use { crate::{ ctx_map::CtxEntry, ident::Ident, instrs, lexer::{self, TokenKind}, parser::{ self, idfl::{self}, Expr, ExprRef, FileId, Pos, }, reg, task, ty::{self, ArrayLen, Tuple}, vc::{BitSet, Vc}, Comptime, Func, Global, HashMap, Offset, OffsetIter, Reloc, Sig, TypeParser, TypedReloc, Types, }, alloc::{string::String, vec::Vec}, core::{ assert_matches::debug_assert_matches, cell::RefCell, fmt::{self, Debug, Display, Write}, format_args as fa, mem, ops::{self}, }, hashbrown::hash_map, regalloc2::VReg, }; const VOID: Nid = 0; const NEVER: Nid = 1; const ENTRY: Nid = 2; const MEM: Nid = 3; type Nid = u16; type Lookup = crate::ctx_map::CtxMap<Nid>; trait StoreId: Sized { fn to_store(self) -> Option<Self>; } impl StoreId for Nid { fn to_store(self) -> Option<Self> { (self != ENTRY).then_some(self) } } impl crate::ctx_map::CtxEntry for Nid { type Ctx = [Result<Node, Nid>]; type Key<'a> = (Kind, &'a [Nid], ty::Id); fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> { ctx[*self as usize].as_ref().unwrap().key() } } struct Nodes { values: Vec<Result<Node, Nid>>, visited: BitSet, free: Nid, lookup: Lookup, } impl Default for Nodes { fn default() -> Self { Self { values: Default::default(), free: Nid::MAX, lookup: Default::default(), visited: Default::default(), } } } impl Nodes { fn graphviz_low( &self, tys: &Types, files: &[parser::Ast], out: &mut String, ) -> core::fmt::Result { use core::fmt::Write; for (i, node) in self.iter() { let color = if self.is_cfg(i) { "yellow" } else { "white" }; writeln!( out, "node{i}[label=\"{} {}\" color={color}]", node.kind, ty::Display::new(tys, files, node.ty) )?; for (j, &o) in node.outputs.iter().enumerate() { let color = if self.is_cfg(i) && self.is_cfg(o) { "red" } else { "lightgray" }; let index = self[o].inputs.iter().position(|&inp| i == inp).unwrap(); let style = if index == 0 && !self.is_cfg(o) { "style=dotted" } else { "" }; writeln!( out, "node{o} -> node{i}[color={color} taillabel={index} headlabel={j} {style}]", )?; } } Ok(()) } #[allow(dead_code)] fn graphviz(&self, tys: &Types, files: &[parser::Ast]) { let out = &mut String::new(); _ = self.graphviz_low(tys, files, out); log::info!("{out}"); } fn gcm(&mut self) { self.visited.clear(self.values.len()); push_up(self); // TODO: handle infinte loops self.visited.clear(self.values.len()); push_down(self, VOID); } fn remove_low(&mut self, id: Nid) -> Node { if cfg!(debug_assertions) { let value = mem::replace(&mut self.values[id as usize], Err(self.free)).unwrap(); self.free = id; value } else { mem::replace(&mut self.values[id as usize], Err(Nid::MAX)).unwrap() } } fn clear(&mut self) { self.values.clear(); self.lookup.clear(); self.free = Nid::MAX; } fn new_node_nop(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Nid { let node = Node { ralloc_backref: u16::MAX, inputs: inps.into(), kind, ty, ..Default::default() }; let mut lookup_meta = None; if !node.is_not_gvnd() { let (raw_entry, hash) = self.lookup.entry(node.key(), &self.values); let entry = match raw_entry { hash_map::RawEntryMut::Occupied(o) => return o.get_key_value().0.value, hash_map::RawEntryMut::Vacant(v) => v, }; lookup_meta = Some((entry, hash)); } if self.free == Nid::MAX { self.free = self.values.len() as _; self.values.push(Err(Nid::MAX)); } let free = self.free; for &d in node.inputs.as_slice() { debug_assert_ne!(d, free); self.values[d as usize].as_mut().unwrap_or_else(|_| panic!("{d}")).outputs.push(free); } self.free = mem::replace(&mut self.values[free as usize], Ok(node)).unwrap_err(); if let Some((entry, hash)) = lookup_meta { entry.insert(crate::ctx_map::Key { value: free, hash }, ()); } free } fn remove_node_lookup(&mut self, target: Nid) { if !self[target].is_not_gvnd() { self.lookup.remove(&target, &self.values).unwrap(); } } fn new_node_low(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> (Nid, bool) { let id = self.new_node_nop(ty, kind, inps); if let Some(opt) = self.peephole(id) { debug_assert_ne!(opt, id); self.lock(opt); self.remove(id); self.unlock(opt); (opt, true) } else { (id, false) } } fn new_node(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Nid { self.new_node_low(ty, kind, inps).0 } fn new_node_lit(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Value { Value::new(self.new_node_low(ty, kind, inps).0).ty(ty) } fn lock(&mut self, target: Nid) { self[target].lock_rc += 1; } #[track_caller] fn unlock(&mut self, target: Nid) { self[target].lock_rc -= 1; } fn remove(&mut self, target: Nid) -> bool { if !self[target].is_dangling() { return false; } for i in 0..self[target].inputs.len() { let inp = self[target].inputs[i]; let index = self[inp].outputs.iter().position(|&p| p == target).unwrap(); self[inp].outputs.swap_remove(index); self.remove(inp); } self.remove_node_lookup(target); self.remove_low(target); true } fn peephole(&mut self, target: Nid) -> Option<Nid> { use {Kind as K, TokenKind as T}; match self[target].kind { K::BinOp { op } => { let &[ctrl, mut lhs, mut rhs] = self[target].inputs.as_slice() else { unreachable!() }; let ty = self[target].ty; if let (&K::CInt { value: a }, &K::CInt { value: b }) = (&self[lhs].kind, &self[rhs].kind) { return Some( self.new_node(ty, K::CInt { value: op.apply_binop(a, b) }, [ctrl]), ); } if lhs == rhs { match op { T::Sub => return Some(self.new_node(ty, K::CInt { value: 0 }, [ctrl])), T::Add => { let rhs = self.new_node_nop(ty, K::CInt { value: 2 }, [ctrl]); return Some( self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, lhs, rhs]), ); } _ => {} } } // this is more general the pushing constants to left to help deduplicate expressions more let mut changed = false; if op.is_comutative() && self[lhs].key() < self[rhs].key() { core::mem::swap(&mut lhs, &mut rhs); changed = true; } if let K::CInt { value } = self[lhs].kind && op == T::Sub { let lhs = self.new_node_nop(ty, K::CInt { value: -value }, [ctrl]); return Some(self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, rhs, lhs])); } if let K::CInt { value } = self[rhs].kind { match (op, value) { (T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs), (T::Mul, 0) => return Some(rhs), _ => {} } } if op.is_comutative() && self[lhs].kind == (K::BinOp { op }) { let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() }; if let K::CInt { value: av } = self[b].kind && let K::CInt { value: bv } = self[rhs].kind { // (a op #b) op #c => a op (#b op #c) let new_rhs = self.new_node_nop(ty, K::CInt { value: op.apply_binop(av, bv) }, [ ctrl, ]); return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs])); } if self.is_const(b) { // (a op #b) op c => (a op c) op #b let new_lhs = self.new_node(ty, K::BinOp { op }, [ctrl, a, rhs]); return Some(self.new_node(ty, K::BinOp { op }, [ctrl, new_lhs, b])); } } if op == T::Add && self[lhs].kind == (K::BinOp { op: T::Mul }) && self[lhs].inputs[1] == rhs && let K::CInt { value } = self[self[lhs].inputs[2]].kind { // a * #n + a => a * (#n + 1) let new_rhs = self.new_node_nop(ty, K::CInt { value: value + 1 }, [ctrl]); return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, rhs, new_rhs])); } if op == T::Sub && self[lhs].kind == (K::BinOp { op }) { // (a - b) - c => a - (b + c) let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() }; let c = rhs; let new_rhs = self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, b, c]); return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs])); } if changed { return Some(self.new_node(ty, self[target].kind, [ctrl, lhs, rhs])); } } K::UnOp { op } => { let &[ctrl, oper] = self[target].inputs.as_slice() else { unreachable!() }; let ty = self[target].ty; if let K::CInt { value } = self[oper].kind { return Some( self.new_node(ty, K::CInt { value: op.apply_unop(value) }, [ctrl]), ); } } K::If => { let cond = self[target].inputs[1]; if let K::CInt { value } = self[cond].kind { let ty = if value == 0 { ty::Id::LEFT_UNREACHABLE } else { ty::Id::RIGHT_UNREACHABLE }; return Some(self.new_node_nop(ty, K::If, [self[target].inputs[0], cond])); } } K::Phi => { let &[ctrl, lhs, rhs] = self[target].inputs.as_slice() else { unreachable!() }; if lhs == rhs { return Some(lhs); } if self[lhs].kind == Kind::Stre && self[rhs].kind == Kind::Stre && self[lhs].ty == self[rhs].ty && self[lhs].inputs[2] == self[rhs].inputs[2] && self[lhs].inputs.get(3) == self[rhs].inputs.get(3) { let pick_value = self.new_node(self[lhs].ty, Kind::Phi, [ ctrl, self[lhs].inputs[1], self[rhs].inputs[1], ]); let mut vc = Vc::from([VOID, pick_value, self[lhs].inputs[2]]); for &rest in &self[lhs].inputs[3..] { vc.push(rest); } for &rest in &self[rhs].inputs[4..] { vc.push(rest); } return Some(self.new_node(self[lhs].ty, Kind::Stre, vc)); } } K::Stre => { if self[target].inputs[2] != VOID && self[target].inputs.len() == 4 && self[self[target].inputs[3]].kind == Kind::Stre && self[self[target].inputs[3]].lock_rc == 0 && self[self[target].inputs[3]].inputs[2] == self[target].inputs[2] { return Some(self.modify_input( self[target].inputs[3], 1, self[target].inputs[1], )); } } K::Load => { if self[target].inputs.len() == 3 && self[self[target].inputs[2]].kind == Kind::Stre && self[self[target].inputs[2]].inputs[2] == self[target].inputs[1] && self[self[target].inputs[2]].ty == self[target].ty { return Some(self[self[target].inputs[2]].inputs[1]); } } _ => {} } None } fn is_const(&self, id: Nid) -> bool { matches!(self[id].kind, Kind::CInt { .. }) } fn replace(&mut self, target: Nid, with: Nid) { let mut back_press = 0; for i in 0..self[target].outputs.len() { let out = self[target].outputs[i - back_press]; let index = self[out].inputs.iter().position(|&p| p == target).unwrap(); self.lock(target); let prev_len = self[target].outputs.len(); self.modify_input(out, index, with); back_press += (self[target].outputs.len() != prev_len) as usize; self.unlock(target); } self.remove(target); } fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid { self.remove_node_lookup(target); debug_assert_ne!(self[target].inputs[inp_index], with); let prev = self[target].inputs[inp_index]; self[target].inputs[inp_index] = with; let (entry, hash) = self.lookup.entry(target.key(&self.values), &self.values); match entry { hash_map::RawEntryMut::Occupied(other) => { let rpl = other.get_key_value().0.value; self[target].inputs[inp_index] = prev; self.replace(target, rpl); rpl } hash_map::RawEntryMut::Vacant(slot) => { slot.insert(crate::ctx_map::Key { value: target, hash }, ()); let index = self[prev].outputs.iter().position(|&o| o == target).unwrap(); self[prev].outputs.swap_remove(index); self[with].outputs.push(target); self.remove(prev); target } } } #[track_caller] fn unlock_remove(&mut self, id: Nid) -> bool { self[id].lock_rc -= 1; self.remove(id) } fn iter(&self) -> impl DoubleEndedIterator<Item = (Nid, &Node)> { self.values.iter().enumerate().filter_map(|(i, s)| Some((i as _, s.as_ref().ok()?))) } #[allow(clippy::format_in_format_args)] fn basic_blocks_instr(&mut self, out: &mut String, node: Nid) -> core::fmt::Result { if self[node].kind != Kind::Loop && self[node].kind != Kind::Region { write!(out, " {node:>2}-c{:>2}: ", self[node].ralloc_backref)?; } match self[node].kind { Kind::Start => unreachable!(), Kind::End => unreachable!(), Kind::If => write!(out, " if: "), Kind::Region | Kind::Loop => writeln!(out, " goto: {node}"), Kind::Return => write!(out, " ret: "), Kind::CInt { value } => write!(out, "cint: #{value:<4}"), Kind::Phi => write!(out, " phi: "), Kind::Arg => write!( out, " arg: {:<5}", self[VOID].outputs.iter().position(|&n| n == node).unwrap() - 2 ), Kind::BinOp { op } | Kind::UnOp { op } => { write!(out, "{:>4}: ", op.name()) } Kind::Call { func } => { write!(out, "call: {func} {} ", self[node].depth) } Kind::Global { global } => write!(out, "glob: {global:<5}"), Kind::Entry => write!(out, "ctrl: {:<5}", "entry"), Kind::Then => write!(out, "ctrl: {:<5}", "then"), Kind::Else => write!(out, "ctrl: {:<5}", "else"), Kind::Stck => write!(out, "stck: "), Kind::Load => write!(out, "load: "), Kind::Stre => write!(out, "stre: "), Kind::Mem => write!(out, " mem: "), Kind::Idk => write!(out, " idk: "), }?; if self[node].kind != Kind::Loop && self[node].kind != Kind::Region { writeln!( out, " {:<14} {}", format!("{:?}", self[node].inputs), format!("{:?}", self[node].outputs) )?; } Ok(()) } fn basic_blocks_low(&mut self, out: &mut String, mut node: Nid) -> core::fmt::Result { let iter = |nodes: &Nodes, node| nodes[node].outputs.clone().into_iter().rev(); while self.visited.set(node) { match self[node].kind { Kind::Start => { writeln!(out, "start: {}", self[node].depth)?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self[o].kind.is_cfg() { cfg_index = o; } } node = cfg_index; } Kind::End => break, Kind::If => { self.basic_blocks_low(out, self[node].outputs[0])?; node = self[node].outputs[1]; } Kind::Region => { writeln!( out, "region{node}: {} {} {:?}", self[node].depth, self[node].loop_depth, self[node].inputs )?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::Loop => { writeln!( out, "loop{node}: {} {} {:?}", self[node].depth, self[node].loop_depth, self[node].outputs )?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::Return => { node = self[node].outputs[0]; } Kind::Then | Kind::Else | Kind::Entry => { writeln!( out, "b{node}: {} {} {:?}", self[node].depth, self[node].loop_depth, self[node].outputs )?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::Call { .. } => { let mut cfg_index = Nid::MAX; let mut print_ret = true; for o in iter(self, node) { if self[o].inputs[0] == node && (self[node].outputs[0] != o || core::mem::take(&mut print_ret)) { self.basic_blocks_instr(out, o)?; } if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } _ => unreachable!(), } } Ok(()) } fn basic_blocks(&mut self) { let mut out = String::new(); self.visited.clear(self.values.len()); self.basic_blocks_low(&mut out, VOID).unwrap(); log::info!("{out}"); } fn is_cfg(&self, o: Nid) -> bool { self[o].kind.is_cfg() } fn check_final_integrity(&self) { if !cfg!(debug_assertions) { return; } //let mut failed = false; for (_, node) in self.iter() { debug_assert_eq!(node.lock_rc, 0, "{:?}", node.kind); // if !matches!(node.kind, Kind::Return | Kind::End) && node.outputs.is_empty() { // log::err!("outputs are empry {i} {:?}", node.kind); // failed = true; // } // let mut allowed_cfgs = 1 + (node.kind == Kind::If) as usize; // for &o in node.outputs.iter() { // if self.is_cfg(i) { // if allowed_cfgs == 0 && self.is_cfg(o) { // log::err!( // "multiple cfg outputs detected: {:?} -> {:?}", // node.kind, // self[o].kind // ); // failed = true; // } else { // allowed_cfgs += self.is_cfg(o) as usize; // } // } // let other = match &self.values[o as usize] { // Ok(other) => other, // Err(_) => { // log::err!("the edge points to dropped node: {i} {:?} {o}", node.kind,); // failed = true; // continue; // } // }; // let occurs = self[o].inputs.iter().filter(|&&el| el == i).count(); // let self_occurs = self[i].outputs.iter().filter(|&&el| el == o).count(); // if occurs != self_occurs { // log::err!( // "the edge is not bidirectional: {i} {:?} {self_occurs} {o} {:?} {occurs}", // node.kind, // other.kind // ); // failed = true; // } // } } //if failed { // panic!() //} } #[expect(dead_code)] fn climb_expr(&mut self, from: Nid, mut for_each: impl FnMut(Nid, &Node) -> bool) -> bool { fn climb_impl( nodes: &mut Nodes, from: Nid, for_each: &mut impl FnMut(Nid, &Node) -> bool, ) -> bool { for i in 0..nodes[from].inputs.len() { let n = nodes[from].inputs[i]; if n != Nid::MAX && nodes.visited.set(n) && !nodes.is_cfg(n) && (for_each(n, &nodes[n]) || climb_impl(nodes, n, for_each)) { return true; } } false } self.visited.clear(self.values.len()); climb_impl(self, from, &mut for_each) } #[expect(dead_code)] fn late_peephole(&mut self, target: Nid) -> Nid { if let Some(id) = self.peephole(target) { self.replace(target, id); return id; } target } fn load_loop_var(&mut self, index: usize, value: &mut Nid, loops: &mut [Loop]) { self.load_loop_value( &mut |l| { l.scope .vars .get_mut(index) .map_or((ty::Id::VOID, &mut l.scope.store), |v| (v.ty, &mut v.value)) }, value, loops, ); } fn load_loop_store(&mut self, value: &mut Nid, loops: &mut [Loop]) { self.load_loop_value(&mut |l| (ty::Id::VOID, &mut l.scope.store), value, loops); } fn load_loop_value( &mut self, get_lvalue: &mut impl FnMut(&mut Loop) -> (ty::Id, &mut Nid), value: &mut Nid, loops: &mut [Loop], ) { if *value != VOID { return; } let [loob, loops @ ..] = loops else { unreachable!() }; let node = loob.node; let (ty, lvalue) = get_lvalue(loob); self.load_loop_value(get_lvalue, lvalue, loops); if !self[*lvalue].is_lazy_phi() { self.unlock(*value); let inps = [node, *lvalue, VOID]; self.unlock(*lvalue); *lvalue = self.new_node_nop(ty, Kind::Phi, inps); self[*lvalue].lock_rc += 2; } else { self.lock(*lvalue); self.unlock(*value); } *value = *lvalue; } fn check_dominance(&mut self, nd: Nid, min: Nid, check_outputs: bool) { if !cfg!(debug_assertions) { return; } let node = self[nd].clone(); for &i in node.inputs.iter() { let dom = idom(self, i); debug_assert!( self.dominates(dom, min), "{dom} {min} {node:?} {:?}", self.basic_blocks() ); } if check_outputs { for &o in node.outputs.iter() { let dom = use_block(nd, o, self); debug_assert!( self.dominates(min, dom), "{min} {dom} {node:?} {:?}", self.basic_blocks() ); } } } fn dominates(&mut self, dominator: Nid, mut dominated: Nid) -> bool { loop { if dominator == dominated { break true; } if idepth(self, dominator) > idepth(self, dominated) { break false; } dominated = idom(self, dominated); } } #[expect(dead_code)] fn iter_mut(&mut self) -> impl Iterator<Item = &mut Node> { self.values.iter_mut().flat_map(Result::as_mut) } fn lock_scope(&mut self, scope: &Scope) { self.lock(scope.store); for &load in &scope.loads { self.lock(load); } for var in &scope.vars { self.lock(var.value); } } fn unlock_remove_scope(&mut self, scope: &Scope) { self.unlock_remove(scope.store); for &load in &scope.loads { self.unlock_remove(load); } for var in &scope.vars { self.unlock_remove(var.value); } } } impl ops::Index<Nid> for Nodes { type Output = Node; fn index(&self, index: Nid) -> &Self::Output { self.values[index as usize].as_ref().unwrap() } } impl ops::IndexMut<Nid> for Nodes { fn index_mut(&mut self, index: Nid) -> &mut Self::Output { self.values[index as usize].as_mut().unwrap() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Default)] #[repr(u8)] pub enum Kind { #[default] Start, // [ctrl] Entry, Mem, // [terms...] End, // [ctrl, cond] If, Then, Else, // [lhs, rhs] Region, // [entry, back] Loop, // [ctrl, ?value] Return, // [ctrl] CInt { value: i64, }, // [ctrl, lhs, rhs] Phi, Arg, // [ctrl, oper] UnOp { op: lexer::TokenKind, }, // [ctrl, lhs, rhs] BinOp { op: lexer::TokenKind, }, // [ctrl] Global { global: ty::Global, }, // [ctrl, ...args] Call { func: ty::Func, }, // [ctrl] Idk, // [ctrl] Stck, // [ctrl, memory] Load, // [ctrl, value, memory] Stre, } impl Kind { fn is_pinned(&self) -> bool { self.is_cfg() || matches!(self, Self::Phi | Self::Mem | Self::Arg) } fn is_cfg(&self) -> bool { matches!( self, Self::Start | Self::End | Self::Return | Self::Entry | Self::Then | Self::Else | Self::Call { .. } | Self::If | Self::Region | Self::Loop ) } fn ends_basic_block(&self) -> bool { matches!(self, Self::Return | Self::If | Self::End) } } impl fmt::Display for Kind { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { match self { Kind::CInt { value } => write!(f, "#{value}"), Kind::Entry => write!(f, "ctrl[entry]"), Kind::Then => write!(f, "ctrl[then]"), Kind::Else => write!(f, "ctrl[else]"), Kind::BinOp { op } => write!(f, "{op}"), Kind::Call { func, .. } => write!(f, "call {func}"), slf => write!(f, "{slf:?}"), } } } #[derive(Debug, Default, Clone)] //#[repr(align(64))] pub struct Node { kind: Kind, inputs: Vc, outputs: Vc, ty: ty::Id, offset: Offset, ralloc_backref: RallocBRef, depth: IDomDepth, lock_rc: LockRc, loop_depth: LoopDepth, } impl Node { fn is_dangling(&self) -> bool { self.outputs.len() + self.lock_rc as usize == 0 } fn key(&self) -> (Kind, &[Nid], ty::Id) { (self.kind, &self.inputs, self.ty) } fn is_lazy_phi(&self) -> bool { self.kind == Kind::Phi && self.inputs[2] == 0 } fn is_not_gvnd(&self) -> bool { self.is_lazy_phi() || matches!(self.kind, Kind::Arg | Kind::Stck) } } type RallocBRef = u16; type LoopDepth = u16; type LockRc = u16; type IDomDepth = u16; struct Loop { node: Nid, ctrl: [Nid; 2], ctrl_scope: [Scope; 2], scope: Scope, } #[derive(Clone, Copy)] struct Variable { id: Ident, ty: ty::Id, ptr: bool, value: Nid, } #[derive(Default, Clone)] struct Scope { vars: Vec<Variable>, loads: Vec<Nid>, store: Nid, } impl Scope { pub fn iter_elems_mut(&mut self) -> impl Iterator<Item = (ty::Id, &mut Nid)> { self.vars .iter_mut() .map(|v| (v.ty, &mut v.value)) .chain(core::iter::once((ty::Id::VOID, &mut self.store))) } } #[derive(Default)] struct ItemCtx { file: FileId, ret: Option<ty::Id>, task_base: usize, nodes: Nodes, ctrl: Nid, call_count: u16, loops: Vec<Loop>, scope: Scope, ret_relocs: Vec<Reloc>, relocs: Vec<TypedReloc>, jump_relocs: Vec<(Nid, Reloc)>, code: Vec<u8>, } impl ItemCtx { fn init(&mut self, file: FileId, ret: Option<ty::Id>, task_base: usize) { debug_assert_eq!(self.loops.len(), 0); debug_assert_eq!(self.scope.vars.len(), 0); debug_assert_eq!(self.ret_relocs.len(), 0); debug_assert_eq!(self.relocs.len(), 0); debug_assert_eq!(self.jump_relocs.len(), 0); debug_assert_eq!(self.code.len(), 0); self.file = file; self.ret = ret; self.task_base = task_base; self.call_count = 0; self.nodes.clear(); self.scope.vars.clear(); let start = self.nodes.new_node(ty::Id::VOID, Kind::Start, []); debug_assert_eq!(start, VOID); let end = self.nodes.new_node(ty::Id::NEVER, Kind::End, []); debug_assert_eq!(end, NEVER); self.nodes.lock(end); self.ctrl = self.nodes.new_node(ty::Id::VOID, Kind::Entry, [VOID]); debug_assert_eq!(self.ctrl, ENTRY); let mem = self.nodes.new_node(ty::Id::VOID, Kind::Mem, [VOID]); debug_assert_eq!(mem, MEM); self.nodes.lock(mem); self.nodes.lock(self.ctrl); self.scope.store = self.ctrl; } fn finalize(&mut self) { self.nodes.unlock(NEVER); self.nodes.unlock_remove_scope(&core::mem::take(&mut self.scope)); self.nodes.unlock(MEM); } fn emit(&mut self, instr: (usize, [u8; instrs::MAX_SIZE])) { crate::emit(&mut self.code, instr); } fn emit_body_code(&mut self, sig: Sig, tys: &Types) -> usize { let mut nodes = core::mem::take(&mut self.nodes); nodes.visited.clear(nodes.values.len()); let func = Function::new(&mut nodes, tys, sig); let mut ralloc = Regalloc::default(); // TODO: reuse log::info!("{:?}", func); if self.call_count != 0 { core::mem::swap( &mut ralloc.env.preferred_regs_by_class, &mut ralloc.env.non_preferred_regs_by_class, ); }; let options = regalloc2::RegallocOptions { verbose_log: false, validate_ssa: false, algorithm: regalloc2::Algorithm::Ion, }; regalloc2::run_with_ctx(&func, &ralloc.env, &options, &mut ralloc.ctx) .unwrap_or_else(|err| panic!("{err}")); if self.call_count != 0 { core::mem::swap( &mut ralloc.env.preferred_regs_by_class, &mut ralloc.env.non_preferred_regs_by_class, ); }; let mut saved_regs = HashMap::<u8, u8>::default(); let mut atr = |allc: regalloc2::Allocation| { debug_assert!(allc.is_reg()); let hvenc = regalloc2::PReg::from_index(allc.index()).hw_enc() as u8; if hvenc <= 12 { return hvenc; } let would_insert = saved_regs.len() as u8 + reg::RET_ADDR + 1; *saved_regs.entry(hvenc).or_insert(would_insert) }; for (i, block) in func.blocks.iter().enumerate() { let blk = regalloc2::Block(i as _); func.nodes[block.nid].offset = self.code.len() as _; for instr_or_edit in ralloc.ctx.output.block_insts_and_edits(&func, blk) { let inst = match instr_or_edit { regalloc2::InstOrEdit::Inst(inst) => inst, regalloc2::InstOrEdit::Edit(®alloc2::Edit::Move { from, to }) => { self.emit(instrs::cp(atr(to), atr(from))); continue; } }; let nid = func.instrs[inst.index()].nid; if nid == NEVER { continue; }; let allocs = ralloc.ctx.output.inst_allocs(inst); let node = &func.nodes[nid]; match node.kind { Kind::If => { let &[_, cond] = node.inputs.as_slice() else { unreachable!() }; if let Kind::BinOp { op } = func.nodes[cond].kind && let Some((op, swapped)) = op.cond_op(node.ty.is_signed()) { let rel = Reloc::new(self.code.len(), 3, 2); self.jump_relocs.push((node.outputs[!swapped as usize], rel)); let &[lhs, rhs] = allocs else { unreachable!() }; self.emit(op(atr(lhs), atr(rhs), 0)); } else { todo!() } } Kind::Loop | Kind::Region => { if node.ralloc_backref as usize != i + 1 { let rel = Reloc::new(self.code.len(), 1, 4); self.jump_relocs.push((nid, rel)); self.emit(instrs::jmp(0)); } } Kind::Return => { match tys.size_of(sig.ret) { 0..=8 => {} 9..=16 => todo!(), size @ 17.. => { self.emit(instrs::bmc(atr(allocs[0]), 1, size.try_into().unwrap())); } } if i != func.blocks.len() - 1 { let rel = Reloc::new(self.code.len(), 1, 4); self.ret_relocs.push(rel); self.emit(instrs::jmp(0)); } } Kind::CInt { value } => { self.emit(instrs::li64(atr(allocs[0]), value as _)); } Kind::UnOp { op } => { let op = op.unop().expect("TODO: unary operator not supported"); let &[dst, oper] = allocs else { unreachable!() }; self.emit(op(atr(dst), atr(oper))); } Kind::BinOp { op } => { let &[.., rhs] = node.inputs.as_slice() else { unreachable!() }; if let Kind::CInt { value } = func.nodes[rhs].kind && func.nodes[rhs].lock_rc != 0 && let Some(op) = op.imm_binop(node.ty.is_signed(), func.tys.size_of(node.ty)) { let &[dst, lhs] = allocs else { unreachable!() }; self.emit(op(atr(dst), atr(lhs), value as _)); } else if let Some(op) = op.binop(node.ty.is_signed(), func.tys.size_of(node.ty)) { let &[dst, lhs, rhs] = allocs else { unreachable!() }; self.emit(op(atr(dst), atr(lhs), atr(rhs))); } else if op.cond_op(node.ty.is_signed()).is_some() { } else { todo!() } } Kind::Call { func } => { self.relocs.push(TypedReloc { target: ty::Kind::Func(func).compress(), reloc: Reloc::new(self.code.len(), 3, 4), }); self.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0)); } Kind::Global { global } => { let reloc = Reloc::new(self.code.len(), 3, 4); self.relocs.push(TypedReloc { target: ty::Kind::Global(global).compress(), reloc, }); self.emit(instrs::lra(atr(allocs[0]), 0, 0)); } Kind::Stck => { let base = reg::STACK_PTR; let offset = func.nodes[nid].offset; self.emit(instrs::addi64(atr(allocs[0]), base, offset as _)); } Kind::Idk => {} Kind::Load => { let mut region = node.inputs[1]; let mut offset = 0; if func.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add }) && let Kind::CInt { value } = func.nodes[func.nodes[region].inputs[2]].kind { region = func.nodes[region].inputs[1]; offset = value as Offset; } let size = tys.size_of(node.ty); if size <= 8 { let (base, offset) = match func.nodes[region].kind { Kind::Stck => (reg::STACK_PTR, func.nodes[region].offset + offset), _ => (atr(allocs[1]), offset), }; self.emit(instrs::ld(atr(allocs[0]), base, offset as _, size as _)); } } Kind::Stre if node.inputs[2] == VOID => {} Kind::Stre => { let mut region = node.inputs[2]; let mut offset = 0; let size = u16::try_from(tys.size_of(node.ty)).expect("TODO"); if func.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add }) && let Kind::CInt { value } = func.nodes[func.nodes[region].inputs[2]].kind && size <= 8 { region = func.nodes[region].inputs[1]; offset = value as Offset; } let nd = &func.nodes[region]; let (base, offset, src) = match nd.kind { Kind::Stck if size <= 8 => { (reg::STACK_PTR, nd.offset + offset, allocs[0]) } _ => (atr(allocs[0]), offset, allocs[1]), }; if size > 8 { self.emit(instrs::bmc(atr(src), base, size)); } else { self.emit(instrs::st(atr(src), base, offset as _, size)); } } _ => unreachable!(), } } } self.nodes = nodes; saved_regs.len() } fn emit_body(&mut self, tys: &mut Types, files: &[parser::Ast], sig: Sig) { self.nodes.graphviz(tys, files); self.nodes.gcm(); self.nodes.check_final_integrity(); self.nodes.basic_blocks(); self.nodes.graphviz(tys, files); '_open_function: { self.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0)); self.emit(instrs::st(reg::RET_ADDR, reg::STACK_PTR, 0, 0)); } let mut stack_size = 0; '_compute_stack: { let mems = core::mem::take(&mut self.nodes[MEM].outputs); for &stck in mems.iter() { stack_size += tys.size_of(self.nodes[stck].ty); self.nodes[stck].offset = stack_size; } for &stck in mems.iter() { self.nodes[stck].offset = stack_size - self.nodes[stck].offset; } self.nodes[MEM].outputs = mems; } let saved = self.emit_body_code(sig, tys); if let Some(last_ret) = self.ret_relocs.last() && last_ret.offset as usize == self.code.len() - 5 { self.code.truncate(self.code.len() - 5); self.ret_relocs.pop(); } // FIXME: maybe do this incrementally for (nd, rel) in self.jump_relocs.drain(..) { let offset = self.nodes[nd].offset; rel.apply_jump(&mut self.code, offset, 0); } let end = self.code.len(); for ret_rel in self.ret_relocs.drain(..) { ret_rel.apply_jump(&mut self.code, end as _, 0); } let mut stripped_prelude_size = 0; '_close_function: { let pushed = (saved as i64 + (core::mem::take(&mut self.call_count) != 0) as i64) * 8; let stack = stack_size as i64; match (pushed, stack) { (0, 0) => { stripped_prelude_size = instrs::addi64(0, 0, 0).0 + instrs::st(0, 0, 0, 0).0; self.code.drain(0..stripped_prelude_size); break '_close_function; } (0, stack) => { write_reloc(&mut self.code, 3, -stack, 8); stripped_prelude_size = instrs::addi64(0, 0, 0).0; let end = stripped_prelude_size + instrs::st(0, 0, 0, 0).0; self.code.drain(stripped_prelude_size..end); self.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, stack as _)); break '_close_function; } _ => {} } write_reloc(&mut self.code, 3, -(pushed + stack), 8); write_reloc(&mut self.code, 3 + 8 + 3, stack, 8); write_reloc(&mut self.code, 3 + 8 + 3 + 8, pushed, 2); self.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _)); self.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _)); } self.relocs.iter_mut().for_each(|r| r.reloc.offset -= stripped_prelude_size as u32); self.emit(instrs::jala(reg::ZERO, reg::RET_ADDR, 0)); } } fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) { let value = value.to_ne_bytes(); doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]); } struct FTask { file: FileId, id: ty::Func, } #[derive(Default, Debug)] struct Ctx { ty: Option<ty::Id>, } impl Ctx { pub fn with_ty(self, ty: impl Into<ty::Id>) -> Self { Self { ty: Some(ty.into()) } } } #[derive(Default)] struct Pool { cis: Vec<ItemCtx>, used_cis: usize, } impl Pool { pub fn push_ci( &mut self, file: FileId, ret: Option<ty::Id>, task_base: usize, target: &mut ItemCtx, ) { if let Some(slot) = self.cis.get_mut(self.used_cis) { core::mem::swap(slot, target); } else { self.cis.push(ItemCtx::default()); core::mem::swap(self.cis.last_mut().unwrap(), target); } target.init(file, ret, task_base); self.used_cis += 1; } pub fn pop_ci(&mut self, target: &mut ItemCtx) { self.used_cis -= 1; core::mem::swap(&mut self.cis[self.used_cis], target); } } struct Regalloc { env: regalloc2::MachineEnv, ctx: regalloc2::Ctx, } impl Default for Regalloc { fn default() -> Self { Self { env: regalloc2::MachineEnv { preferred_regs_by_class: [ (1..13).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(), vec![], vec![], ], non_preferred_regs_by_class: [ (13..64).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(), vec![], vec![], ], scratch_by_class: Default::default(), fixed_stack_slots: Default::default(), }, ctx: Default::default(), } } } #[derive(Default, Clone, Copy, PartialEq, Eq, Debug)] struct Value { ty: ty::Id, var: bool, ptr: bool, id: Nid, } impl Value { const NEVER: Option<Value> = Some(Self { ty: ty::Id::NEVER, var: false, ptr: false, id: NEVER }); const VOID: Value = Self { ty: ty::Id::VOID, var: false, ptr: false, id: VOID }; pub fn new(id: Nid) -> Self { Self { id, ..Default::default() } } pub fn var(id: usize) -> Self { Self { id: u16::MAX - (id as Nid), var: true, ..Default::default() } } pub fn ptr(id: Nid) -> Self { Self { id, ptr: true, ..Default::default() } } #[inline(always)] pub fn ty(self, ty: impl Into<ty::Id>) -> Self { Self { ty: ty.into(), ..self } } } #[derive(Default)] pub struct Codegen<'a> { pub files: &'a [parser::Ast], tasks: Vec<Option<FTask>>, tys: Types, ci: ItemCtx, pool: Pool, #[expect(dead_code)] ralloc: Regalloc, ct: Comptime, errors: RefCell<String>, } impl TypeParser for Codegen<'_> { fn tys(&mut self) -> &mut Types { &mut self.tys } #[expect(unused)] fn eval_const(&mut self, file: FileId, expr: &Expr, ty: ty::Id) -> u64 { todo!() } #[expect(unused)] fn infer_type(&mut self, expr: &Expr) -> ty::Id { todo!() } fn on_reuse(&mut self, existing: ty::Id) { if let ty::Kind::Func(id) = existing.expand() && let func = &mut self.tys.ins.funcs[id as usize] && let Err(idx) = task::unpack(func.offset) && idx < self.tasks.len() { func.offset = task::id(self.tasks.len()); let task = self.tasks[idx].take(); self.tasks.push(task); } } fn eval_global(&mut self, file: FileId, name: Ident, expr: &Expr) -> ty::Id { let gid = self.tys.ins.globals.len() as ty::Global; self.tys.ins.globals.push(Global { file, name, ..Default::default() }); let ty = ty::Kind::Global(gid); self.pool.push_ci(file, None, self.tasks.len(), &mut self.ci); let ret = Expr::Return { pos: expr.pos(), val: Some(expr) }; self.expr(&ret); self.ci.finalize(); let ret = self.ci.ret.expect("for return type to be infered"); if self.errors.borrow().is_empty() { self.ci.emit_body(&mut self.tys, self.files, Sig { args: Tuple::empty(), ret }); self.ci.code.truncate(self.ci.code.len() - instrs::jala(0, 0, 0).0); self.ci.emit(instrs::tx()); let func = Func { file, name, expr: ExprRef::new(expr), relocs: core::mem::take(&mut self.ci.relocs), code: core::mem::take(&mut self.ci.code), ..Default::default() }; self.pool.pop_ci(&mut self.ci); self.complete_call_graph(); let mut mem = vec![0u8; self.tys.size_of(ret) as usize]; // TODO: return them back let fuc = self.tys.ins.funcs.len() as ty::Func; self.tys.ins.funcs.push(func); self.tys.dump_reachable(fuc, &mut self.ct.code); #[cfg(debug_assertions)] { let mut vc = String::new(); if let Err(e) = self.tys.disasm(&self.ct.code, self.files, &mut vc, |_| {}) { panic!("{e} {}", vc); } else { log::trace!("{}", vc); } } self.ct.vm.write_reg(reg::RET, mem.as_mut_ptr() as u64); let prev_pc = self.ct.push_pc(self.tys.ins.funcs[fuc as usize].offset); loop { match self.ct.vm.run().expect("TODO") { hbvm::VmRunOk::End => break, hbvm::VmRunOk::Timer => todo!(), hbvm::VmRunOk::Ecall => todo!(), hbvm::VmRunOk::Breakpoint => todo!(), } } self.ct.pop_pc(prev_pc); match mem.len() { 0 => unreachable!(), len @ 1..=8 => { mem.copy_from_slice(&self.ct.vm.read_reg(reg::RET).0.to_ne_bytes()[..len]) } 9..=16 => todo!(), _ => {} } self.tys.ins.globals[gid as usize].data = mem; } else { self.pool.pop_ci(&mut self.ci); } self.tys.ins.globals[gid as usize].ty = ret; ty.compress() } fn report(&self, pos: Pos, msg: impl Display) -> ty::Id { self.report(pos, msg); ty::Id::NEVER } fn find_local_ty(&mut self, _: Ident) -> Option<ty::Id> { None } } impl<'a> Codegen<'a> { fn store_mem(&mut self, region: Nid, value: Nid) -> Nid { if value == NEVER { return NEVER; } let mut vc = Vc::from([VOID, value, region]); self.ci.nodes.load_loop_store(&mut self.ci.scope.store, &mut self.ci.loops); self.ci.nodes.unlock(self.ci.scope.store); if let Some(str) = self.ci.scope.store.to_store() { vc.push(str); } for load in self.ci.scope.loads.drain(..) { if load == value { self.ci.nodes.unlock(load); continue; } if !self.ci.nodes.unlock_remove(load) { vc.push(load); } } let store = self.ci.nodes.new_node(self.tof(value), Kind::Stre, vc); self.ci.nodes.lock(store); self.ci.scope.store = store; store } fn load_mem(&mut self, region: Nid, ty: ty::Id) -> Nid { debug_assert_ne!(region, VOID); let mut vc = Vc::from([VOID, region]); self.ci.nodes.load_loop_store(&mut self.ci.scope.store, &mut self.ci.loops); if let Some(str) = self.ci.scope.store.to_store() { vc.push(str); } let load = self.ci.nodes.new_node(ty, Kind::Load, vc); self.ci.nodes.lock(load); self.ci.scope.loads.push(load); load } pub fn generate(&mut self) { self.find_type(0, 0, Err("main"), self.files); self.make_func_reachable(0); self.complete_call_graph(); } fn make_func_reachable(&mut self, func: ty::Func) { let fuc = &mut self.tys.ins.funcs[func as usize]; if fuc.offset == u32::MAX { fuc.offset = task::id(self.tasks.len() as _); self.tasks.push(Some(FTask { file: fuc.file, id: func })); } } fn raw_expr(&mut self, expr: &Expr) -> Option<Value> { self.raw_expr_ctx(expr, Ctx::default()) } fn raw_expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Value> { // ordered by complexity of the expression match *expr { Expr::Idk { pos } => { let Some(ty) = ctx.ty else { self.report( pos, "resulting value cannot be inferred from context, \ consider using `@as(<ty>, idk)` to hint the type", ); return Value::NEVER; }; if matches!(ty.expand(), ty::Kind::Struct(_) | ty::Kind::Slice(_)) { let stck = self.ci.nodes.new_node(ty, Kind::Stck, [VOID, MEM]); Some(Value::ptr(stck).ty(ty)) } else { Some(self.ci.nodes.new_node_lit(ty, Kind::Idk, [VOID])) } } Expr::Number { value, .. } => Some(self.ci.nodes.new_node_lit( ctx.ty.filter(|ty| ty.is_integer() || ty.is_pointer()).unwrap_or(ty::Id::INT), Kind::CInt { value }, [VOID], )), Expr::Ident { id, .. } if let Some(index) = self.ci.scope.vars.iter().rposition(|v| v.id == id) => { let var = &mut self.ci.scope.vars[index]; self.ci.nodes.load_loop_var(index, &mut var.value, &mut self.ci.loops); Some(Value::var(index).ty(var.ty)) } Expr::Ident { id, pos, .. } => { let decl = self.find_type(pos, self.ci.file, Ok(id), self.files); match decl.expand() { ty::Kind::Global(global) => { let gl = &self.tys.ins.globals[global as usize]; let value = self.ci.nodes.new_node(gl.ty, Kind::Global { global }, [VOID]); Some(Value::ptr(value).ty(gl.ty)) } _ => todo!("{decl:?}"), } } Expr::Comment { .. } => Some(Value::VOID), Expr::String { pos, literal } => { let literal = &literal[1..literal.len() - 1]; let report = |bytes: &core::str::Bytes, message: &str| { self.report(pos + (literal.len() - bytes.len()) as u32 - 1, message) }; let mut data = Vec::<u8>::with_capacity(literal.len()); crate::endoce_string(literal, &mut data, report).unwrap(); let global = self.tys.ins.globals.len() as ty::Global; let ty = self.tys.make_ptr(ty::Id::U8); self.tys.ins.globals.push(Global { data, ty, ..Default::default() }); let global = self.ci.nodes.new_node(ty, Kind::Global { global }, [VOID]); Some(Value::new(global).ty(ty)) } Expr::Return { pos, val } => { let value = if let Some(val) = val { self.expr_ctx(val, Ctx { ty: self.ci.ret })? } else { Value { ty: ty::Id::VOID, ..Default::default() } }; let mut inps = Vc::from([self.ci.ctrl, value.id]); self.ci.nodes.load_loop_store(&mut self.ci.scope.store, &mut self.ci.loops); if let Some(str) = self.ci.scope.store.to_store() { inps.push(str); } self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Return, inps); self.ci.nodes[NEVER].inputs.push(self.ci.ctrl); self.ci.nodes[self.ci.ctrl].outputs.push(NEVER); let expected = *self.ci.ret.get_or_insert(value.ty); self.assert_ty(pos, value.ty, expected, "return value"); None } Expr::Field { target, name, pos } => { let mut vtarget = self.raw_expr(target)?; self.strip_var(&mut vtarget); let tty = vtarget.ty; let ty::Kind::Struct(s) = self.tys.base_of(tty).unwrap_or(tty).expand() else { self.report( pos, fa!( "the '{}' is not a struct, or pointer to one, \ but accessing fields is only possible on structs", self.ty_display(tty) ), ); return Value::NEVER; }; let Some((offset, ty)) = OffsetIter::offset_of(&self.tys, s, name) else { let field_list = self .tys .struct_fields(s) .iter() .map(|f| self.tys.names.ident_str(f.name)) .intersperse("', '") .collect::<String>(); self.report( pos, fa!( "the '{}' does not have this field, \ but it does have '{field_list}'", self.ty_display(tty) ), ); return Value::NEVER; }; Some(Value::ptr(self.offset(vtarget.id, offset)).ty(ty)) } Expr::UnOp { op: TokenKind::Band, val, .. } => { let ctx = Ctx { ty: ctx.ty.and_then(|ty| self.tys.base_of(ty)) }; let mut val = self.raw_expr_ctx(val, ctx)?; self.strip_var(&mut val); if val.ptr { val.ptr = false; val.ty = self.tys.make_ptr(val.ty); return Some(val); } let stack = self.ci.nodes.new_node_nop(val.ty, Kind::Stck, [VOID, MEM]); self.store_mem(stack, val.id); Some(Value::new(stack).ty(self.tys.make_ptr(val.ty))) } Expr::UnOp { op: TokenKind::Mul, val, pos } => { let ctx = Ctx { ty: ctx.ty.map(|ty| self.tys.make_ptr(ty)) }; let mut val = self.expr_ctx(val, ctx)?; let Some(base) = self.tys.base_of(val.ty) else { self.report( pos, fa!("the '{}' can not be dereferneced", self.ty_display(val.ty)), ); return Value::NEVER; }; val.ptr = true; val.ty = base; Some(val) } Expr::UnOp { pos, op: op @ TokenKind::Sub, val } => { let val = self.expr_ctx(val, ctx)?; if !val.ty.is_integer() { self.report(pos, fa!("cant negate '{}'", self.ty_display(val.ty))); } Some(self.ci.nodes.new_node_lit(val.ty, Kind::UnOp { op }, [VOID, val.id])) } Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right } => { let mut value = self.raw_expr(right)?; self.strip_var(&mut value); self.ci.nodes.lock(value.id); self.ci.scope.vars.push(Variable { id, value: value.id, ptr: value.ptr, ty: value.ty, }); Some(Value::VOID) } Expr::BinOp { left, op: TokenKind::Assign, right } => { let dest = self.raw_expr(left)?; let value = self.expr_ctx(right, Ctx::default().with_ty(dest.ty))?; self.assert_ty(left.pos(), value.ty, dest.ty, "assignment source"); if dest.var { self.ci.nodes.lock(value.id); let var = &mut self.ci.scope.vars[(u16::MAX - dest.id) as usize]; let prev = core::mem::replace(&mut var.value, value.id); self.ci.nodes.unlock_remove(prev); } else if dest.ptr { self.store_mem(dest.id, value.id); } else { self.report(left.pos(), "cannot assign to this expression"); } Some(Value::VOID) } Expr::BinOp { left, op, right } if op != TokenKind::Assign => { let lhs = self.expr_ctx(left, ctx)?; self.ci.nodes.lock(lhs.id); let rhs = self.expr_ctx(right, Ctx::default().with_ty(lhs.ty)); self.ci.nodes.unlock(lhs.id); let ty = self.binop_ty(left.pos(), rhs?.ty, lhs.ty, op); let inps = [VOID, lhs.id, rhs?.id]; Some(self.ci.nodes.new_node_lit(ty::bin_ret(ty, op), Kind::BinOp { op }, inps)) } Expr::Index { base, index } => { let mut bs = self.raw_expr(base)?; self.strip_var(&mut bs); if let Some(base) = self.tys.base_of(bs.ty) { bs.ptr = true; bs.ty = base; } let ty::Kind::Slice(s) = bs.ty.expand() else { self.report( base.pos(), fa!( "cant index into '{}' which is not array nor slice", self.ty_display(bs.ty) ), ); return Value::NEVER; }; let elem = self.tys.ins.slices[s as usize].elem; let idx = self.expr_ctx(index, Ctx::default().with_ty(ty::Id::INT))?; let value = self.tys.size_of(elem) as i64; let size = self.ci.nodes.new_node_nop(ty::Id::INT, Kind::CInt { value }, [VOID]); let inps = [VOID, idx.id, size]; let offset = self.ci.nodes.new_node(ty::Id::INT, Kind::BinOp { op: TokenKind::Mul }, inps); let inps = [VOID, bs.id, offset]; let ptr = self.ci.nodes.new_node(ty::Id::INT, Kind::BinOp { op: TokenKind::Add }, inps); Some(Value::ptr(ptr).ty(elem)) } Expr::Directive { name: "sizeof", args: [ty], .. } => { let ty = self.ty(ty); Some(self.ci.nodes.new_node_lit( ty::Id::INT, Kind::CInt { value: self.tys.size_of(ty) as _ }, [VOID], )) } Expr::Directive { name: "trunc", args: [expr], pos } => { let val = self.expr(expr)?; if !val.ty.is_integer() { self.report( expr.pos(), fa!( "only integers can be truncated ('{}' is not an integer)", self.ty_display(val.ty) ), ); return Value::NEVER; } let Some(ty) = ctx.ty else { self.report( pos, "resulting integer cannot be inferred from context, \ consider using `@as(<int_ty>, @trunc(<expr>))` to hint the type", ); return Value::NEVER; }; if self.tys.size_of(val.ty) <= self.tys.size_of(ty) { self.report( pos, fa!( "truncating '{}' into '{}' has no effect", self.ty_display(val.ty), self.ty_display(ty) ), ); } let value = (1i64 << self.tys.size_of(val.ty)) - 1; let mask = self.ci.nodes.new_node_nop(val.ty, Kind::CInt { value }, [VOID]); let inps = [VOID, val.id, mask]; Some(self.ci.nodes.new_node_lit(ty, Kind::BinOp { op: TokenKind::Band }, inps)) } Expr::Directive { name: "as", args: [ty, expr], .. } => { let ctx = Ctx::default().with_ty(self.ty(ty)); self.raw_expr_ctx(expr, ctx) } Expr::Call { func, args, .. } => { self.ci.call_count += 1; let ty = self.ty(func); let ty::Kind::Func(fnc) = ty.expand() else { self.report( func.pos(), fa!("compiler cant (yet) call '{}'", self.ty_display(ty)), ); return Value::NEVER; }; self.make_func_reachable(fnc); let fuc = &self.tys.ins.funcs[fnc as usize]; let sig = fuc.sig.expect("TODO: generic functions"); let ast = &self.files[fuc.file as usize]; let &Expr::Closure { args: cargs, .. } = fuc.expr.get(ast).unwrap() else { unreachable!() }; self.assert_report( args.len() == cargs.len(), func.pos(), fa!( "expected {} function argumenr{}, got {}", cargs.len(), if cargs.len() == 1 { "" } else { "s" }, args.len() ), ); let mut inps = Vc::from([self.ci.ctrl]); for ((arg, carg), tyx) in args.iter().zip(cargs).zip(sig.args.range()) { let ty = self.tys.ins.args[tyx]; if self.tys.size_of(ty) == 0 { continue; } let value = self.expr_ctx(arg, Ctx::default().with_ty(ty))?; debug_assert_ne!(self.ci.nodes[value.id].kind, Kind::Stre); debug_assert_ne!(value.id, 0); self.assert_ty(arg.pos(), value.ty, ty, fa!("argument {}", carg.name)); inps.push(value.id); } if let Some(str) = self.ci.scope.store.to_store() { inps.push(str); } self.ci.scope.loads.retain(|&load| { if inps.contains(&load) { return true; } if !self.ci.nodes.unlock_remove(load) { inps.push(load); } false }); let alt_value = match self.tys.size_of(sig.ret) { 0..=8 => None, 9..=16 => todo!(), 17.. => { let stck = self.ci.nodes.new_node_nop(sig.ret, Kind::Stck, [VOID, MEM]); inps.push(stck); Some(Value::ptr(stck).ty(sig.ret)) } }; self.ci.ctrl = self.ci.nodes.new_node(sig.ret, Kind::Call { func: fnc }, inps); self.store_mem(VOID, VOID); alt_value.or(Some(Value::new(self.ci.ctrl).ty(sig.ret))) } Expr::Tupl { pos, ty, fields, .. } => { let Some(sty) = ty.map(|ty| self.ty(ty)).or(ctx.ty) else { self.report( pos, "the type of struct cannot be inferred from context, \ use an explicit type instead: <type>.{ ... }", ); return Value::NEVER; }; match sty.expand() { ty::Kind::Struct(s) => { let mem = self.ci.nodes.new_node(sty, Kind::Stck, [VOID, MEM]); let mut offs = OffsetIter::new(s, &self.tys); for field in fields { let Some((ty, offset)) = offs.next_ty(&self.tys) else { self.report( field.pos(), "this init argumen overflows the field count", ); break; }; let value = self.expr_ctx(field, Ctx::default().with_ty(ty))?; let mem = self.offset(mem, offset); self.store_mem(mem, value.id); } let field_list = offs .into_iter(&self.tys) .map(|(f, ..)| self.tys.names.ident_str(f.name)) .intersperse(", ") .collect::<String>(); if !field_list.is_empty() { self.report( pos, fa!("the struct initializer is missing {field_list} \ (append them to the end of the constructor)"), ); } Some(Value::ptr(mem).ty(sty)) } ty::Kind::Slice(s) => { let slice = &self.tys.ins.slices[s as usize]; let len = slice.len().unwrap_or(fields.len()); let elem = slice.elem; let elem_size = self.tys.size_of(elem); let aty = slice .len() .map_or_else(|| self.tys.make_array(elem, len as ArrayLen), |_| sty); if len != fields.len() { self.report( pos, fa!( "expected '{}' but constructor has {} elements", self.ty_display(aty), fields.len() ), ); return Value::NEVER; } let mem = self.ci.nodes.new_node(aty, Kind::Stck, [VOID, MEM]); for (field, offset) in fields.iter().zip((0u32..).step_by(elem_size as usize)) { let value = self.expr_ctx(field, Ctx::default().with_ty(elem))?; _ = self.assert_ty(field.pos(), value.ty, elem, "array value"); let mem = self.offset(mem, offset); self.store_mem(mem, value.id); } Some(Value::ptr(mem).ty(aty)) } _ => { let inferred = if ty.is_some() { "" } else { "inferred " }; self.report( pos, fa!( "the {inferred}type of the constructor is `{}`, \ but thats not a struct nor slice or array", self.ty_display(sty) ), ); Value::NEVER } } } Expr::Ctor { pos, ty, fields, .. } => { let Some(sty) = ty.map(|ty| self.ty(ty)).or(ctx.ty) else { self.report( pos, "the type of struct cannot be inferred from context, \ use an explicit type instead: <type>.{ ... }", ); return Value::NEVER; }; let ty::Kind::Struct(s) = sty.expand() else { let inferred = if ty.is_some() { "" } else { "inferred " }; self.report( pos, fa!( "the {inferred}type of the constructor is `{}`, \ but thats not a struct", self.ty_display(sty) ), ); return Value::NEVER; }; // TODO: dont allocate let mut offs = OffsetIter::new(s, &self.tys) .into_iter(&self.tys) .map(|(f, o)| (f.ty, o)) .collect::<Vec<_>>(); let mem = self.ci.nodes.new_node(sty, Kind::Stck, [VOID, MEM]); for field in fields { let Some(index) = self.tys.find_struct_field(s, field.name) else { self.report( field.pos, fa!("struct '{}' does not have this field", self.ty_display(sty)), ); continue; }; let (ty, offset) = core::mem::replace(&mut offs[index], (ty::Id::UNDECLARED, field.pos)); if ty == ty::Id::UNDECLARED { self.report(field.pos, "the struct field is already initialized"); self.report(offset, "previous initialization is here"); continue; } let value = self.expr_ctx(&field.value, Ctx::default().with_ty(ty))?; let mem = self.offset(mem, offset); self.store_mem(mem, value.id); } let field_list = self .tys .struct_fields(s) .iter() .zip(offs) .filter(|&(_, (ty, _))| ty != ty::Id::UNDECLARED) .map(|(f, _)| self.tys.names.ident_str(f.name)) .intersperse(", ") .collect::<String>(); if !field_list.is_empty() { self.report(pos, fa!("the struct initializer is missing {field_list}")); } Some(Value::ptr(mem).ty(sty)) } Expr::Block { stmts, .. } => { let base = self.ci.scope.vars.len(); let mut ret = Some(Value::VOID); for stmt in stmts { ret = ret.and(self.expr(stmt)); if let Some(id) = ret { self.assert_ty(stmt.pos(), id.ty, ty::Id::VOID, "statement"); } else { break; } } self.ci.nodes.lock(self.ci.ctrl); for var in self.ci.scope.vars.drain(base..) { self.ci.nodes.unlock_remove(var.value); } self.ci.nodes.unlock(self.ci.ctrl); ret } Expr::Loop { body, .. } => { self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Loop, [self.ci.ctrl; 2]); self.ci.loops.push(Loop { node: self.ci.ctrl, ctrl: [Nid::MAX; 2], ctrl_scope: core::array::from_fn(|_| Default::default()), scope: self.ci.scope.clone(), }); for (_, var) in &mut self.ci.scope.iter_elems_mut() { *var = VOID; } self.ci.nodes.lock_scope(&self.ci.scope); self.expr(body); let Loop { node, ctrl: [mut con, bre], ctrl_scope: [mut cons, mut bres], mut scope, } = self.ci.loops.pop().unwrap(); if con != Nid::MAX { con = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [con, self.ci.ctrl]); Self::merge_scopes( &mut self.ci.nodes, &mut self.ci.loops, con, &mut self.ci.scope, &mut cons, true, ); self.ci.ctrl = con; } self.ci.nodes.modify_input(node, 1, self.ci.ctrl); let idx = self.ci.nodes[node] .outputs .iter() .position(|&n| self.ci.nodes.is_cfg(n)) .unwrap(); self.ci.nodes[node].outputs.swap(idx, 0); if bre == Nid::MAX { self.ci.ctrl = NEVER; return None; } self.ci.ctrl = bre; self.ci.nodes.lock(self.ci.ctrl); core::mem::swap(&mut self.ci.scope, &mut bres); for (((_, dest_value), (_, &mut mut scope_value)), (_, &mut loop_value)) in self .ci .scope .iter_elems_mut() .zip(scope.iter_elems_mut()) .zip(bres.iter_elems_mut()) { self.ci.nodes.unlock(loop_value); if loop_value != VOID { self.ci.nodes.unlock(scope_value); if loop_value != scope_value { scope_value = self.ci.nodes.modify_input(scope_value, 2, loop_value); self.ci.nodes.lock(scope_value); } else { if *dest_value == scope_value { self.ci.nodes.unlock(*dest_value); *dest_value = VOID; self.ci.nodes.lock(*dest_value); } let phi = &self.ci.nodes[scope_value]; debug_assert_eq!(phi.kind, Kind::Phi); debug_assert_eq!(phi.inputs[2], VOID); let prev = phi.inputs[1]; self.ci.nodes.replace(scope_value, prev); scope_value = prev; self.ci.nodes.lock(prev); } } if *dest_value == VOID { self.ci.nodes.unlock(*dest_value); *dest_value = scope_value; self.ci.nodes.lock(*dest_value); } debug_assert!( self.ci.nodes[*dest_value].kind != Kind::Phi || self.ci.nodes[*dest_value].inputs[2] != 0 ); self.ci.nodes.unlock_remove(scope_value); } scope.loads.iter().for_each(|&n| _ = self.ci.nodes.unlock_remove(n)); bres.loads.iter().for_each(|&n| _ = self.ci.nodes.unlock_remove(n)); self.ci.nodes.unlock(self.ci.ctrl); Some(Value::VOID) } Expr::Break { pos } => self.jump_to(pos, 1), Expr::Continue { pos } => self.jump_to(pos, 0), Expr::If { cond, then, else_, .. } => { let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?; let if_node = self.ci.nodes.new_node(ty::Id::VOID, Kind::If, [self.ci.ctrl, cond.id]); 'b: { let branch = match self.tof(if_node).expand().inner() { ty::LEFT_UNREACHABLE => else_, ty::RIGHT_UNREACHABLE => Some(then), _ => break 'b, }; self.ci.nodes.lock(self.ci.ctrl); self.ci.nodes.remove(if_node); self.ci.nodes.unlock(self.ci.ctrl); if let Some(branch) = branch { return self.expr(branch); } else { return Some(Value::VOID); } } self.ci.nodes.load_loop_store(&mut self.ci.scope.store, &mut self.ci.loops); let orig_store = self.ci.scope.store; self.ci.nodes.lock(orig_store); let else_scope = self.ci.scope.clone(); self.ci.nodes.lock_scope(&else_scope); self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Then, [if_node]); let lcntrl = self.expr(then).map_or(Nid::MAX, |_| self.ci.ctrl); let mut then_scope = core::mem::replace(&mut self.ci.scope, else_scope); self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Else, [if_node]); let rcntrl = if let Some(else_) = else_ { self.expr(else_).map_or(Nid::MAX, |_| self.ci.ctrl) } else { self.ci.ctrl }; self.ci.nodes.unlock_remove(orig_store); if lcntrl == Nid::MAX && rcntrl == Nid::MAX { self.ci.nodes.unlock_remove_scope(&then_scope); return None; } else if lcntrl == Nid::MAX { self.ci.nodes.unlock_remove_scope(&then_scope); return Some(Value::VOID); } else if rcntrl == Nid::MAX { self.ci.nodes.unlock_remove_scope(&self.ci.scope); self.ci.scope = then_scope; self.ci.ctrl = lcntrl; return Some(Value::VOID); } self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [lcntrl, rcntrl]); Self::merge_scopes( &mut self.ci.nodes, &mut self.ci.loops, self.ci.ctrl, &mut self.ci.scope, &mut then_scope, true, ); Some(Value::VOID) } ref e => self.report_unhandled_ast(e, "bruh"), } } fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Value> { let mut n = self.raw_expr_ctx(expr, ctx)?; self.strip_var(&mut n); if core::mem::take(&mut n.ptr) { n.id = self.load_mem(n.id, n.ty); } Some(n) } fn offset(&mut self, val: Nid, off: Offset) -> Nid { if off == 0 { return val; } let off = self.ci.nodes.new_node_nop(ty::Id::INT, Kind::CInt { value: off as i64 }, [VOID]); let inps = [VOID, val, off]; self.ci.nodes.new_node(ty::Id::INT, Kind::BinOp { op: TokenKind::Add }, inps) } fn strip_var(&mut self, n: &mut Value) { if core::mem::take(&mut n.var) { let id = (u16::MAX - n.id) as usize; self.ci.nodes.load_loop_var(id, &mut self.ci.scope.vars[id].value, &mut self.ci.loops); n.ptr = self.ci.scope.vars[id].ptr; n.id = self.ci.scope.vars[id].value; } } fn expr(&mut self, expr: &Expr) -> Option<Value> { self.expr_ctx(expr, Default::default()) } fn jump_to(&mut self, pos: Pos, id: usize) -> Option<Value> { let Some(mut loob) = self.ci.loops.last_mut() else { self.report(pos, "break outside a loop"); return None; }; if loob.ctrl[id] == Nid::MAX { loob.ctrl[id] = self.ci.ctrl; loob.ctrl_scope[id] = self.ci.scope.clone(); loob.ctrl_scope[id].vars.truncate(loob.scope.vars.len()); self.ci.nodes.lock_scope(&loob.ctrl_scope[id]); } else { let reg = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [self.ci.ctrl, loob.ctrl[id]]); let mut scope = core::mem::take(&mut loob.ctrl_scope[id]); Self::merge_scopes( &mut self.ci.nodes, &mut self.ci.loops, reg, &mut scope, &mut self.ci.scope, false, ); loob = self.ci.loops.last_mut().unwrap(); loob.ctrl_scope[id] = scope; loob.ctrl[id] = reg; } self.ci.ctrl = NEVER; None } fn merge_scopes( nodes: &mut Nodes, loops: &mut [Loop], ctrl: Nid, to: &mut Scope, from: &mut Scope, drop_from: bool, ) { for (i, ((ty, to_value), (_, from_value))) in to.iter_elems_mut().zip(from.iter_elems_mut()).enumerate() { if to_value != from_value { nodes.load_loop_var(i, from_value, loops); nodes.load_loop_var(i, to_value, loops); if to_value != from_value { let inps = [ctrl, *from_value, *to_value]; nodes.unlock(*to_value); *to_value = nodes.new_node(ty, Kind::Phi, inps); nodes.lock(*to_value); } } } for load in to.loads.drain(..) { nodes.unlock_remove(load); } for load in from.loads.drain(..) { nodes.unlock_remove(load); } if drop_from { nodes.unlock_remove_scope(from); } } #[inline(always)] fn tof(&self, id: Nid) -> ty::Id { self.ci.nodes[id].ty } fn complete_call_graph(&mut self) { while self.ci.task_base < self.tasks.len() && let Some(task_slot) = self.tasks.pop() { let Some(task) = task_slot else { continue }; self.emit_func(task); } } fn emit_func(&mut self, FTask { file, id }: FTask) { let func = &mut self.tys.ins.funcs[id as usize]; debug_assert_eq!(func.file, file); func.offset = u32::MAX - 1; let sig = func.sig.expect("to emmit only concrete functions"); let ast = &self.files[file as usize]; let expr = func.expr.get(ast).unwrap(); self.pool.push_ci(file, Some(sig.ret), 0, &mut self.ci); let &Expr::Closure { body, args, .. } = expr else { unreachable!("{}", self.ast_display(expr)) }; let mut sig_args = sig.args.range(); for arg in args.iter() { let ty = self.tys.ins.args[sig_args.next().unwrap()]; let value = self.ci.nodes.new_node_nop(ty, Kind::Arg, [VOID]); self.ci.nodes.lock(value); let sym = parser::find_symbol(&ast.symbols, arg.id); assert!(sym.flags & idfl::COMPTIME == 0, "TODO"); self.ci.scope.vars.push(Variable { id: arg.id, value, ty, ptr: false }); } if self.expr(body).is_some() && sig.ret == ty::Id::VOID { self.report( body.pos(), "expected all paths in the fucntion to return \ or the return type to be 'void'", ); } self.ci.finalize(); if self.errors.borrow().is_empty() { self.ci.emit_body(&mut self.tys, self.files, sig); self.tys.ins.funcs[id as usize].code.append(&mut self.ci.code); self.tys.ins.funcs[id as usize].relocs.append(&mut self.ci.relocs); } self.pool.pop_ci(&mut self.ci); } fn ty(&mut self, expr: &Expr) -> ty::Id { self.parse_ty(self.ci.file, expr, None, self.files) } fn ty_display(&self, ty: ty::Id) -> ty::Display { ty::Display::new(&self.tys, self.files, ty) } fn ast_display(&self, ast: &'a Expr<'a>) -> parser::Display<'a> { parser::Display::new(&self.cfile().file, ast) } #[must_use] #[track_caller] fn binop_ty(&self, pos: Pos, lhs: ty::Id, rhs: ty::Id, op: TokenKind) -> ty::Id { if let Some(res) = lhs.try_upcast(rhs, ty::TyCheck::BinOp) { res } else { let ty = self.ty_display(lhs); let expected = self.ty_display(rhs); self.report(pos, fa!("'{ty} {op} {expected}' is not supported")); ty::Id::NEVER } } #[track_caller] fn assert_ty(&self, pos: Pos, ty: ty::Id, expected: ty::Id, hint: impl fmt::Display) -> bool { if ty.try_upcast(expected, ty::TyCheck::BinOp) != Some(expected) { let ty = self.ty_display(ty); let expected = self.ty_display(expected); self.report(pos, fa!("expected {hint} to be of type {expected}, got {ty}")); return false; } true } #[track_caller] fn assert_report(&self, cond: bool, pos: Pos, msg: impl core::fmt::Display) { if !cond { self.report(pos, msg); } } #[track_caller] fn report(&self, pos: Pos, msg: impl core::fmt::Display) { let mut buf = self.errors.borrow_mut(); write!(buf, "{}", self.cfile().report(pos, msg)).unwrap(); } #[track_caller] fn report_unhandled_ast(&self, ast: &Expr, hint: &str) -> ! { log::info!("{ast:#?}"); self.fatal_report(ast.pos(), fa!("compiler does not (yet) know how to handle ({hint})")); } fn cfile(&self) -> &'a parser::Ast { &self.files[self.ci.file as usize] } fn fatal_report(&self, pos: Pos, msg: impl Display) -> ! { self.report(pos, msg); panic!("{}", self.errors.borrow()); } } // FIXME: make this more efficient (allocated with arena) #[derive(Debug)] struct Block { nid: Nid, preds: Vec<regalloc2::Block>, succs: Vec<regalloc2::Block>, instrs: regalloc2::InstRange, params: Vec<regalloc2::VReg>, branch_blockparams: Vec<regalloc2::VReg>, } #[derive(Debug)] struct Instr { nid: Nid, ops: Vec<regalloc2::Operand>, } struct Function<'a> { sig: Sig, nodes: &'a mut Nodes, tys: &'a Types, blocks: Vec<Block>, instrs: Vec<Instr>, } impl Debug for Function<'_> { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { for (i, block) in self.blocks.iter().enumerate() { writeln!(f, "sb{i}{:?}-{:?}:", block.params, block.preds)?; for inst in block.instrs.iter() { let instr = &self.instrs[inst.index()]; writeln!(f, "{}: i{:?}:{:?}", inst.index(), self.nodes[instr.nid].kind, instr.ops)?; } writeln!(f, "eb{i}{:?}-{:?}:", block.branch_blockparams, block.succs)?; } Ok(()) } } impl<'a> Function<'a> { fn new(nodes: &'a mut Nodes, tys: &'a Types, sig: Sig) -> Self { let mut s = Self { nodes, tys, sig, blocks: Default::default(), instrs: Default::default() }; s.nodes.visited.clear(s.nodes.values.len()); s.emit_node(VOID, VOID); s.add_block(0); s.blocks.pop(); s } fn add_block(&mut self, nid: Nid) -> RallocBRef { if let Some(prev) = self.blocks.last_mut() { prev.instrs = regalloc2::InstRange::new( prev.instrs.first(), regalloc2::Inst::new(self.instrs.len()), ); } self.blocks.push(Block { nid, preds: Default::default(), succs: Default::default(), instrs: regalloc2::InstRange::new( regalloc2::Inst::new(self.instrs.len()), regalloc2::Inst::new(self.instrs.len() + 1), ), params: Default::default(), branch_blockparams: Default::default(), }); self.blocks.len() as RallocBRef - 1 } fn add_instr(&mut self, nid: Nid, ops: Vec<regalloc2::Operand>) { self.instrs.push(Instr { nid, ops }); } fn urg(&mut self, nid: Nid) -> regalloc2::Operand { regalloc2::Operand::reg_use(self.rg(nid)) } fn def_nid(&mut self, _nid: Nid) {} fn drg(&mut self, nid: Nid) -> regalloc2::Operand { self.def_nid(nid); regalloc2::Operand::reg_def(self.rg(nid)) } fn rg(&self, nid: Nid) -> VReg { regalloc2::VReg::new(nid as _, regalloc2::RegClass::Int) } fn emit_node(&mut self, nid: Nid, prev: Nid) { if matches!(self.nodes[nid].kind, Kind::Region | Kind::Loop) { let prev_bref = self.nodes[prev].ralloc_backref; let node = self.nodes[nid].clone(); let idx = 1 + node.inputs.iter().position(|&i| i == prev).unwrap(); for ph in node.outputs { if self.nodes[ph].kind != Kind::Phi || self.nodes[ph].ty == ty::Id::VOID { continue; } let rg = self.rg(self.nodes[ph].inputs[idx]); self.blocks[prev_bref as usize].branch_blockparams.push(rg); } self.add_instr(nid, vec![]); match (self.nodes[nid].kind, self.nodes.visited.set(nid)) { (Kind::Loop, false) => { for i in node.inputs { self.bridge(i, nid); } return; } (Kind::Region, true) => return, _ => {} } } else if !self.nodes.visited.set(nid) { return; } let node = self.nodes[nid].clone(); match node.kind { Kind::Start => { debug_assert_matches!(self.nodes[node.outputs[0]].kind, Kind::Entry); self.emit_node(node.outputs[0], VOID) } Kind::End => {} Kind::If => { self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref; let &[_, cond] = node.inputs.as_slice() else { unreachable!() }; let &[mut then, mut else_] = node.outputs.as_slice() else { unreachable!() }; if let Kind::BinOp { op } = self.nodes[cond].kind && let Some((_, swapped)) = op.cond_op(node.ty.is_signed()) { if swapped { core::mem::swap(&mut then, &mut else_); } let &[_, lhs, rhs] = self.nodes[cond].inputs.as_slice() else { unreachable!() }; let ops = vec![self.urg(lhs), self.urg(rhs)]; self.add_instr(nid, ops); } else { todo!() } self.emit_node(then, nid); self.emit_node(else_, nid); } Kind::Region | Kind::Loop => { self.nodes[nid].ralloc_backref = self.add_block(nid); if node.kind == Kind::Region { for i in node.inputs { self.bridge(i, nid); } } let mut block = vec![]; for ph in node.outputs.clone() { if self.nodes[ph].kind != Kind::Phi || self.nodes[ph].ty == ty::Id::VOID { continue; } self.def_nid(ph); block.push(self.rg(ph)); } self.blocks[self.nodes[nid].ralloc_backref as usize].params = block; for o in node.outputs.into_iter().rev() { self.emit_node(o, nid); } } Kind::Return => { let ops = match self.tys.size_of(self.sig.ret) { 0 => vec![], 1..=8 => { vec![regalloc2::Operand::reg_fixed_use( self.rg(node.inputs[1]), regalloc2::PReg::new(1, regalloc2::RegClass::Int), )] } 9..=16 => todo!(), 17.. => { vec![self.urg(node.inputs[1])] } }; self.add_instr(nid, ops); self.emit_node(node.outputs[0], nid); } Kind::CInt { .. } if node.outputs.iter().all(|&o| { let ond = &self.nodes[o]; matches!(ond.kind, Kind::BinOp { op } if op.imm_binop(ond.ty.is_signed(), 8).is_some() && self.nodes.is_const(ond.inputs[2]) && op.cond_op(ond.ty.is_signed()).is_none()) }) => { self.nodes.lock(nid) } Kind::CInt { .. } => { let ops = vec![self.drg(nid)]; self.add_instr(nid, ops); } Kind::Entry => { self.nodes[nid].ralloc_backref = self.add_block(nid); let mut parama = self.tys.parama(self.sig.ret); for (arg, ti) in self.nodes[VOID].clone().outputs.into_iter().skip(2).zip(self.sig.args.range()) { let ty = self.tys.ins.args[ti]; match self.tys.size_of(ty) { 0 => continue, 1..=8 => { self.def_nid(arg); self.add_instr(NEVER, vec![regalloc2::Operand::reg_fixed_def( self.rg(arg), regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int), )]); } 9..=16 => todo!(), _ => { self.def_nid(arg); self.add_instr(NEVER, vec![regalloc2::Operand::reg_fixed_def( self.rg(arg), regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int), )]); } } } for o in node.outputs.into_iter().rev() { self.emit_node(o, nid); } } Kind::Then | Kind::Else => { self.nodes[nid].ralloc_backref = self.add_block(nid); self.bridge(prev, nid); for o in node.outputs.into_iter().rev() { self.emit_node(o, nid); } } Kind::BinOp { op: TokenKind::Add } if self.nodes.is_const(node.inputs[2]) && node.outputs.iter().all(|&n| { matches!(self.nodes[n].kind, Kind::Stre | Kind::Load) && self.tys.size_of(self.nodes[n].ty) <= 8 }) => { self.nodes.lock(nid) } Kind::BinOp { op } => { let &[_, lhs, rhs] = node.inputs.as_slice() else { unreachable!() }; let ops = if let Kind::CInt { .. } = self.nodes[rhs].kind && self.nodes[rhs].lock_rc != 0 { vec![self.drg(nid), self.urg(lhs)] } else if op.binop(node.ty.is_signed(), 8).is_some() { vec![self.drg(nid), self.urg(lhs), self.urg(rhs)] } else if op.cond_op(node.ty.is_signed()).is_some() { return; } else { todo!("{op}") }; self.add_instr(nid, ops); } Kind::UnOp { .. } => { let ops = vec![self.drg(nid), self.urg(node.inputs[1])]; self.add_instr(nid, ops); } Kind::Call { func } => { self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref; let mut ops = vec![]; let fuc = self.tys.ins.funcs[func as usize].sig.unwrap(); if self.tys.size_of(fuc.ret) != 0 { self.def_nid(nid); ops.push(regalloc2::Operand::reg_fixed_def( self.rg(nid), regalloc2::PReg::new(1, regalloc2::RegClass::Int), )); } let mut parama = self.tys.parama(fuc.ret); for (&(mut i), ti) in node.inputs[1..].iter().zip(fuc.args.range()) { let ty = self.tys.ins.args[ti]; match self.tys.size_of(ty) { 0 => continue, 1..=8 => { ops.push(regalloc2::Operand::reg_fixed_use( self.rg(i), regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int), )); } 9..=16 => todo!("pass in two register"), _ => { loop { match self.nodes[i].kind { Kind::Stre { .. } => i = self.nodes[i].inputs[2], Kind::Load { .. } => i = self.nodes[i].inputs[1], _ => break, } debug_assert_ne!(i, 0); } debug_assert!(i != 0); ops.push(regalloc2::Operand::reg_fixed_use( self.rg(i), regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int), )); } } } match self.tys.size_of(fuc.ret) { 0..=8 => {} 9..=16 => todo!(), 17.. => { ops.push(regalloc2::Operand::reg_fixed_use( self.rg(*node.inputs.last().unwrap()), regalloc2::PReg::new(1, regalloc2::RegClass::Int), )); } } self.add_instr(nid, ops); for o in node.outputs.into_iter().rev() { if self.nodes[o].inputs[0] == nid { self.emit_node(o, nid); } } } Kind::Global { .. } => { let ops = vec![self.drg(nid)]; self.add_instr(nid, ops); } //Kind::Stck // if node.outputs.iter().all(|&n| { // matches!(self.nodes[n].kind, Kind::Stre | Kind::Load) // || matches!(self.nodes[n].kind, Kind::BinOp { op: TokenKind::Add } // if self.nodes.is_const(self.nodes[n].inputs[2]) // && self.nodes[n] // .outputs // .iter() // .all(|&n| matches!(self.nodes[n].kind, Kind::Stre | Kind::Load))) // }) => {} Kind::Stck => { let ops = vec![self.drg(nid)]; self.add_instr(nid, ops); } Kind::Idk => { let ops = vec![self.drg(nid)]; self.add_instr(nid, ops); } Kind::Phi | Kind::Arg | Kind::Mem => {} Kind::Load { .. } => { let mut region = node.inputs[1]; if self.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add }) && self.nodes.is_const(self.nodes[region].inputs[2]) { region = self.nodes[region].inputs[1] } if self.tys.size_of(node.ty) <= 8 { let ops = match self.nodes[region].kind { Kind::Stck => vec![self.drg(nid)], _ => vec![self.drg(nid), self.urg(region)], }; self.add_instr(nid, ops); } } Kind::Stre if node.inputs[2] == VOID => self.nodes.lock(nid), Kind::Stre => { let mut region = node.inputs[2]; if self.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add }) && self.nodes.is_const(self.nodes[region].inputs[2]) { region = self.nodes[region].inputs[1] } let ops = match self.nodes[region].kind { _ if self.tys.size_of(node.ty) > 8 => { vec![self.urg(region), self.urg(self.nodes[node.inputs[1]].inputs[1])] } Kind::Stck => vec![self.urg(node.inputs[1])], _ => vec![self.urg(region), self.urg(node.inputs[1])], }; self.add_instr(nid, ops); } } } fn bridge(&mut self, pred: u16, succ: u16) { if self.nodes[pred].ralloc_backref == u16::MAX || self.nodes[succ].ralloc_backref == u16::MAX { return; } self.blocks[self.nodes[pred].ralloc_backref as usize] .succs .push(regalloc2::Block::new(self.nodes[succ].ralloc_backref as usize)); self.blocks[self.nodes[succ].ralloc_backref as usize] .preds .push(regalloc2::Block::new(self.nodes[pred].ralloc_backref as usize)); } } impl regalloc2::Function for Function<'_> { fn num_insts(&self) -> usize { self.instrs.len() } fn num_blocks(&self) -> usize { self.blocks.len() } fn entry_block(&self) -> regalloc2::Block { regalloc2::Block(0) } fn block_insns(&self, block: regalloc2::Block) -> regalloc2::InstRange { self.blocks[block.index()].instrs } fn block_succs(&self, block: regalloc2::Block) -> &[regalloc2::Block] { &self.blocks[block.index()].succs } fn block_preds(&self, block: regalloc2::Block) -> &[regalloc2::Block] { &self.blocks[block.index()].preds } fn block_params(&self, block: regalloc2::Block) -> &[regalloc2::VReg] { &self.blocks[block.index()].params } fn is_ret(&self, insn: regalloc2::Inst) -> bool { self.nodes[self.instrs[insn.index()].nid].kind == Kind::Return } fn is_branch(&self, insn: regalloc2::Inst) -> bool { matches!( self.nodes[self.instrs[insn.index()].nid].kind, Kind::If | Kind::Then | Kind::Else | Kind::Entry | Kind::Loop | Kind::Region ) } fn branch_blockparams( &self, block: regalloc2::Block, _insn: regalloc2::Inst, _succ_idx: usize, ) -> &[regalloc2::VReg] { debug_assert!( self.blocks[block.index()].succs.len() == 1 || self.blocks[block.index()].branch_blockparams.is_empty() ); &self.blocks[block.index()].branch_blockparams } fn inst_operands(&self, insn: regalloc2::Inst) -> &[regalloc2::Operand] { &self.instrs[insn.index()].ops } fn inst_clobbers(&self, insn: regalloc2::Inst) -> regalloc2::PRegSet { if matches!(self.nodes[self.instrs[insn.index()].nid].kind, Kind::Call { .. }) { let mut set = regalloc2::PRegSet::default(); for i in 2..13 { set.add(regalloc2::PReg::new(i, regalloc2::RegClass::Int)); } set } else { regalloc2::PRegSet::default() } } fn num_vregs(&self) -> usize { self.nodes.values.len() } fn spillslot_size(&self, regclass: regalloc2::RegClass) -> usize { match regclass { regalloc2::RegClass::Int => 1, regalloc2::RegClass::Float => unreachable!(), regalloc2::RegClass::Vector => unreachable!(), } } } fn loop_depth(target: Nid, nodes: &mut Nodes) -> LoopDepth { if nodes[target].loop_depth != 0 { return nodes[target].loop_depth; } nodes[target].loop_depth = match nodes[target].kind { Kind::Entry | Kind::Then | Kind::Else | Kind::Call { .. } | Kind::Return | Kind::If => { let dpth = loop_depth(nodes[target].inputs[0], nodes); if nodes[target].loop_depth != 0 { return nodes[target].loop_depth; } dpth } Kind::Region => { let l = loop_depth(nodes[target].inputs[0], nodes); let r = loop_depth(nodes[target].inputs[1], nodes); debug_assert_eq!(l, r); l } Kind::Loop => { let depth = loop_depth(nodes[target].inputs[0], nodes) + 1; nodes[target].loop_depth = depth; let mut cursor = nodes[target].inputs[1]; while cursor != target { nodes[cursor].loop_depth = depth; let next = if nodes[cursor].kind == Kind::Region { loop_depth(nodes[cursor].inputs[0], nodes); nodes[cursor].inputs[1] } else { idom(nodes, cursor) }; debug_assert_ne!(next, VOID); if matches!(nodes[cursor].kind, Kind::Then | Kind::Else) { let other = *nodes[next] .outputs .iter() .find(|&&n| nodes[n].kind != nodes[cursor].kind) .unwrap(); if nodes[other].loop_depth == 0 { nodes[other].loop_depth = depth - 1; } } cursor = next; } depth } Kind::Start | Kind::End => 1, u => unreachable!("{u:?}"), }; nodes[target].loop_depth } fn idepth(nodes: &mut Nodes, target: Nid) -> IDomDepth { if target == VOID { return 0; } if nodes[target].depth == 0 { nodes[target].depth = match nodes[target].kind { Kind::End | Kind::Start => unreachable!("{:?}", nodes[target].kind), Kind::Region => { idepth(nodes, nodes[target].inputs[0]).max(idepth(nodes, nodes[target].inputs[1])) } _ => idepth(nodes, nodes[target].inputs[0]), } + 1; } nodes[target].depth } fn push_up(nodes: &mut Nodes) { fn collect_rpo(node: Nid, nodes: &mut Nodes, rpo: &mut Vec<Nid>) { if !nodes.is_cfg(node) || !nodes.visited.set(node) { return; } for i in 0..nodes[node].outputs.len() { collect_rpo(nodes[node].outputs[i], nodes, rpo); } rpo.push(node); } fn push_up_impl(node: Nid, nodes: &mut Nodes) { if !nodes.visited.set(node) { return; } for i in 0..nodes[node].inputs.len() { let inp = nodes[node].inputs[i]; if !nodes[inp].kind.is_pinned() { push_up_impl(inp, nodes); } } if nodes[node].kind.is_pinned() { return; } let mut deepest = VOID; for i in 1..nodes[node].inputs.len() { let inp = nodes[node].inputs[i]; if idepth(nodes, inp) > idepth(nodes, deepest) { deepest = idom(nodes, inp); } } if deepest == VOID { return; } let index = nodes[0].outputs.iter().position(|&p| p == node).unwrap(); nodes[0].outputs.remove(index); nodes[node].inputs[0] = deepest; debug_assert!( !nodes[deepest].outputs.contains(&node) || matches!(nodes[deepest].kind, Kind::Call { .. }), "{node} {:?} {deepest} {:?}", nodes[node], nodes[deepest] ); nodes[deepest].outputs.push(node); } let mut rpo = vec![]; collect_rpo(VOID, nodes, &mut rpo); for node in rpo.into_iter().rev() { loop_depth(node, nodes); for i in 0..nodes[node].inputs.len() { push_up_impl(nodes[node].inputs[i], nodes); } if matches!(nodes[node].kind, Kind::Loop | Kind::Region) { for i in 0..nodes[node].outputs.len() { let usage = nodes[node].outputs[i]; if nodes[usage].kind == Kind::Phi { push_up_impl(usage, nodes); } } } } } fn push_down(nodes: &mut Nodes, node: Nid) { fn is_forward_edge(usage: Nid, def: Nid, nodes: &mut Nodes) -> bool { match nodes[usage].kind { Kind::Phi => { nodes[usage].inputs[2] != def || nodes[nodes[usage].inputs[0]].kind != Kind::Loop } Kind::Loop => nodes[usage].inputs[1] != def, _ => true, } } fn better(nodes: &mut Nodes, is: Nid, then: Nid) -> bool { loop_depth(is, nodes) < loop_depth(then, nodes) || idepth(nodes, is) > idepth(nodes, then) || nodes[then].kind == Kind::If } if !nodes.visited.set(node) { return; } for usage in nodes[node].outputs.clone() { if is_forward_edge(usage, node, nodes) { push_down(nodes, usage); } } if nodes[node].kind.is_pinned() { return; } let mut min = None::<Nid>; for i in 0..nodes[node].outputs.len() { let usage = nodes[node].outputs[i]; let ub = use_block(node, usage, nodes); min = min.map(|m| common_dom(ub, m, nodes)).or(Some(ub)); } let mut min = min.unwrap(); debug_assert!(nodes.dominates(nodes[node].inputs[0], min)); let mut cursor = min; loop { if better(nodes, cursor, min) { min = cursor; } if cursor == nodes[node].inputs[0] { break; } cursor = idom(nodes, cursor); } if nodes[min].kind.ends_basic_block() { min = idom(nodes, min); } nodes.check_dominance(node, min, true); let prev = nodes[node].inputs[0]; debug_assert!(idepth(nodes, min) >= idepth(nodes, prev)); let index = nodes[prev].outputs.iter().position(|&p| p == node).unwrap(); nodes[prev].outputs.remove(index); nodes[node].inputs[0] = min; nodes[min].outputs.push(node); } fn use_block(target: Nid, from: Nid, nodes: &mut Nodes) -> Nid { if nodes[from].kind != Kind::Phi { return idom(nodes, from); } let index = nodes[from].inputs.iter().position(|&n| n == target).unwrap(); nodes[nodes[from].inputs[0]].inputs[index - 1] } fn idom(nodes: &mut Nodes, target: Nid) -> Nid { match nodes[target].kind { Kind::Start => VOID, Kind::End => unreachable!(), Kind::Region => { let &[lcfg, rcfg] = nodes[target].inputs.as_slice() else { unreachable!() }; common_dom(lcfg, rcfg, nodes) } _ => nodes[target].inputs[0], } } fn common_dom(mut a: Nid, mut b: Nid, nodes: &mut Nodes) -> Nid { while a != b { let [ldepth, rdepth] = [idepth(nodes, a), idepth(nodes, b)]; if ldepth >= rdepth { a = idom(nodes, a); } if ldepth <= rdepth { b = idom(nodes, b); } } a } #[cfg(test)] mod tests { use { alloc::{string::String, vec::Vec}, core::fmt::Write, }; fn generate(ident: &'static str, input: &'static str, output: &mut String) { _ = log::set_logger(&crate::fs::Logger); log::set_max_level(log::LevelFilter::Info); let (ref files, _embeds) = crate::test_parse_files(ident, input); let mut codegen = super::Codegen { files, ..Default::default() }; codegen.generate(); { let errors = codegen.errors.borrow(); if !errors.is_empty() { output.push_str(&errors); return; } } let mut out = Vec::new(); codegen.tys.reassemble(&mut out); let err = codegen.tys.disasm(&out, codegen.files, output, |_| {}); if let Err(e) = err { writeln!(output, "!!! asm is invalid: {e}").unwrap(); return; } crate::test_run_vm(&out, output); } crate::run_tests! { generate: // Tour Examples main_fn; arithmetic; functions; comments; if_statements; variables; loops; pointers; structs; hex_octal_binary_literals; //struct_operators; global_variables; //directives; c_strings; //struct_patterns; arrays; //inline; idk; //wide_ret; // Incomplete Examples; //comptime_pointers; //generic_types; //generic_functions; fb_driver; // Purely Testing Examples; comptime_min_reg_leak; //different_types; //struct_return_from_module_function; sort_something_viredly; //structs_in_registers; comptime_function_from_another_file; //inline_test; //inlined_generic_functions; //some_generic_code; //integer_inference_issues; writing_into_string; //request_page; //tests_ptr_to_ptr_copy; // Just Testing Optimizations; const_folding_with_arg; branch_assignments; exhaustive_loop_testing; pointer_opts; conditional_stores; loop_stores; } }