));
                }

                let mut tys = args.args();
                let mut args = node.inputs[1..].iter();
                while let Some(ty) = tys.next_value(self.tys) {
                    let mut i = *args.next().unwrap();
                    let Some(loc) = parama.next(ty, self.tys) else { continue };

                    match loc {
                        PLoc::Reg(r, _) if ty.loc(self.tys) == Loc::Reg => {
                            ops.push(regalloc2::Operand::reg_fixed_use(
                                self.rg(i),
                                regalloc2::PReg::new(r as _, regalloc2::RegClass::Int),
                            ));
                        }
                        PLoc::WideReg(r, size) | PLoc::Reg(r, size) => {
                            loop {
                                match self.nodes[i].kind {
                                    Kind::Stre { .. } => i = self.nodes[i].inputs[2],
                                    Kind::Load { .. } => i = self.nodes[i].inputs[1],
                                    _ => break,
                                }
                                debug_assert_ne!(i, 0);
                            }
                            debug_assert!(i != 0);
                            ops.push(regalloc2::Operand::reg_fixed_use(
                                self.rg(i),
                                regalloc2::PReg::new(r as _, regalloc2::RegClass::Int),
                            ));
                            if size > 8 {
                                ops.push(regalloc2::Operand::reg_fixed_use(
                                    self.rg(i),
                                    regalloc2::PReg::new((r + 1) as _, regalloc2::RegClass::Int),
                                ));
                            }
                        }
                        PLoc::Ref(r, _) => {
                            loop {
                                match self.nodes[i].kind {
                                    Kind::Stre { .. } => i = self.nodes[i].inputs[2],
                                    Kind::Load { .. } => i = self.nodes[i].inputs[1],
                                    _ => break,
                                }
                                debug_assert_ne!(i, 0);
                            }
                            debug_assert!(i != 0);
                            ops.push(regalloc2::Operand::reg_fixed_use(
                                self.rg(i),
                                regalloc2::PReg::new(r as _, regalloc2::RegClass::Int),
                            ));
                        }
                    }
                }

                if let Some(PLoc::Ref(r, _)) = ret {
                    ops.push(regalloc2::Operand::reg_fixed_use(
                        self.rg(*node.inputs.last().unwrap()),
                        regalloc2::PReg::new(r as _, regalloc2::RegClass::Int),
                    ));
                }

                self.add_instr(nid, ops);

                self.reschedule_block(nid, &mut node.outputs);
                for o in node.outputs.into_iter().rev() {
                    if self.nodes[o].inputs[0] == nid
                        || (matches!(self.nodes[o].kind, Kind::Loop | Kind::Region)
                            && self.nodes[o].inputs[1] == nid)
                    {
                        self.emit_node(o, nid);
                    }
                }
            }
            Kind::Global { .. } => {
                let ops = vec![self.drg(nid)];
                self.add_instr(nid, ops);
            }
            Kind::Stck => {
                let ops = vec![self.drg(nid)];
                self.add_instr(nid, ops);
            }
            Kind::Assert { .. } => unreachable!(),
            Kind::End | Kind::Phi | Kind::Arg | Kind::Mem | Kind::Loops => {}
            Kind::Load { .. } => {
                let mut region = node.inputs[1];
                if self.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add })
                    && self.nodes.is_const(self.nodes[region].inputs[2])
                    && node.ty.loc(self.tys) == Loc::Reg
                {
                    region = self.nodes[region].inputs[1]
                }
                let ops = match self.nodes[region].kind {
                    Kind::Stck => vec![self.drg(nid)],
                    _ => vec![self.drg(nid), self.urg(region)],
                };
                self.add_instr(nid, ops);
            }
            Kind::Stre => {
                debug_assert_ne!(self.tys.size_of(node.ty), 0);
                let mut region = node.inputs[2];
                if self.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add })
                    && self.nodes.is_const(self.nodes[region].inputs[2])
                    && node.ty.loc(self.tys) == Loc::Reg
                {
                    region = self.nodes[region].inputs[1]
                }
                let ops = match self.nodes[region].kind {
                    _ if node.ty.loc(self.tys) == Loc::Stack => {
                        if self.nodes[node.inputs[1]].kind == Kind::Arg {
                            vec![self.urg(region), self.urg(node.inputs[1])]
                        } else {
                            vec![self.urg(region), self.urg(self.nodes[node.inputs[1]].inputs[1])]
                        }
                    }
                    Kind::Stck => vec![self.urg(node.inputs[1])],
                    _ => vec![self.urg(region), self.urg(node.inputs[1])],
                };
                self.add_instr(nid, ops);
            }
        }
    }

    fn bridge(&mut self, pred: u16, succ: u16) {
        if self.backrefs[pred as usize] == u16::MAX || self.backrefs[succ as usize] == u16::MAX {
            return;
        }
        self.blocks[self.backrefs[pred as usize] as usize]
            .succs
            .push(regalloc2::Block::new(self.backrefs[succ as usize] as usize));
        self.blocks[self.backrefs[succ as usize] as usize]
            .preds
            .push(regalloc2::Block::new(self.backrefs[pred as usize] as usize));
    }

    fn reschedule_block(&mut self, from: Nid, outputs: &mut Vc) {
        // NOTE: this code is horible
        let from = Some(&from);
        let mut buf = Vec::with_capacity(outputs.len());
        let mut seen = BitSet::default();
        seen.clear(self.nodes.values.len());

        for &o in outputs.iter() {
            if !self.nodes.is_cfg(o) {
                continue;
            }

            seen.set(o);

            let mut cursor = buf.len();
            buf.push(o);
            while let Some(&n) = buf.get(cursor) {
                for &i in &self.nodes[n].inputs[1..] {
                    if from == self.nodes[i].inputs.first()
                        && self.nodes[i]
                            .outputs
                            .iter()
                            .all(|&o| self.nodes[o].inputs.first() != from || seen.get(o))
                        && seen.set(i)
                    {
                        for &o in outputs.iter().filter(|&&n| n == i) {
                            buf.push(o);
                        }
                    }
                }
                cursor += 1;
            }
        }

        for &o in outputs.iter() {
            if !seen.set(o) {
                continue;
            }
            let mut cursor = buf.len();
            for &o in outputs.iter().filter(|&&n| n == o) {
                buf.push(o);
            }
            while let Some(&n) = buf.get(cursor) {
                for &i in &self.nodes[n].inputs[1..] {
                    if from == self.nodes[i].inputs.first()
                        && self.nodes[i]
                            .outputs
                            .iter()
                            .all(|&o| self.nodes[o].inputs.first() != from || seen.get(o))
                        && seen.set(i)
                    {
                        for &o in outputs.iter().filter(|&&n| n == i) {
                            buf.push(o);
                        }
                    }
                }
                cursor += 1;
            }
        }

        if outputs.len() != buf.len() {
            panic!("{:?} {:?}", outputs, buf);
        }
        outputs.copy_from_slice(&buf);
    }
}

impl regalloc2::Function for Function<'_> {
    fn num_insts(&self) -> usize {
        self.instrs.len()
    }

    fn num_blocks(&self) -> usize {
        self.blocks.len()
    }

    fn entry_block(&self) -> regalloc2::Block {
        regalloc2::Block(0)
    }

    fn block_insns(&self, block: regalloc2::Block) -> regalloc2::InstRange {
        self.blocks[block.index()].instrs
    }

    fn block_succs(&self, block: regalloc2::Block) -> &[regalloc2::Block] {
        &self.blocks[block.index()].succs
    }

    fn block_preds(&self, block: regalloc2::Block) -> &[regalloc2::Block] {
        &self.blocks[block.index()].preds
    }

    fn block_params(&self, block: regalloc2::Block) -> &[regalloc2::VReg] {
        &self.blocks[block.index()].params
    }

    fn is_ret(&self, insn: regalloc2::Inst) -> bool {
        matches!(self.nodes[self.instrs[insn.index()].nid].kind, Kind::Return | Kind::Die)
    }

    fn is_branch(&self, insn: regalloc2::Inst) -> bool {
        matches!(
            self.nodes[self.instrs[insn.index()].nid].kind,
            Kind::If | Kind::Then | Kind::Else | Kind::Entry | Kind::Loop | Kind::Region
        )
    }

    fn branch_blockparams(
        &self,
        block: regalloc2::Block,
        _insn: regalloc2::Inst,
        _succ_idx: usize,
    ) -> &[regalloc2::VReg] {
        debug_assert!(
            self.blocks[block.index()].succs.len() == 1
                || self.blocks[block.index()].branch_blockparams.is_empty()
        );

        &self.blocks[block.index()].branch_blockparams
    }

    fn inst_operands(&self, insn: regalloc2::Inst) -> &[regalloc2::Operand] {
        &self.instrs[insn.index()].ops
    }

    fn inst_clobbers(&self, insn: regalloc2::Inst) -> regalloc2::PRegSet {
        let node = &self.nodes[self.instrs[insn.index()].nid];
        if matches!(node.kind, Kind::Call { .. }) {
            let mut set = regalloc2::PRegSet::default();
            let returns = self.tys.parama(node.ty).0.is_some();
            for i in 1 + returns as usize..13 {
                set.add(regalloc2::PReg::new(i, regalloc2::RegClass::Int));
            }
            set
        } else {
            regalloc2::PRegSet::default()
        }
    }

    fn num_vregs(&self) -> usize {
        self.nodes.values.len()
    }

    fn spillslot_size(&self, regclass: regalloc2::RegClass) -> usize {
        match regclass {
            regalloc2::RegClass::Int => 1,
            regalloc2::RegClass::Float => unreachable!(),
            regalloc2::RegClass::Vector => unreachable!(),
        }
    }
}