holey-bytes/lang/src/son.rs
Jakub Doka 00f6729d31
supporting ascii literals
Signed-off-by: Jakub Doka <jakub.doka2@gmail.com>
2024-12-14 21:02:29 +01:00

6083 lines
221 KiB
Rust

use {
self::strong_ref::StrongRef,
crate::{
backend::{
hbvm::{Comptime, HbvmBackend},
Backend,
},
ctx_map::CtxEntry,
debug,
lexer::{self, TokenKind},
parser::{
self,
idfl::{self},
CommentOr, CtorField, DeclId, Expr, ExprRef, FieldList, MatchBranch, Pos,
},
ty::{
self, Arg, ArrayLen, CompState, ConstData, EnumData, EnumField, FTask, FuncData,
GlobalData, Loc, Module, Offset, OffsetIter, OptLayout, Sig, StringRef, StructData,
StructField, SymKey, TemplateData, Tuple, TypeBase, TypeIns, Types, UnionData,
},
utils::{BitSet, EntSlice, Vc},
Ident,
},
alloc::{string::String, vec::Vec},
core::{
assert_matches::debug_assert_matches,
cell::{Cell, RefCell},
fmt::{self, Debug, Display, Write},
format_args as fa, mem,
ops::{self, Range},
},
hashbrown::hash_map,
hbbytecode::DisasmError,
};
pub const VOID: Nid = 0;
pub const NEVER: Nid = 1;
pub const ENTRY: Nid = 2;
pub const MEM: Nid = 3;
pub const LOOPS: Nid = 4;
pub const ARG_START: usize = 3;
const DEFAULT_ACLASS: usize = 0;
const GLOBAL_ACLASS: usize = 1;
pub type Nid = u16;
type AClassId = i16;
type Lookup = crate::ctx_map::CtxMap<Nid>;
impl crate::ctx_map::CtxEntry for Nid {
type Ctx = [Result<Node, (Nid, debug::Trace)>];
type Key<'a> = (Kind, &'a [Nid], ty::Id);
fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> {
ctx[*self as usize].as_ref().unwrap_or_else(|(_, t)| panic!("{t:#?}")).key()
}
}
macro_rules! inference {
($ty:ident, $ctx:expr, $self:expr, $pos:expr, $subject:literal, $example:literal) => {
let Some($ty) = $ctx.ty else {
$self.error(
$pos,
concat!(
"resulting ",
$subject,
" cannot be inferred from context, consider using `",
$example,
"` to hint the type",
),
);
return Value::NEVER;
};
};
}
#[derive(Clone)]
pub struct Nodes {
values: Vec<Result<Node, (Nid, debug::Trace)>>,
queued_peeps: Vec<Nid>,
free: Nid,
lookup: Lookup,
}
impl Default for Nodes {
fn default() -> Self {
Self {
values: Default::default(),
queued_peeps: Default::default(),
free: Nid::MAX,
lookup: Default::default(),
}
}
}
impl Nodes {
#[inline]
pub fn len(&self) -> usize {
self.values.len()
}
#[inline]
pub fn is_empty(&self) -> bool {
self.values.is_empty()
}
fn as_ty(&self, cint: Nid) -> ty::Id {
debug_assert_eq!(self[cint].ty, ty::Id::TYPE);
ty::Id::from(match self[cint].kind {
Kind::CInt { value } => value as u64,
_ => unreachable!("triing to cast non constant to a type: {:?}", self[cint]),
})
}
pub fn loop_depth(&self, target: Nid, scheds: Option<&[Nid]>) -> LoopDepth {
self[target].loop_depth.set(match self[target].kind {
Kind::Region | Kind::Entry | Kind::Then | Kind::Else | Kind::Call { .. } | Kind::If => {
if self[target].loop_depth.get() != 0 {
return self[target].loop_depth.get();
}
self.loop_depth(self[target].inputs[0], scheds)
}
Kind::Loop => {
if self[target].loop_depth.get()
== self.loop_depth(self[target].inputs[0], scheds) + 1
{
return self[target].loop_depth.get();
}
let depth = self.loop_depth(self[target].inputs[0], scheds) + 1;
self[target].loop_depth.set(depth);
let mut cursor = self[target].inputs[1];
while cursor != target {
self[cursor].loop_depth.set(depth);
let next = self.idom(cursor, scheds);
debug_assert_ne!(next, 0);
if matches!(self[cursor].kind, Kind::Then | Kind::Else) {
debug_assert_eq!(self[next].kind, Kind::If);
let other = self[next].outputs[(self[next].outputs[0] == cursor) as usize];
self[other].loop_depth.set(depth - 1);
}
cursor = next;
}
depth
}
Kind::Start | Kind::End | Kind::Die | Kind::Return { .. } => 1,
u => unreachable!("{u:?}"),
});
self[target].loop_depth.get()
}
fn idepth(&self, target: Nid, scheds: Option<&[Nid]>) -> IDomDepth {
if target == VOID {
return 0;
}
if self[target].depth.get() == 0 {
let depth = match self[target].kind {
Kind::End | Kind::Start => unreachable!("{:?}", self[target].kind),
Kind::Region => self
.idepth(self[target].inputs[0], scheds)
.max(self.idepth(self[target].inputs[1], scheds)),
_ if self[target].kind.is_pinned() => self.idepth(self[target].inputs[0], scheds),
_ if let Some(scheds) = scheds => {
self.idepth(scheds[target as usize], Some(scheds))
}
_ => self.idepth(self[target].inputs[0], scheds),
} + 1;
self[target].depth.set(depth);
}
self[target].depth.get()
}
fn fix_loops(&mut self, stack: &mut Vec<Nid>, seen: &mut BitSet) {
debug_assert!(stack.is_empty());
stack.push(NEVER);
while let Some(node) = stack.pop() {
if seen.set(node) && self.is_cfg(node) {
stack.extend(self[node].inputs.iter());
}
}
for l in self[LOOPS].outputs.clone() {
if !seen.get(l) {
self.bind(l, NEVER);
}
}
}
fn push_up_impl(&self, node: Nid, visited: &mut BitSet, scheds: &mut [Nid]) {
if !visited.set(node) {
return;
}
for &inp in &self[node].inputs[1..] {
if !self[inp].kind.is_pinned() {
self.push_up_impl(inp, visited, scheds);
}
}
if self[node].kind.is_pinned() {
return;
}
let mut deepest = self[node].inputs[0];
for &inp in self[node].inputs[1..].iter() {
if self.idepth(inp, Some(scheds)) > self.idepth(deepest, Some(scheds)) {
if self[inp].kind.is_call() {
deepest = inp;
} else {
debug_assert!(!self.is_cfg(inp));
deepest = self.idom(inp, Some(scheds));
}
}
}
scheds[node as usize] = deepest;
}
fn collect_rpo(&self, node: Nid, rpo: &mut Vec<Nid>, visited: &mut BitSet) {
if !self.is_cfg(node) || !visited.set(node) {
return;
}
for &n in self[node].outputs.iter() {
self.collect_rpo(n, rpo, visited);
}
rpo.push(node);
}
fn push_up(&self, rpo: &mut Vec<Nid>, visited: &mut BitSet, scheds: &mut [Nid]) {
debug_assert!(rpo.is_empty());
self.collect_rpo(VOID, rpo, visited);
for &node in rpo.iter().rev() {
self.loop_depth(node, Some(scheds));
for i in 0..self[node].inputs.len() {
self.push_up_impl(self[node].inputs[i], visited, scheds);
}
if matches!(self[node].kind, Kind::Loop | Kind::Region) {
for i in 0..self[node].outputs.len() {
let usage = self[node].outputs[i];
if self[usage].kind == Kind::Phi {
self.push_up_impl(usage, visited, scheds);
}
}
}
}
debug_assert_eq!(
self.iter()
.map(|(n, _)| n)
.filter(|&n| !visited.get(n)
&& !matches!(self[n].kind, Kind::Arg | Kind::Mem | Kind::Loops))
.collect::<Vec<_>>(),
vec![],
"{:?}",
self.iter()
.filter(|&(n, nod)| !visited.get(n)
&& !matches!(nod.kind, Kind::Arg | Kind::Mem | Kind::Loops))
.collect::<Vec<_>>()
);
rpo.clear();
}
fn better(&self, is: Nid, then: Nid, scheds: Option<&[Nid]>) -> bool {
debug_assert_ne!(self.idepth(is, scheds), self.idepth(then, scheds), "{is} {then}");
self.loop_depth(is, scheds) < self.loop_depth(then, scheds)
|| self.idepth(is, scheds) > self.idepth(then, scheds)
|| self[then].kind == Kind::If
}
fn is_forward_edge(&self, usage: Nid, def: Nid) -> bool {
match self[usage].kind {
Kind::Phi => {
self[usage].inputs[2] != def || self[self[usage].inputs[0]].kind != Kind::Loop
}
Kind::Loop => self[usage].inputs[1] != def,
_ => true,
}
}
fn schedule_inside_blocks(
&mut self,
cfg_nodes: &mut Vec<Nid>,
buf: &mut Vec<Nid>,
seen: &mut BitSet,
) {
debug_assert!(cfg_nodes.is_empty());
debug_assert!(buf.is_empty());
cfg_nodes.extend(
self.iter()
// skip VOID and NEVER
.skip(2)
.filter(|(_, n)| n.kind.is_cfg() && !n.kind.ends_basic_block())
.map(|(n, _)| n),
);
for &block in &*cfg_nodes {
debug_assert!(block != VOID);
seen.clear(self.values.len());
let mut outputs = mem::take(&mut self[block].outputs);
self.reschedule_block(block, &mut outputs, buf, seen);
self[block].outputs = outputs;
}
cfg_nodes.clear();
}
fn reschedule_block(
&self,
from: Nid,
outputs: &mut [Nid],
buf: &mut Vec<Nid>,
seen: &mut BitSet,
) {
debug_assert!(buf.is_empty());
// NOTE: this code is horible
let fromc = Some(&from);
let cfg_idx = outputs.iter().position(|&n| self.is_cfg(n)).unwrap();
outputs.swap(cfg_idx, 0);
for &o in outputs.iter() {
if (!self.is_cfg(o)
&& self[o].outputs.iter().any(|&oi| {
self[oi].kind != Kind::Phi && self[oi].inputs.first() == fromc && !seen.get(oi)
}))
|| !seen.set(o)
{
continue;
}
let mut cursor = buf.len();
for &o in outputs.iter().filter(|&&n| n == o) {
buf.push(o);
}
while let Some(&n) = buf.get(cursor) {
for &i in &self[n].inputs[1..] {
if fromc == self[i].inputs.first()
&& self[i].outputs.iter().all(|&o| {
self[o].kind == Kind::Phi
|| self[o].inputs.first() != fromc
|| seen.get(o)
})
&& seen.set(i)
{
for &o in outputs.iter().filter(|&&n| n == i) {
buf.push(o);
}
}
}
cursor += 1;
}
}
debug_assert_eq!(
outputs.iter().filter(|&&n| !seen.get(n)).copied().collect::<Vec<_>>(),
vec![],
"{:?} {from:?} {:?}",
outputs
.iter()
.filter(|&&n| !seen.get(n))
.copied()
.map(|n| (n, &self[n]))
.collect::<Vec<_>>(),
self[from]
);
let bf = &buf;
debug_assert_eq!(
bf.iter()
.enumerate()
.filter(|(_, &b)| !self[b].kind.is_pinned())
.flat_map(|(i, &b)| self[b]
.inputs
.iter()
.filter(|&&b| !self[b].kind.is_pinned())
.filter_map(move |&inp| bf
.iter()
.position(|&n| inp == n)
.filter(|&j| i > j)
.map(|j| (bf[i], bf[j]))))
.collect::<Vec<_>>(),
vec![],
"{:?}",
bf
);
debug_assert!(self.is_cfg(bf[0]) || self[bf[0]].kind == Kind::Phi, "{:?}", self[bf[0]]);
if outputs.len() != buf.len() {
panic!("{:?} {:?}", outputs, buf);
}
outputs.copy_from_slice(buf);
buf.clear();
}
fn push_down(
&self,
node: Nid,
visited: &mut BitSet,
antideps: &mut [Nid],
scheds: &mut [Nid],
antidep_bounds: &mut Vec<Nid>,
) {
if !visited.set(node) {
return;
}
for &usage in self[node].outputs.iter() {
if self.is_forward_edge(usage, node) && self[node].kind == Kind::Stre {
self.push_down(usage, visited, antideps, scheds, antidep_bounds);
}
}
for &usage in self[node].outputs.iter() {
if self.is_forward_edge(usage, node) {
self.push_down(usage, visited, antideps, scheds, antidep_bounds);
}
}
if self[node].kind.is_pinned() {
return;
}
let mut min = None::<Nid>;
for i in 0..self[node].outputs.len() {
let usage = self[node].outputs[i];
let ub = self.use_block(node, usage, Some(scheds));
min = min.map(|m| self.common_dom(ub, m, Some(scheds))).or(Some(ub));
}
let mut min = min.unwrap();
debug_assert!(self.dominates(scheds[node as usize], min, Some(scheds)));
let mut cursor = min;
let mut fuel = self.values.len();
while cursor != scheds[node as usize] {
debug_assert!(fuel != 0);
fuel -= 1;
cursor = self.idom(cursor, Some(scheds));
if self.better(cursor, min, Some(scheds)) {
min = cursor;
}
}
if self[node].kind == Kind::Load {
min = self.find_antideps(node, min, antideps, scheds, antidep_bounds);
}
if self[min].kind.ends_basic_block() {
min = self.idom(min, Some(scheds));
}
self.assert_dominance(node, min, true, Some(scheds));
debug_assert!(
self.idepth(min, Some(scheds)) >= self.idepth(scheds[node as usize], Some(scheds))
);
scheds[node as usize] = min;
}
fn find_antideps(
&self,
load: Nid,
mut min: Nid,
antideps: &mut [Nid],
scheds: &[Nid],
antidep_bounds: &mut Vec<Nid>,
) -> Nid {
debug_assert!(self[load].kind == Kind::Load);
let (aclass, _) = self.aclass_index(self[load].inputs[1]);
let mut cursor = min;
while cursor != scheds[load as usize] {
antideps[cursor as usize] = load;
if self[cursor].clobbers.get(aclass as _) {
min = self[cursor].inputs[0];
}
cursor = self.idom(cursor, Some(scheds));
}
if self[load].inputs[2] == MEM {
return min;
}
for &out in self[self[load].inputs[2]].outputs.iter() {
match self[out].kind {
Kind::Stre => {
let mut cursor = scheds[out as usize];
while cursor != scheds[load as usize]
&& self.idepth(cursor, Some(scheds))
> self.idepth(scheds[load as usize], Some(scheds))
{
if antideps[cursor as usize] == load {
min = self.common_dom(min, cursor, Some(scheds));
if min == cursor {
antidep_bounds.extend([load, out]);
}
break;
}
cursor = self.idom(cursor, Some(scheds));
}
break;
}
Kind::Phi => {
let n = self[out].inputs[1..]
.iter()
.position(|&n| n == self[load].inputs[2])
.unwrap();
let mut cursor = self[self[out].inputs[0]].inputs[n];
while cursor != scheds[load as usize]
&& self.idepth(cursor, Some(scheds))
> self.idepth(scheds[load as usize], Some(scheds))
{
if antideps[cursor as usize] == load {
min = self.common_dom(min, cursor, Some(scheds));
break;
}
cursor = self.idom(cursor, Some(scheds));
}
}
_ => {}
}
}
min
}
fn bind(&mut self, from: Nid, to: Nid) {
debug_assert_ne!(to, 0);
debug_assert_ne!(self[to].kind, Kind::Phi);
self[from].outputs.push(to);
self[to].inputs.push(from);
}
pub fn use_block(&self, target: Nid, from: Nid, scheds: Option<&[Nid]>) -> Nid {
if self[from].kind != Kind::Phi {
return self.idom(from, scheds);
}
let index = self[from].inputs.iter().position(|&n| n == target).unwrap_or_else(|| {
panic!("from {from} {:?} target {target} {:?}", self[from], self[target])
});
self[self[from].inputs[0]].inputs[index - 1]
}
pub fn idom(&self, target: Nid, scheds: Option<&[Nid]>) -> Nid {
match self[target].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::Region => {
let &[lcfg, rcfg] = self[target].inputs.as_slice() else { unreachable!() };
self.common_dom(lcfg, rcfg, scheds)
}
_ if self[target].kind.is_pinned() => self[target].inputs[0],
_ if let Some(scheds) = scheds => scheds[target as usize],
_ => self[target].inputs[0],
}
}
fn common_dom(&self, mut a: Nid, mut b: Nid, scheds: Option<&[Nid]>) -> Nid {
while a != b {
let [ldepth, rdepth] = [self.idepth(a, scheds), self.idepth(b, scheds)];
if ldepth >= rdepth {
a = self.idom(a, scheds);
}
if ldepth <= rdepth {
b = self.idom(b, scheds);
}
}
a
}
fn merge_scopes(
&mut self,
loops: &mut [Loop],
ctrl: &StrongRef,
to: &mut Scope,
from: &mut Scope,
tys: &Types,
) {
for (i, (to_value, from_value)) in to.vars.iter_mut().zip(from.vars.iter_mut()).enumerate()
{
debug_assert_eq!(to_value.ty, from_value.ty);
if to_value.value() != from_value.value() {
self.load_loop_var(i, from_value, loops);
self.load_loop_var(i, to_value, loops);
if to_value.value() != from_value.value() {
debug_assert!(!to_value.ptr);
debug_assert!(!from_value.ptr);
let inps = [ctrl.get(), from_value.value(), to_value.value()];
to_value
.set_value_remove(self.new_node(from_value.ty, Kind::Phi, inps, tys), self);
}
}
}
for (i, (to_class, from_class)) in
to.aclasses.iter_mut().zip(from.aclasses.iter_mut()).enumerate()
{
if to_class.last_store.get() != from_class.last_store.get() {
self.load_loop_aclass(i, from_class, loops);
self.load_loop_aclass(i, to_class, loops);
if to_class.last_store.get() != from_class.last_store.get() {
let inps = [ctrl.get(), from_class.last_store.get(), to_class.last_store.get()];
to_class
.last_store
.set_remove(self.new_node(ty::Id::VOID, Kind::Phi, inps, tys), self);
}
}
}
}
fn graphviz_low(&self, disp: ty::Display, out: &mut String) -> core::fmt::Result {
use core::fmt::Write;
writeln!(out)?;
writeln!(out, "digraph G {{")?;
writeln!(out, "rankdir=BT;")?;
writeln!(out, "concentrate=true;")?;
writeln!(out, "compound=true;")?;
for (i, node) in self.iter() {
let color = match () {
_ if node.lock_rc.get() == Nid::MAX => "orange",
_ if node.lock_rc.get() == Nid::MAX - 1 => "blue",
_ if node.lock_rc.get() != 0 => "red",
_ if node.outputs.is_empty() => "purple",
_ if node.is_mem() => "green",
_ if self.is_cfg(i) => "yellow",
_ => "white",
};
if node.ty != ty::Id::VOID {
writeln!(
out,
" node{i}[label=\"{i} {} {} {}\" color={color}]",
node.kind,
disp.rety(node.ty),
node.aclass,
)?;
} else {
writeln!(
out,
" node{i}[label=\"{i} {} {}\" color={color}]",
node.kind, node.aclass,
)?;
}
for (j, &o) in node.outputs.iter().enumerate() {
let color = if self.is_cfg(i) && self.is_cfg(o) { "red" } else { "lightgray" };
let index = self[o].inputs.iter().position(|&inp| i == inp).unwrap();
let style = if index == 0 && !self.is_cfg(o) { "style=dotted" } else { "" };
writeln!(
out,
" node{o} -> node{i}[color={color} taillabel={index} headlabel={j} {style}]",
)?;
}
}
writeln!(out, "}}")?;
Ok(())
}
fn graphviz(&self, disp: ty::Display) {
let out = &mut String::new();
_ = self.graphviz_low(disp, out);
log::info!("{out}");
}
fn graphviz_in_browser(&self, _disp: ty::Display) {
#[cfg(all(test, feature = "std"))]
{
let out = &mut String::new();
_ = self.graphviz_low(_disp, out);
if !std::process::Command::new("brave")
.arg(format!("https://dreampuf.github.io/GraphvizOnline/#{out}"))
.status()
.unwrap()
.success()
{
log::error!("{out}");
}
}
}
fn gcm(&mut self, scratch: &mut Vec<Nid>, bind_buf: &mut Vec<Nid>, visited: &mut BitSet) {
visited.clear(self.values.len());
self.fix_loops(bind_buf, visited);
debug_assert!(bind_buf.is_empty());
debug_assert!(scratch.is_empty());
scratch.resize(self.values.len() * 2, Nid::MAX);
let (antideps, scheds) = scratch.split_at_mut(self.values.len());
visited.clear(self.values.len());
self.push_up(bind_buf, visited, scheds);
visited.clear(self.values.len());
self.push_down(VOID, visited, antideps, scheds, bind_buf);
for &[from, to] in bind_buf.array_chunks() {
self.bind(from, to);
}
self[VOID].outputs =
self[VOID].outputs.iter().filter(|&&n| self[n].kind.is_at_start()).copied().collect();
for (&shed, n) in scheds.iter().zip(0u16..) {
if shed == Nid::MAX {
continue;
}
let prev = mem::replace(&mut self[n].inputs[0], shed);
if prev != VOID {
let index = self[prev].outputs.iter().position(|&o| o == n).unwrap();
self[prev].outputs.swap_remove(index);
}
self[shed].outputs.push(n);
}
bind_buf.clear();
scratch.clear();
visited.clear(self.values.len());
self.schedule_inside_blocks(bind_buf, scratch, visited);
}
fn clear(&mut self) {
self.values.clear();
self.lookup.clear();
self.free = Nid::MAX;
}
fn new_node_nop(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Nid {
let node = Node { inputs: inps.into(), kind, ty, ..Default::default() };
if node.kind == Kind::Phi && node.ty != ty::Id::VOID {
debug_assert_ne!(
self[node.inputs[1]].ty,
ty::Id::VOID,
"{:?} {:?}",
self[node.inputs[1]],
node.ty.expand(),
);
if self[node.inputs[0]].kind != Kind::Loop {
debug_assert_ne!(
self[node.inputs[2]].ty,
ty::Id::VOID,
"{:?} {:?}",
self[node.inputs[2]],
node.ty.expand(),
);
}
debug_assert!(!matches!(node.ty.expand(), ty::Kind::Struct(_)));
}
let mut lookup_meta = None;
if !node.is_not_gvnd() {
let (raw_entry, hash) = self.lookup.entry(node.key(), &self.values);
let entry = match raw_entry {
hash_map::RawEntryMut::Occupied(o) => return o.get_key_value().0.value,
hash_map::RawEntryMut::Vacant(v) => v,
};
lookup_meta = Some((entry, hash));
}
if self.free == Nid::MAX {
self.free = self.values.len() as _;
self.values.push(Err((Nid::MAX, debug::trace())));
}
let free = self.free;
for &d in node.inputs.as_slice() {
debug_assert_ne!(d, free);
self.values[d as usize].as_mut().unwrap_or_else(|_| panic!("{d}")).outputs.push(free);
}
self.free = mem::replace(&mut self.values[free as usize], Ok(node)).unwrap_err().0;
if let Some((entry, hash)) = lookup_meta {
entry.insert(crate::ctx_map::Key { value: free, hash }, ());
}
free
}
fn remove_node_lookup(&mut self, target: Nid) {
if !self[target].is_not_gvnd() {
self.lookup
.remove(&target, &self.values)
.unwrap_or_else(|| panic!("{:?}", self[target]));
}
}
fn new_node(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>, tys: &Types) -> Nid {
let id = self.new_node_nop(ty, kind, inps);
if let Some(opt) = self.peephole(id, tys) {
debug_assert_ne!(opt, id);
for peep in mem::take(&mut self.queued_peeps) {
self.unlock(peep);
}
self.lock(opt);
self.remove(id);
self.unlock(opt);
opt
} else {
id
}
}
fn new_const(&mut self, ty: ty::Id, value: impl Into<i64>) -> Nid {
self.new_node_nop(ty, Kind::CInt { value: value.into() }, [VOID])
}
fn new_const_lit(&mut self, ty: ty::Id, value: impl Into<i64>) -> Value {
Value::new(self.new_const(ty, value)).ty(ty)
}
fn new_node_lit(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>, tys: &Types) -> Value {
Value::new(self.new_node(ty, kind, inps, tys)).ty(ty)
}
// TODO: make this internal to son and force backends to track locks thelself
pub fn is_locked(&self, target: Nid) -> bool {
self[target].lock_rc.get() != 0
}
pub fn is_unlocked(&self, target: Nid) -> bool {
self[target].lock_rc.get() == 0
}
pub fn lock(&self, target: Nid) {
self[target].lock_rc.set(self[target].lock_rc.get() + 1);
}
#[track_caller]
pub fn unlock(&self, target: Nid) {
self[target].lock_rc.set(self[target].lock_rc.get() - 1);
}
fn remove(&mut self, target: Nid) -> bool {
if !self[target].is_dangling() {
return false;
}
for i in 0..self[target].inputs.len() {
let inp = self[target].inputs[i];
let index = self[inp].outputs.iter().position(|&p| p == target).unwrap();
self[inp].outputs.swap_remove(index);
self.remove(inp);
}
self.remove_node_lookup(target);
if cfg!(debug_assertions) {
mem::replace(&mut self.values[target as usize], Err((Nid::MAX, debug::trace())))
.unwrap();
} else {
mem::replace(&mut self.values[target as usize], Err((self.free, debug::trace())))
.unwrap();
self.free = target;
}
true
}
fn late_peephole(&mut self, target: Nid, tys: &Types) -> Option<Nid> {
if let Some(id) = self.peephole(target, tys) {
for peep in mem::take(&mut self.queued_peeps) {
self.unlock(peep);
}
self.replace(target, id);
return None;
}
None
}
fn iter_peeps(&mut self, mut fuel: usize, stack: &mut Vec<Nid>, tys: &Types) {
debug_assert!(stack.is_empty());
debug_assert!(self.queued_peeps.is_empty());
self.iter()
.filter_map(|(id, node)| node.kind.is_peeped().then_some(id))
.collect_into(stack);
stack.iter().for_each(|&s| self.lock(s));
while fuel != 0
&& let Some(node) = stack.pop()
{
fuel -= 1;
if self.unlock_remove(node) {
continue;
}
if let Some(new) = self.peephole(node, tys) {
self.replace(node, new);
self.push_adjacent_nodes(new, stack);
}
stack.append(&mut self.queued_peeps);
//debug_assert_matches!(
// self.iter().find(|(i, n)| n.lock_rc.get() != 0
// && n.kind.is_peeped()
// && !stack.contains(i)),
// None
//);
}
debug_assert!(self.queued_peeps.is_empty());
stack.drain(..).for_each(|s| _ = self.unlock_remove(s));
}
fn push_adjacent_nodes(&mut self, of: Nid, stack: &mut Vec<Nid>) {
let prev_len = stack.len();
for &i in self[of]
.outputs
.iter()
.chain(self[of].inputs.iter())
.chain(self[of].peep_triggers.iter())
{
if self.values[i as usize].is_ok()
&& self[i].kind.is_peeped()
&& self[i].lock_rc.get() == 0
{
stack.push(i);
}
}
self[of].peep_triggers = Vc::default();
stack.iter().skip(prev_len).for_each(|&n| self.lock(n));
}
fn aclass_index(&self, region: Nid) -> (usize, Nid) {
if self[region].aclass >= 0 {
(self[region].aclass as _, region)
} else {
(
self[self[region].aclass.unsigned_abs() - 1].aclass as _,
self[region].aclass.unsigned_abs() - 1,
)
}
}
fn pass_aclass(&mut self, from: Nid, to: Nid) {
debug_assert!(self[from].aclass >= 0);
if from != to {
self[to].aclass = -(from as AClassId + 1);
}
}
fn peephole(&mut self, target: Nid, tys: &Types) -> Option<Nid> {
use {Kind as K, TokenKind as T};
match self[target].kind {
K::BinOp { op } => {
let &[ctrl, mut lhs, mut rhs] = self[target].inputs.as_slice() else {
unreachable!()
};
let ty = self[target].ty;
let is_float = self[lhs].ty.is_float();
if let (&K::CInt { value: a }, &K::CInt { value: b }) =
(&self[lhs].kind, &self[rhs].kind)
{
return Some(self.new_const(ty, op.apply_binop(a, b, is_float)));
}
if lhs == rhs {
match op {
T::Ne | T::Gt | T::Lt | T::Sub => return Some(self.new_const(ty, 0)),
T::Eq | T::Ge | T::Le => return Some(self.new_const(ty, 1)),
T::Add => {
let rhs = self.new_const(ty, 2);
return Some(self.new_node(
ty,
K::BinOp { op: T::Mul },
[ctrl, lhs, rhs],
tys,
));
}
_ => {}
}
}
// this is more general the pushing constants to left to help deduplicate expressions more
let mut changed = false;
if op.is_comutative() && self[lhs].key() < self[rhs].key() {
mem::swap(&mut lhs, &mut rhs);
changed = true;
}
if let K::CInt { value } = self[rhs].kind {
match (op, value) {
(T::Eq, 0) if self[lhs].ty.is_pointer() || self[lhs].kind == Kind::Stck => {
return Some(self.new_const(ty::Id::BOOL, 0));
}
(T::Ne, 0) if self[lhs].ty.is_pointer() || self[lhs].kind == Kind::Stck => {
return Some(self.new_const(ty::Id::BOOL, 1));
}
(T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs),
(T::Mul, 0) => return Some(rhs),
_ => {}
}
}
if op.is_comutative() && self[lhs].kind == (K::BinOp { op }) {
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
if let K::CInt { value: av } = self[b].kind
&& let K::CInt { value: bv } = self[rhs].kind
{
// (a op #b) op #c => a op (#b op #c)
let new_rhs = self.new_const(ty, op.apply_binop(av, bv, is_float));
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs], tys));
}
if self.is_const(b) {
// (a op #b) op c => (a op c) op #b
let new_lhs = self.new_node(ty, K::BinOp { op }, [ctrl, a, rhs], tys);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, new_lhs, b], tys));
}
self.add_trigger(b, target);
}
if op == T::Add
&& self[lhs].kind == (K::BinOp { op: T::Mul })
&& self[lhs].inputs[1] == rhs
&& let K::CInt { value } = self[self[lhs].inputs[2]].kind
{
// a * #n + a => a * (#n + 1)
let new_rhs = self.new_const(ty, value + 1);
return Some(self.new_node(
ty,
K::BinOp { op: T::Mul },
[ctrl, rhs, new_rhs],
tys,
));
}
if op == T::Sub
&& self[lhs].kind == (K::BinOp { op: T::Add })
&& let K::CInt { value: a } = self[rhs].kind
&& let K::CInt { value: b } = self[self[lhs].inputs[2]].kind
{
let new_rhs = self.new_const(ty, b - a);
return Some(self.new_node(
ty,
K::BinOp { op: T::Add },
[ctrl, self[lhs].inputs[1], new_rhs],
tys,
));
}
if op == T::Sub && self[lhs].kind == (K::BinOp { op }) {
// (a - b) - c => a - (b + c)
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
let c = rhs;
let new_rhs = self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, b, c], tys);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs], tys));
}
//if op == T::Add
// && self[rhs].kind == (K::BinOp { op: T::Mul })
// && let &[_, mul_lhs, mul_rhs] = self[rhs].inputs.as_slice()
// && self[mul_lhs].kind == K::Phi
// && let &[phi_ctrl, phi_lhs, phi_rhs] = self[mul_lhs].inputs.as_slice()
// && phi_rhs != VOID
// && self[phi_ctrl].kind == K::Loop
// && self[phi_rhs].kind == (K::BinOp { op: T::Add })
// && self[phi_rhs].inputs[1] == mul_lhs
//{
// debug_assert_eq!(
// self[mul_lhs].outputs.len(),
// 1,
// "{:?}",
// self[mul_lhs]
// .outputs
// .iter()
// .map(|&n| (
// &self[n].kind,
// self[n].inputs.iter().position(|&n| n == mul_lhs)
// ))
// .collect::<Vec<_>>()
// );
// let init_shift = self.new_node(
// self[rhs].ty,
// K::BinOp { op: T::Mul },
// [ctrl, phi_lhs, mul_rhs],
// tys,
// );
// let init =
// self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, lhs, init_shift], tys);
// let new_value = self.new_node_nop(ty, K::Phi, [phi_ctrl, init, 0]);
// let next = self.new_node(
// ty,
// Kind::BinOp { op: T::Add },
// [ctrl, new_value, mul_rhs],
// tys,
// );
// return Some(self.modify_input(new_value, 2, next));
//}
if changed {
return Some(self.new_node(ty, self[target].kind, [ctrl, lhs, rhs], tys));
}
}
K::UnOp { op } => {
let &[_, oper] = self[target].inputs.as_slice() else { unreachable!() };
let ty = self[target].ty;
if matches!(op, TokenKind::Number | TokenKind::Float)
&& tys.size_of(self[oper].ty) == tys.size_of(ty)
&& self[oper].ty.is_integer()
&& ty.is_integer()
{
return Some(oper);
}
if let K::CInt { value } = self[oper].kind {
let is_float = self[oper].ty.is_float();
return Some(self.new_const(ty, op.apply_unop(value, is_float)));
}
}
K::If => {
if self[target].inputs[0] == NEVER {
return Some(NEVER);
}
if self[target].ty == ty::Id::VOID {
match self.try_match_cond(target) {
CondOptRes::Unknown => {}
CondOptRes::Known { value, .. } => {
let ty = if value {
ty::Id::RIGHT_UNREACHABLE
} else {
ty::Id::LEFT_UNREACHABLE
};
return Some(self.new_node_nop(ty, K::If, self[target].inputs.clone()));
}
}
}
}
K::Then => {
if self[target].inputs[0] == NEVER {
return Some(NEVER);
}
if self[self[target].inputs[0]].ty == ty::Id::LEFT_UNREACHABLE {
return Some(NEVER);
} else if self[self[target].inputs[0]].ty == ty::Id::RIGHT_UNREACHABLE {
return Some(self[self[target].inputs[0]].inputs[0]);
}
}
K::Else => {
if self[target].inputs[0] == NEVER {
return Some(NEVER);
}
if self[self[target].inputs[0]].ty == ty::Id::RIGHT_UNREACHABLE {
return Some(NEVER);
} else if self[self[target].inputs[0]].ty == ty::Id::LEFT_UNREACHABLE {
return Some(self[self[target].inputs[0]].inputs[0]);
}
}
K::Region => {
let (ctrl, side) = match self[target].inputs.as_slice() {
[NEVER, NEVER] => return Some(NEVER),
&[NEVER, ctrl] => (ctrl, 2),
&[ctrl, NEVER] => (ctrl, 1),
_ => return None,
};
self.lock(target);
for i in self[target].outputs.clone() {
if self[i].kind == Kind::Phi {
for o in self[i].outputs.clone() {
if self.is_unlocked(o) {
self.lock(o);
self.queued_peeps.push(o);
}
}
self.replace(i, self[i].inputs[side]);
}
}
self.unlock(target);
return Some(ctrl);
}
K::Call { .. } => {
if self[target].inputs[0] == NEVER {
return Some(NEVER);
}
}
K::Return { file } => {
if self[target].inputs[0] == NEVER {
return Some(NEVER);
}
let mut new_inps = Vc::from(&self[target].inputs[..2]);
'a: for &n in self[target].inputs.clone().iter().skip(2) {
if self[n].kind != Kind::Stre {
new_inps.push(n);
continue;
}
if let Some(&load) =
self[n].outputs.iter().find(|&&n| self[n].kind == Kind::Load)
{
self.add_trigger(load, target);
continue;
}
let mut cursor = n;
let class = self.aclass_index(self[cursor].inputs[2]);
if self[class.1].kind != Kind::Stck {
new_inps.push(n);
continue;
}
if self[class.1].outputs.iter().any(|&n| {
self[n].kind != Kind::Stre
&& self[n].outputs.iter().any(|&n| self[n].kind != Kind::Stre)
}) {
new_inps.push(n);
continue;
}
cursor = self[cursor].inputs[3];
while cursor != MEM {
debug_assert_eq!(self[cursor].kind, Kind::Stre);
if self.aclass_index(self[cursor].inputs[2]) != class {
new_inps.push(n);
continue 'a;
}
if let Some(&load) =
self[cursor].outputs.iter().find(|&&n| self[n].kind == Kind::Load)
{
self.add_trigger(load, target);
continue 'a;
}
cursor = self[cursor].inputs[3];
}
}
if new_inps.as_slice() != self[target].inputs.as_slice() {
let ret = self.new_node_nop(ty::Id::VOID, Kind::Return { file }, new_inps);
self[ret].pos = self[target].pos;
return Some(ret);
}
}
K::Phi => {
let &[ctrl, lhs, rhs] = self[target].inputs.as_slice() else { unreachable!() };
if rhs == target || lhs == rhs {
return Some(lhs);
}
if self[lhs].kind == Kind::Stre
&& self[rhs].kind == Kind::Stre
&& self[lhs].ty == self[rhs].ty
&& self[lhs].ty.loc(tys) == Loc::Reg
&& self[lhs].inputs[2] == self[rhs].inputs[2]
&& self[lhs].inputs[3] == self[rhs].inputs[3]
{
let pick_value = self.new_node(
self[lhs].ty,
Kind::Phi,
[ctrl, self[lhs].inputs[1], self[rhs].inputs[1]],
tys,
);
let mut vc = self[lhs].inputs.clone();
vc[1] = pick_value;
return Some(self.new_node(self[lhs].ty, Kind::Stre, vc, tys));
}
// broken
//let ty = self[target].ty;
//if let Kind::BinOp { op } = self[lhs].kind
// && self[rhs].kind == (Kind::BinOp { op })
//{
// debug_assert!(ty != ty::Id::VOID);
// debug_assert_eq!(
// self[lhs].ty.simple_size(),
// ty.simple_size(),
// "{:?} {:?}",
// self[lhs].ty.expand(),
// ty.expand()
// );
// debug_assert_eq!(
// self[rhs].ty.simple_size(),
// ty.simple_size(),
// "{:?} {:?}",
// self[rhs].ty.expand(),
// ty.expand()
// );
// let inps = [ctrl, self[lhs].inputs[1], self[rhs].inputs[1]];
// let nlhs = self.new_node(ty, Kind::Phi, inps, tys);
// let inps = [ctrl, self[lhs].inputs[2], self[rhs].inputs[2]];
// let nrhs = self.new_node(ty, Kind::Phi, inps, tys);
// return Some(self.new_node(ty, Kind::BinOp { op }, [VOID, nlhs, nrhs], tys));
//}
}
K::Stck => {
if let &[mut a, mut b] = self[target].outputs.as_slice() {
if self[a].kind == Kind::Load {
mem::swap(&mut a, &mut b);
}
if self[a].kind.is_call()
&& self[a].inputs.last() == Some(&target)
&& self[b].kind == Kind::Load
&& let &[store] = self[b].outputs.as_slice()
&& self[store].kind == Kind::Stre
{
let len = self[a].inputs.len();
let stre = self[store].inputs[3];
if stre != MEM {
self[a].inputs.push(stre);
self[a].inputs.swap(len - 1, len);
self[stre].outputs.push(a);
}
return Some(self[store].inputs[2]);
}
}
}
K::Stre => {
let &[_, value, region, store, ..] = self[target].inputs.as_slice() else {
unreachable!()
};
if self[value].kind == Kind::Load && self[value].inputs[1] == region {
return Some(store);
}
let mut cursor = target;
while self[cursor].kind == Kind::Stre
&& self[cursor].inputs[1] != VOID
&& let &[next_store] = self[cursor].outputs.as_slice()
{
if self[next_store].inputs[2] == region
&& self[next_store].ty == self[target].ty
{
return Some(store);
}
cursor = next_store;
}
'eliminate: {
if self[target].outputs.is_empty() {
break 'eliminate;
}
if self[value].kind != Kind::Load
|| self[value].outputs.iter().any(|&n| self[n].kind != Kind::Stre)
{
for &ele in self[value].outputs.clone().iter().filter(|&&n| n != target) {
self.add_trigger(ele, target);
}
break 'eliminate;
}
let &[_, stack, last_store] = self[value].inputs.as_slice() else {
unreachable!()
};
if self[stack].ty != self[value].ty || self[stack].kind != Kind::Stck {
break 'eliminate;
}
let mut unidentifed = self[stack].outputs.clone();
let load_idx = unidentifed.iter().position(|&n| n == value).unwrap();
unidentifed.swap_remove(load_idx);
let mut saved = Vc::default();
let mut cursor = last_store;
let mut first_store = last_store;
while cursor != MEM && self[cursor].kind == Kind::Stre {
let mut contact_point = cursor;
let mut region = self[cursor].inputs[2];
if let Kind::BinOp { op } = self[region].kind {
debug_assert_matches!(op, TokenKind::Add | TokenKind::Sub);
contact_point = region;
region = self[region].inputs[1]
}
if region != stack {
break;
}
let Some(index) = unidentifed.iter().position(|&n| n == contact_point)
else {
break 'eliminate;
};
if self[self[cursor].inputs[1]].kind == Kind::Load
&& self[value].outputs.iter().any(|&n| {
self.aclass_index(self[self[cursor].inputs[1]].inputs[1]).0
== self.aclass_index(self[n].inputs[2]).0
})
{
break 'eliminate;
}
unidentifed.remove(index);
saved.push(contact_point);
first_store = cursor;
cursor = *self[cursor].inputs.get(3).unwrap_or(&MEM);
if unidentifed.is_empty() {
break;
}
}
if !unidentifed.is_empty() {
break 'eliminate;
}
debug_assert_matches!(
self[last_store].kind,
Kind::Stre | Kind::Mem,
"{:?}",
self[last_store]
);
debug_assert_matches!(
self[first_store].kind,
Kind::Stre | Kind::Mem,
"{:?}",
self[first_store]
);
// FIXME: when the loads and stores become parallel we will need to get saved
// differently
let mut prev_store = store;
for mut oper in saved.into_iter().rev() {
let mut region = region;
if let Kind::BinOp { op } = self[oper].kind {
debug_assert_eq!(self[oper].outputs.len(), 1);
debug_assert_eq!(self[self[oper].outputs[0]].kind, Kind::Stre);
let new_region = self.new_node(
self[oper].ty,
Kind::BinOp { op },
[VOID, region, self[oper].inputs[2]],
tys,
);
self.pass_aclass(self.aclass_index(region).1, new_region);
region = new_region;
oper = self[oper].outputs[0];
}
let mut inps = self[oper].inputs.clone();
debug_assert_eq!(inps.len(), 4);
inps[2] = region;
inps[3] = prev_store;
prev_store = self.new_node_nop(self[oper].ty, Kind::Stre, inps);
if self.is_unlocked(prev_store) {
self.lock(prev_store);
self.queued_peeps.push(prev_store);
}
}
return Some(prev_store);
}
if let Some(&load) =
self[target].outputs.iter().find(|&&n| self[n].kind == Kind::Load)
{
self.add_trigger(load, target);
} else if value != VOID
&& self[value].kind != Kind::Load
&& self[store].kind == Kind::Stre
&& self[store].inputs[2] == region
{
if self[store].inputs[1] == value {
return Some(store);
}
let mut inps = self[target].inputs.clone();
inps[3] = self[store].inputs[3];
return Some(self.new_node_nop(self[target].ty, Kind::Stre, inps));
}
}
K::Load => {
fn range_of(s: &Nodes, mut region: Nid, ty: ty::Id, tys: &Types) -> Range<usize> {
let loc = s.aclass_index(region).1;
let full_size = tys.size_of(
if matches!(s[loc].kind, Kind::Stck | Kind::Arg | Kind::Global { .. }) {
s[loc].ty
} else if let Some(ptr) = tys.base_of(s[loc].ty) {
ptr
} else {
return 0..usize::MAX;
},
);
let size = tys.size_of(ty);
let mut offset = 0;
loop {
match s[region].kind {
_ if region == loc => {
break offset as usize..offset as usize + size as usize
}
Kind::Assert { kind: AssertKind::NullCheck, .. } => {
region = s[region].inputs[2]
}
Kind::BinOp { op: TokenKind::Add | TokenKind::Sub }
if let Kind::CInt { value } = s[s[region].inputs[2]].kind =>
{
offset += value;
region = s[region].inputs[1];
}
_ => break 0..full_size as usize,
};
}
}
let &[ctrl, region, store] = self[target].inputs.as_slice() else { unreachable!() };
let load_range = range_of(self, region, self[target].ty, tys);
let mut cursor = store;
while cursor != MEM && self[cursor].kind != Kind::Phi {
if self[cursor].inputs[0] == ctrl
&& self[cursor].inputs[2] == region
&& self[cursor].ty == self[target].ty
&& (self[self[cursor].inputs[1]].kind != Kind::Load
|| (!self[target].outputs.is_empty()
&& self[target].outputs.iter().all(|&n| {
self[n].kind != Kind::Stre
|| self
.aclass_index(self[self[cursor].inputs[1]].inputs[1])
.0
!= self.aclass_index(self[n].inputs[2]).0
})))
{
return Some(self[cursor].inputs[1]);
}
let range = range_of(self, self[cursor].inputs[2], self[cursor].ty, tys);
if range.start >= load_range.end || range.end <= load_range.start {
cursor = self[cursor].inputs[3];
} else {
let reg = self.aclass_index(self[cursor].inputs[2]).1;
self.add_trigger(reg, target);
break;
}
}
if store != cursor {
return Some(self.new_node(
self[target].ty,
Kind::Load,
[ctrl, region, cursor],
tys,
));
}
}
K::Loop => {
if self[target].inputs[1] == NEVER || self[target].inputs[0] == NEVER {
self.lock(target);
for o in self[target].outputs.clone() {
if self[o].kind == Kind::Phi {
self.remove_node_lookup(target);
let prev = self[o].inputs[2];
self[o].inputs[2] = VOID;
self[VOID].outputs.push(o);
let index = self[prev].outputs.iter().position(|&n| n == o).unwrap();
self[prev].outputs.swap_remove(index);
self.lock(o);
self.remove(prev);
self.unlock(o);
for o in self[o].outputs.clone() {
if self.is_unlocked(o) {
self.lock(o);
self.queued_peeps.push(o);
}
}
self.replace(o, self[o].inputs[1]);
}
}
self.unlock(target);
return Some(self[target].inputs[0]);
}
}
K::Die => {
if self[target].inputs[0] == NEVER {
return Some(NEVER);
}
}
K::Assert { kind, .. } => 'b: {
let pin = match (kind, self.try_match_cond(target)) {
(AssertKind::NullCheck, CondOptRes::Known { value: false, pin }) => pin,
(AssertKind::UnwrapCheck, CondOptRes::Unknown) => None,
_ => break 'b,
}
.unwrap_or(self[target].inputs[0]);
for out in self[target].outputs.clone() {
if !self[out].kind.is_pinned() && self[out].inputs[0] != pin {
self.modify_input(out, 0, pin);
}
}
return Some(self[target].inputs[2]);
}
K::Start => {}
_ if self.is_cfg(target) && self.idom(target, None) == NEVER => panic!(),
K::Entry
| K::Mem
| K::Loops
| K::End
| K::CInt { .. }
| K::Arg
| K::Global { .. }
| K::Join => {}
}
None
}
fn try_match_cond(&self, target: Nid) -> CondOptRes {
let &[ctrl, cond, ..] = self[target].inputs.as_slice() else { unreachable!() };
if let Kind::CInt { value } = self[cond].kind {
return CondOptRes::Known { value: value != 0, pin: None };
}
let mut cursor = ctrl;
while cursor != ENTRY {
let ctrl = &self[cursor];
// TODO: do more inteligent checks on the condition
if matches!(ctrl.kind, Kind::Then | Kind::Else) {
if self[ctrl.inputs[0]].kind == Kind::End {
return CondOptRes::Unknown;
}
debug_assert_eq!(self[ctrl.inputs[0]].kind, Kind::If);
let other_cond = self[ctrl.inputs[0]].inputs[1];
if let Some(value) = self.matches_cond(cond, other_cond) {
return CondOptRes::Known {
value: (ctrl.kind == Kind::Then) ^ !value,
pin: Some(cursor),
};
}
}
cursor = self.idom(cursor, None);
}
CondOptRes::Unknown
}
fn matches_cond(&self, to_match: Nid, matches: Nid) -> Option<bool> {
use TokenKind as K;
let [tn, mn] = [&self[to_match], &self[matches]];
match (tn.kind, mn.kind) {
_ if to_match == matches => Some(true),
(Kind::BinOp { op: K::Ne }, Kind::BinOp { op: K::Eq })
| (Kind::BinOp { op: K::Eq }, Kind::BinOp { op: K::Ne })
if tn.inputs[1..] == mn.inputs[1..] =>
{
Some(false)
}
(_, Kind::BinOp { op: K::Band }) => self
.matches_cond(to_match, mn.inputs[1])
.or(self.matches_cond(to_match, mn.inputs[2])),
(_, Kind::BinOp { op: K::Bor }) => match (
self.matches_cond(to_match, mn.inputs[1]),
self.matches_cond(to_match, mn.inputs[2]),
) {
(None, Some(a)) | (Some(a), None) => Some(a),
(Some(b), Some(a)) if a == b => Some(a),
_ => None,
},
_ => None,
}
}
pub fn is_const(&self, id: Nid) -> bool {
matches!(self[id].kind, Kind::CInt { .. })
}
fn replace(&mut self, target: Nid, with: Nid) {
debug_assert_ne!(target, with, "{:?}", self[target]);
for out in self[target].outputs.clone() {
let index = self[out].inputs.iter().position(|&p| p == target).unwrap();
self.modify_input(out, index, with);
}
}
fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid {
self.remove_node_lookup(target);
debug_assert_ne!(
self[target].inputs[inp_index], with,
"{:?} {:?}",
self[target], self[with]
);
if self[target].is_not_gvnd() && (self[target].kind != Kind::Phi || with == 0) {
let prev = self[target].inputs[inp_index];
self[target].inputs[inp_index] = with;
self[with].outputs.push(target);
let index = self[prev].outputs.iter().position(|&o| o == target).unwrap();
self[prev].outputs.swap_remove(index);
self.remove(prev);
target
} else {
let prev = self[target].inputs[inp_index];
self[target].inputs[inp_index] = with;
let (entry, hash) = self.lookup.entry(target.key(&self.values), &self.values);
match entry {
hash_map::RawEntryMut::Occupied(other) => {
let rpl = other.get_key_value().0.value;
self[target].inputs[inp_index] = prev;
self.lookup.insert(target.key(&self.values), target, &self.values);
self.replace(target, rpl);
rpl
}
hash_map::RawEntryMut::Vacant(slot) => {
slot.insert(crate::ctx_map::Key { value: target, hash }, ());
let index = self[prev].outputs.iter().position(|&o| o == target).unwrap();
self[prev].outputs.swap_remove(index);
self[with].outputs.push(target);
self.remove(prev);
target
}
}
}
}
#[track_caller]
fn unlock_remove(&mut self, id: Nid) -> bool {
self.unlock(id);
self.remove(id)
}
fn iter(&self) -> impl DoubleEndedIterator<Item = (Nid, &Node)> {
self.values.iter().enumerate().filter_map(|(i, s)| Some((i as _, s.as_ref().ok()?)))
}
#[expect(clippy::format_in_format_args)]
fn basic_blocks_instr(&self, out: &mut String, node: Nid) -> core::fmt::Result {
match self[node].kind {
Kind::Assert { .. } | Kind::Start => unreachable!("{} {out}", self[node].kind),
Kind::End => return Ok(()),
Kind::If => write!(out, " if: "),
Kind::Region | Kind::Loop => writeln!(out, " goto: {node}"),
Kind::Return { .. } => write!(out, " ret: "),
Kind::Die => write!(out, " die: "),
Kind::CInt { value } => write!(out, "cint: #{value:<4}"),
Kind::Phi => write!(out, " phi: "),
Kind::Arg => write!(
out,
" arg: {:<5}",
self[VOID].outputs.iter().position(|&n| n == node).unwrap() - 2
),
Kind::BinOp { op } | Kind::UnOp { op } => {
write!(out, "{:>4}: ", op.name())
}
Kind::Call { func, args: _ } => {
write!(out, "call: {func} {} ", self[node].depth.get())
}
Kind::Global { global } => write!(out, "glob: {global:<5}"),
Kind::Entry => write!(out, "ctrl: {:<5}", "entry"),
Kind::Then => write!(out, "ctrl: {:<5}", "then"),
Kind::Else => write!(out, "ctrl: {:<5}", "else"),
Kind::Stck => write!(out, "stck: "),
Kind::Load => write!(out, "load: "),
Kind::Stre => write!(out, "stre: "),
Kind::Mem => write!(out, " mem: "),
Kind::Loops => write!(out, "loops: "),
Kind::Join => write!(out, "join: "),
}?;
if self[node].kind != Kind::Loop && self[node].kind != Kind::Region {
writeln!(
out,
" {:<3} {:<14} {}",
node,
format!("{:?}", self[node].inputs),
format!("{:?}", self[node].outputs)
)?;
}
Ok(())
}
fn basic_blocks_low(
&self,
out: &mut String,
mut node: Nid,
visited: &mut BitSet,
) -> core::fmt::Result {
let iter = |nodes: &Nodes, node| nodes[node].outputs.clone().into_iter().rev();
while visited.set(node) {
match self[node].kind {
Kind::Start => {
writeln!(out, "start: {}", self[node].depth.get())?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self[o].kind.is_cfg() {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::End => break,
Kind::If => {
self.basic_blocks_low(out, self[node].outputs[0], visited)?;
node = self[node].outputs[1];
}
Kind::Region => {
writeln!(
out,
"region{node}: {} {} {:?}",
self[node].depth.get(),
self[node].loop_depth.get(),
self[node].inputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Loop => {
writeln!(
out,
"loop{node}: {} {} {:?}",
self[node].depth.get(),
self[node].loop_depth.get(),
self[node].outputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Return { .. } | Kind::Die => {
node = self[node].outputs[0];
}
Kind::Then | Kind::Else | Kind::Entry => {
writeln!(
out,
"b{node}: {} {} {:?}",
self[node].depth.get(),
self[node].loop_depth.get(),
self[node].outputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Call { .. } => {
let mut cfg_index = Nid::MAX;
let mut print_ret = true;
for o in iter(self, node) {
if self[o].inputs[0] == node
&& (self[node].outputs[0] != o || mem::take(&mut print_ret))
{
self.basic_blocks_instr(out, o)?;
}
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
_ => unreachable!(),
}
}
Ok(())
}
fn basic_blocks(&self) {
let mut out = String::new();
let mut visited = BitSet::default();
self.basic_blocks_low(&mut out, VOID, &mut visited).unwrap();
log::info!("{out}");
}
fn is_cfg(&self, o: Nid) -> bool {
self[o].kind.is_cfg()
}
fn check_final_integrity(&self, disp: ty::Display) {
if !cfg!(debug_assertions) {
return;
}
let mut failed = false;
for (id, node) in self.iter() {
if self.is_locked(id) {
log::error!("{} {} {:?}", node.lock_rc.get(), 0, node.kind);
failed = true;
}
if !matches!(node.kind, Kind::End | Kind::Mem | Kind::Arg | Kind::Loops)
&& node.outputs.is_empty()
{
log::error!("outputs are empry {id} {:?}", node);
failed = true;
}
if node.inputs.first() == Some(&NEVER) && id != NEVER {
log::error!("is unreachable but still present {id} {:?}", node.kind);
failed = true;
}
if node.outputs.contains(&id) && !matches!(node.kind, Kind::Loop | Kind::End) {
log::error!("node depends on it self and its not a loop {id} {:?}", node);
failed = true;
}
}
if failed {
self.graphviz_in_browser(disp);
panic!()
}
}
fn check_loop_depth_integrity(&self, disp: ty::Display) {
if !cfg!(debug_assertions) {
return;
}
let mut failed = false;
for &loob in self[LOOPS].outputs.iter() {
let mut stack = vec![self[loob].inputs[1]];
let mut seen = BitSet::default();
seen.set(loob);
let depth = self.loop_depth(loob, None);
while let Some(nid) = stack.pop() {
if seen.set(nid) {
if depth > self.loop_depth(nid, None) {
failed = true;
log::error!("{depth} {} {nid} {:?}", self.loop_depth(nid, None), self[nid]);
}
match self[nid].kind {
Kind::Loop | Kind::Region => {
stack.extend(&self[nid].inputs[..2]);
}
_ => stack.push(self[nid].inputs[0]),
}
}
}
}
if failed {
self.graphviz_in_browser(disp);
panic!()
}
}
fn load_loop_var(&mut self, index: usize, var: &mut Variable, loops: &mut [Loop]) {
if var.value() != VOID {
return;
}
debug_assert!(!var.ptr);
let [loops @ .., loob] = loops else { unreachable!() };
let node = loob.node;
let lvar = &mut loob.scope.vars[index];
debug_assert!(!lvar.ptr);
self.load_loop_var(index, lvar, loops);
if !self[lvar.value()].is_lazy_phi(node) {
let lvalue = lvar.value();
let inps = [node, lvalue, VOID];
lvar.set_value(self.new_node_nop(lvar.ty, Kind::Phi, inps), self);
self.pass_aclass(self.aclass_index(lvalue).1, lvar.value());
}
var.set_value(lvar.value(), self);
}
fn load_loop_aclass(&mut self, index: usize, aclass: &mut AClass, loops: &mut [Loop]) {
if aclass.last_store.get() != VOID {
return;
}
let [loops @ .., loob] = loops else { unreachable!() };
let node = loob.node;
let lvar = &mut loob.scope.aclasses[index];
self.load_loop_aclass(index, lvar, loops);
if !self[lvar.last_store.get()].is_lazy_phi(node) {
let inps = [node, lvar.last_store.get(), VOID];
lvar.last_store.set(self.new_node_nop(ty::Id::VOID, Kind::Phi, inps), self);
}
aclass.last_store.set(lvar.last_store.get(), self);
}
fn assert_dominance(&self, nd: Nid, min: Nid, check_outputs: bool, scheds: Option<&[Nid]>) {
if !cfg!(debug_assertions) {
return;
}
let node = &self[nd];
for &i in &node.inputs[1..] {
let dom = self.idom(i, scheds);
debug_assert!(
self.dominates(dom, min, scheds),
"{dom} {min} {node:?} {:?}",
self.basic_blocks()
);
}
if check_outputs {
for &o in node.outputs.iter() {
let dom = self.use_block(nd, o, scheds);
debug_assert!(
self.dominates(min, dom, scheds),
"{min} {dom} {node:?} {:?}",
self.basic_blocks()
);
}
}
}
pub fn dominates(&self, dominator: Nid, mut dominated: Nid, scheds: Option<&[Nid]>) -> bool {
loop {
if dominator == dominated {
break true;
}
debug_assert!(dominated != VOID);
if self.idepth(dominator, scheds) > self.idepth(dominated, scheds) {
break false;
}
dominated = self.idom(dominated, scheds);
}
}
pub fn is_data_dep(&self, val: Nid, user: Nid) -> bool {
match self[user].kind {
Kind::Return { .. } => self[user].inputs[1] == val,
_ if self.is_cfg(user) && !matches!(self[user].kind, Kind::Call { .. } | Kind::If) => {
false
}
Kind::Join => false,
Kind::Stre => {
debug_assert_eq!(
self[user].inputs[4..]
.iter()
.filter(|&&v| self[v].kind != Kind::Load)
.copied()
.collect::<Vec<_>>(),
vec![]
);
debug_assert_matches!(
self[self[user].inputs[3]].kind,
Kind::Stre | Kind::Mem | Kind::Phi
);
self[user].inputs.iter().position(|&v| v == val).is_some_and(|v| v < 3)
}
Kind::Load => self[user].inputs[2] != val,
_ => self[user].inputs[0] != val || self[user].inputs[1..].contains(&val),
}
}
pub fn this_or_delegates<'a>(&'a self, source: Nid, target: &'a Nid) -> (Nid, &'a [Nid]) {
if self.is_unlocked(*target) {
(source, core::slice::from_ref(target))
} else {
(*target, self[*target].outputs.as_slice())
}
}
pub fn is_hard_zero(&self, nid: Nid) -> bool {
self[nid].kind == Kind::CInt { value: 0 }
&& self[nid].outputs.iter().all(|&n| self[n].kind != Kind::Phi)
}
fn add_trigger(&mut self, blocker: Nid, target: Nid) {
if !self[blocker].peep_triggers.contains(&target) {
self[blocker].peep_triggers.push(target);
}
}
}
enum CondOptRes {
Unknown,
Known { value: bool, pin: Option<Nid> },
}
impl ops::Index<Nid> for Nodes {
type Output = Node;
fn index(&self, index: Nid) -> &Self::Output {
self.values[index as usize].as_ref().unwrap_or_else(|(_, bt)| panic!("{index} {bt:#?}"))
}
}
impl ops::IndexMut<Nid> for Nodes {
fn index_mut(&mut self, index: Nid) -> &mut Self::Output {
self.values[index as usize].as_mut().unwrap_or_else(|(_, bt)| panic!("{index} {bt:#?}"))
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum AssertKind {
NullCheck,
UnwrapCheck,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Default)]
#[repr(u8)]
pub enum Kind {
#[default]
Start,
// [ctrl]
Entry,
// [VOID]
Mem,
// [VOID]
Loops,
// [terms...]
End,
// [ctrl, cond]
If,
Then,
Else,
// [lhs, rhs]
Region,
// [entry, back]
Loop,
// [ctrl, ?value]
Return {
file: ty::Module,
},
// [ctrl]
Die,
// [ctrl]
CInt {
value: i64,
},
// [ctrl, lhs, rhs]
Phi,
Arg,
// [ctrl, oper]
UnOp {
op: lexer::TokenKind,
},
// [ctrl, lhs, rhs]
BinOp {
op: lexer::TokenKind,
},
// [ctrl]
Global {
global: ty::Global,
},
// [ctrl, ...args]
Call {
func: ty::Func,
args: ty::Tuple,
},
// [ctrl, cond, value]
Assert {
kind: AssertKind,
pos: Pos,
},
// [ctrl]
Stck,
// [ctrl, memory]
Load,
// [ctrl, value, memory]
Stre,
// [ctrl, a, b]
Join,
}
impl Kind {
fn is_call(&self) -> bool {
matches!(self, Kind::Call { .. })
}
fn is_eca(&self) -> bool {
matches!(self, Kind::Call { func: ty::Func::ECA, .. })
}
fn is_pinned(&self) -> bool {
self.is_cfg() || self.is_at_start() || matches!(self, Self::Phi | Kind::Assert { .. })
}
fn is_at_start(&self) -> bool {
matches!(self, Self::Arg | Self::Mem | Self::Loops | Self::Entry)
}
pub fn is_cfg(&self) -> bool {
matches!(
self,
Self::Start
| Self::End
| Self::Return { .. }
| Self::Die
| Self::Entry
| Self::Then
| Self::Else
| Self::Call { .. }
| Self::If
| Self::Region
| Self::Loop
)
}
fn ends_basic_block(&self) -> bool {
matches!(self, Self::Return { .. } | Self::If | Self::End | Self::Die)
}
pub fn starts_basic_block(&self) -> bool {
matches!(self, Self::Region | Self::Loop | Self::Start | Kind::Then | Kind::Else)
}
fn is_peeped(&self) -> bool {
!matches!(self, Self::End | Self::Arg | Self::Mem | Self::Loops)
}
}
impl fmt::Display for Kind {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
Kind::CInt { value } => write!(f, "#{value}"),
Kind::Entry => write!(f, "ctrl[entry]"),
Kind::Then => write!(f, "ctrl[then]"),
Kind::Else => write!(f, "ctrl[else]"),
Kind::BinOp { op } => write!(f, "{op}"),
Kind::Call { func, .. } => write!(f, "call {func}"),
slf => write!(f, "{slf:?}"),
}
}
}
#[derive(Debug, Default, Clone)]
pub struct Node {
pub kind: Kind,
pub inputs: Vc,
pub outputs: Vc,
pub peep_triggers: Vc,
pub clobbers: BitSet,
pub ty: ty::Id,
pub pos: Pos,
depth: Cell<IDomDepth>,
lock_rc: Cell<LockRc>,
loop_depth: Cell<LoopDepth>,
aclass: AClassId,
}
impl Node {
fn is_dangling(&self) -> bool {
self.outputs.is_empty() && self.lock_rc.get() == 0 && self.kind != Kind::Arg
}
fn key(&self) -> (Kind, &[Nid], ty::Id) {
(self.kind, &self.inputs, self.ty)
}
fn is_lazy_phi(&self, loob: Nid) -> bool {
self.kind == Kind::Phi && self.inputs[2] == 0 && self.inputs[0] == loob
}
fn is_not_gvnd(&self) -> bool {
(self.kind == Kind::Phi && self.inputs[2] == 0)
|| matches!(self.kind, Kind::Arg | Kind::Stck | Kind::Stre)
|| self.kind.is_cfg()
}
fn is_mem(&self) -> bool {
matches!(self.kind, Kind::Stre | Kind::Load | Kind::Stck)
}
pub fn is_data_phi(&self) -> bool {
self.kind == Kind::Phi && self.ty != ty::Id::VOID
}
pub fn has_no_value(&self) -> bool {
(self.kind.is_cfg() && (!self.kind.is_call() || self.ty == ty::Id::VOID))
|| matches!(self.kind, Kind::Stre)
}
}
type LoopDepth = u16;
type LockRc = u16;
type IDomDepth = u16;
#[derive(Clone)]
struct Loop {
node: Nid,
ctrl: [StrongRef; 2],
ctrl_scope: [Scope; 2],
scope: Scope,
defer_base: usize,
}
mod strong_ref {
use {
super::{Kind, Nid, Nodes},
crate::debug,
core::ops::Not,
};
#[derive(Clone)]
pub struct StrongRef(Nid);
impl StrongRef {
pub const DEFAULT: Self = Self(Nid::MAX);
pub fn new(value: Nid, nodes: &mut Nodes) -> Self {
nodes.lock(value);
Self(value)
}
pub fn get(&self) -> Nid {
debug_assert!(self.0 != Nid::MAX);
self.0
}
pub fn unwrap(self, nodes: &mut Nodes) -> Option<Nid> {
let nid = self.0;
if nid != Nid::MAX {
nodes.unlock(nid);
core::mem::forget(self);
Some(nid)
} else {
None
}
}
pub fn set(&mut self, mut new_value: Nid, nodes: &mut Nodes) -> Nid {
nodes.unlock(self.0);
core::mem::swap(&mut self.0, &mut new_value);
nodes.lock(self.0);
new_value
}
pub fn dup(&self, nodes: &mut Nodes) -> Self {
nodes.lock(self.0);
Self(self.0)
}
pub fn remove(self, nodes: &mut Nodes) -> Option<Nid> {
let ret = nodes.unlock_remove(self.0).not().then_some(self.0);
core::mem::forget(self);
ret
}
pub fn set_remove(&mut self, new_value: Nid, nodes: &mut Nodes) {
let old = self.set(new_value, nodes);
nodes.remove(old);
}
pub fn remove_ignore_arg(self, nodes: &mut Nodes) {
if nodes[self.0].kind == Kind::Arg {
nodes.unlock(self.0);
} else {
nodes.unlock_remove(self.0);
}
core::mem::forget(self);
}
pub fn soft_remove(self, nodes: &mut Nodes) -> Nid {
let nid = self.0;
nodes.unlock(self.0);
core::mem::forget(self);
nid
}
pub fn is_live(&self) -> bool {
self.0 != Nid::MAX
}
}
impl Default for StrongRef {
fn default() -> Self {
Self::DEFAULT
}
}
impl Drop for StrongRef {
fn drop(&mut self) {
if self.0 != Nid::MAX && !debug::panicking() {
panic!("variable unproperly deinitialized")
}
}
}
}
// makes sure value inside is laways locked for this instance of variable
#[derive(Default, Clone)]
struct Variable {
id: Ident,
ty: ty::Id,
ptr: bool,
value: StrongRef,
}
impl Variable {
fn new(id: Ident, ty: ty::Id, ptr: bool, value: Nid, nodes: &mut Nodes) -> Self {
Self { id, ty, ptr, value: StrongRef::new(value, nodes) }
}
fn value(&self) -> Nid {
self.value.get()
}
fn set_value(&mut self, new_value: Nid, nodes: &mut Nodes) -> Nid {
self.value.set(new_value, nodes)
}
fn dup(&self, nodes: &mut Nodes) -> Self {
Self { id: self.id, ty: self.ty, ptr: self.ptr, value: self.value.dup(nodes) }
}
fn remove(self, nodes: &mut Nodes) {
self.value.remove(nodes);
}
fn set_value_remove(&mut self, new_value: Nid, nodes: &mut Nodes) {
self.value.set_remove(new_value, nodes);
}
fn remove_ignore_arg(self, nodes: &mut Nodes) {
self.value.remove_ignore_arg(nodes);
}
}
#[derive(Default, Clone)]
pub struct AClass {
last_store: StrongRef,
clobber: StrongRef,
}
impl AClass {
fn dup(&self, nodes: &mut Nodes) -> Self {
Self { last_store: self.last_store.dup(nodes), clobber: self.clobber.dup(nodes) }
}
fn remove(self, nodes: &mut Nodes) {
self.last_store.remove(nodes);
self.clobber.remove(nodes);
}
fn new(nodes: &mut Nodes) -> Self {
Self { last_store: StrongRef::new(MEM, nodes), clobber: StrongRef::new(VOID, nodes) }
}
}
#[derive(Default, Clone)]
pub struct Scope {
vars: Vec<Variable>,
aclasses: Vec<AClass>,
}
impl Scope {
fn dup(&self, nodes: &mut Nodes) -> Self {
Self {
vars: self.vars.iter().map(|v| v.dup(nodes)).collect(),
aclasses: self.aclasses.iter().map(|v| v.dup(nodes)).collect(),
}
}
fn clear(&mut self, nodes: &mut Nodes) {
self.vars.drain(..).for_each(|n| n.remove(nodes));
self.aclasses.drain(..).for_each(|l| l.remove(nodes));
}
}
#[derive(Default, Clone)]
pub struct ItemCtx {
file: Module,
parent: ty::Id,
pos: Vec<Pos>,
ret: Option<ty::Id>,
task_base: usize,
inline_var_base: usize,
inline_aclass_base: usize,
inline_depth: u16,
inline_defer_base: usize,
inline_ret: Option<(Value, StrongRef, Scope, Option<AClass>)>,
nodes: Nodes,
ctrl: StrongRef,
loops: Vec<Loop>,
defers: Vec<(Pos, ExprRef)>,
scope: Scope,
}
impl ItemCtx {
fn init(&mut self, file: Module, parent: ty::Id, ret: Option<ty::Id>, task_base: usize) {
debug_assert_eq!(self.loops.len(), 0);
debug_assert_eq!(self.defers.len(), 0);
debug_assert_eq!(self.scope.vars.len(), 0);
debug_assert_eq!(self.scope.aclasses.len(), 0);
debug_assert!(self.inline_ret.is_none());
debug_assert_eq!(self.inline_depth, 0);
debug_assert_eq!(self.inline_var_base, 0);
debug_assert_eq!(self.inline_aclass_base, 0);
debug_assert_eq!(self.inline_defer_base, 0);
self.file = file;
self.parent = parent;
self.ret = ret;
self.task_base = task_base;
self.nodes.clear();
self.scope.vars.clear();
let start = self.nodes.new_node_nop(ty::Id::VOID, Kind::Start, []);
debug_assert_eq!(start, VOID);
let end = self.nodes.new_node_nop(ty::Id::NEVER, Kind::End, []);
debug_assert_eq!(end, NEVER);
self.nodes.lock(end);
self.ctrl = StrongRef::new(
self.nodes.new_node_nop(ty::Id::VOID, Kind::Entry, [VOID]),
&mut self.nodes,
);
debug_assert_eq!(self.ctrl.get(), ENTRY);
let mem = self.nodes.new_node_nop(ty::Id::VOID, Kind::Mem, [VOID]);
debug_assert_eq!(mem, MEM);
self.nodes.lock(mem);
let loops = self.nodes.new_node_nop(ty::Id::VOID, Kind::Loops, [VOID]);
debug_assert_eq!(loops, LOOPS);
self.nodes.lock(loops);
self.scope.aclasses.push(AClass::new(&mut self.nodes)); // DEFAULT
self.scope.aclasses.push(AClass::new(&mut self.nodes)); // GLOBAL
}
fn finalize(
&mut self,
stack: &mut Vec<Nid>,
tys: &Types,
_files: &EntSlice<Module, parser::Ast>,
) {
self.scope.clear(&mut self.nodes);
mem::take(&mut self.ctrl).soft_remove(&mut self.nodes);
self.nodes.iter_peeps(1000, stack, tys);
self.nodes.unlock(MEM);
self.nodes.unlock(NEVER);
self.nodes.unlock(LOOPS);
}
}
#[derive(Default, Debug)]
struct Ctx {
ty: Option<ty::Id>,
}
impl Ctx {
fn with_ty(self, ty: ty::Id) -> Self {
Self { ty: Some(ty) }
}
}
#[derive(Default)]
pub struct Pool {
cis: Vec<ItemCtx>,
used_cis: usize,
scratch1: Vec<Nid>,
scratch2: Vec<Nid>,
lit_buf: Vec<u8>,
nid_set: BitSet,
}
impl Pool {
fn push_ci(
&mut self,
file: Module,
parent: ty::Id,
ret: Option<ty::Id>,
task_base: usize,
target: &mut ItemCtx,
) -> &mut ItemCtx {
if let Some(slot) = self.cis.get_mut(self.used_cis) {
mem::swap(slot, target);
} else {
self.cis.push(ItemCtx::default());
mem::swap(self.cis.last_mut().unwrap(), target);
}
target.init(file, parent, ret, task_base);
self.used_cis += 1;
&mut self.cis[self.used_cis - 1]
}
fn pop_ci(&mut self, target: &mut ItemCtx) {
self.used_cis -= 1;
mem::swap(&mut self.cis[self.used_cis], target);
}
fn save_ci(&mut self, ci: &ItemCtx) {
if let Some(slot) = self.cis.get_mut(self.used_cis) {
slot.clone_from(ci);
} else {
self.cis.push(ci.clone());
}
self.used_cis += 1;
}
fn restore_ci(&mut self, dst: &mut ItemCtx) {
self.used_cis -= 1;
dst.scope.clear(&mut dst.nodes);
mem::take(&mut dst.ctrl).remove(&mut dst.nodes);
*dst = mem::take(&mut self.cis[self.used_cis]);
}
fn clear(&mut self) {
debug_assert_eq!(self.used_cis, 0);
}
}
#[derive(Default, Clone, Copy, PartialEq, Eq, Debug)]
struct Value {
ty: ty::Id,
var: bool,
ptr: bool,
id: Nid,
}
impl Value {
const NEVER: Option<Value> =
Some(Self { ty: ty::Id::NEVER, var: false, ptr: false, id: NEVER });
const VOID: Value = Self { ty: ty::Id::VOID, var: false, ptr: false, id: VOID };
fn new(id: Nid) -> Self {
Self { id, ..Default::default() }
}
fn var(id: usize) -> Self {
Self { id: u16::MAX - (id as Nid), var: true, ..Default::default() }
}
fn ptr(id: Nid) -> Self {
Self { id, ptr: true, ..Default::default() }
}
#[inline(always)]
fn ty(self, ty: ty::Id) -> Self {
Self { ty, ..self }
}
}
#[derive(Default)]
pub struct CodegenCtx {
pub parser: parser::Ctx,
tys: Types,
pool: Pool,
ct: Comptime,
ct_backend: HbvmBackend,
}
impl CodegenCtx {
pub fn clear(&mut self) {
self.parser.clear();
self.tys.clear();
self.pool.clear();
self.ct.clear();
}
}
pub struct Codegen<'a> {
pub files: &'a EntSlice<Module, parser::Ast>,
pub errors: &'a RefCell<String>,
pub warnings: &'a RefCell<String>,
tys: &'a mut Types,
ci: ItemCtx,
pool: &'a mut Pool,
ct: &'a mut Comptime,
ct_backend: &'a mut HbvmBackend,
backend: &'a mut dyn Backend,
}
impl Drop for Codegen<'_> {
fn drop(&mut self) {
if debug::panicking() {
if let Some(&pos) = self.ci.pos.last() {
self.error(pos, "panic occured here");
}
if !self.errors.borrow().is_empty() {
log::error!("{}", self.errors.borrow());
}
}
}
}
impl<'a> Codegen<'a> {
pub fn new(
backend: &'a mut dyn Backend,
files: &'a [parser::Ast],
ctx: &'a mut CodegenCtx,
) -> Self {
Self {
files: files.into(),
errors: &ctx.parser.errors,
warnings: &ctx.parser.warnings,
tys: &mut ctx.tys,
ci: Default::default(),
pool: &mut ctx.pool,
ct: &mut ctx.ct,
ct_backend: &mut ctx.ct_backend,
backend,
}
}
pub fn generate(&mut self, entry: Module) {
self.find_type(0, entry, entry, "main");
if self.tys.ins.funcs.is_empty() {
return;
}
self.make_func_reachable(ty::Func::MAIN);
self.complete_call_graph();
}
pub fn assemble_comptime(&mut self) -> Comptime {
self.ct.code.clear();
self.backend.assemble_bin(ty::Func::MAIN, self.tys, &mut self.ct.code);
self.ct.reset();
core::mem::take(self.ct)
}
pub fn assemble(&mut self, buf: &mut Vec<u8>) {
self.backend.assemble_bin(ty::Func::MAIN, self.tys, buf);
}
pub fn disasm(&mut self, output: &mut String, bin: &[u8]) -> Result<(), DisasmError> {
self.backend.disasm(bin, &mut |_| {}, self.tys, self.files, output)
}
pub fn push_embeds(&mut self, embeds: Vec<Vec<u8>>) {
for data in embeds {
let g = GlobalData {
ty: self.tys.make_array(ty::Id::U8, data.len() as _),
data,
..Default::default()
};
self.tys.ins.globals.push(g);
}
}
fn emit_and_eval(&mut self, file: Module, ret: ty::Id, ret_loc: &mut [u8]) -> u64 {
let mut rets = self.ci.nodes[NEVER]
.inputs
.iter()
.filter(|&&i| matches!(self.ci.nodes[i].kind, Kind::Return { .. }));
if let Some(&ret) = rets.next()
&& rets.next().is_none()
&& let Kind::CInt { value } = self.ci.nodes[self.ci.nodes[ret].inputs[1]].kind
{
if let len @ 1..=8 = ret_loc.len() {
ret_loc.copy_from_slice(&value.to_ne_bytes()[..len])
}
return value as _;
}
if !self.complete_call_graph() {
return 1;
}
let fuc = self.tys.ins.funcs.push(FuncData {
file,
sig: Sig { args: Tuple::empty(), ret },
..Default::default()
});
self.ct_backend.emit_ct_body(fuc, &self.ci.nodes, self.tys, self.files);
// TODO: return them back
let entry = self.ct_backend.assemble_reachable(fuc, self.tys, &mut self.ct.code).entry;
#[cfg(debug_assertions)]
{
let mut vc = String::new();
if let Err(e) =
self.ct_backend.disasm(&self.ct.code, &mut |_| {}, self.tys, self.files, &mut vc)
{
panic!("{e} {}", vc);
} else {
log::info!("{}", vc);
}
}
self.ct.run(ret_loc, entry)
}
fn new_stack(&mut self, pos: Pos, ty: ty::Id) -> Nid {
let stck = self.ci.nodes.new_node_nop(ty, Kind::Stck, [VOID, MEM]);
self.ci.nodes[stck].aclass = self.ci.scope.aclasses.len() as _;
self.ci.nodes[stck].pos = pos;
self.ci.scope.aclasses.push(AClass::new(&mut self.ci.nodes));
stck
}
fn store_mem(&mut self, region: Nid, ty: ty::Id, value: Nid) -> Nid {
if value == NEVER {
return NEVER;
}
debug_assert!(
self.ci.nodes[region].kind != Kind::Load || self.ci.nodes[region].ty.is_pointer()
);
debug_assert!(self.ci.nodes[region].kind != Kind::Stre);
let (value_index, value_region) = self.ci.nodes.aclass_index(value);
if value_index != 0 {
self.ci.nodes[value_region].aclass = 0;
self.ci.nodes.load_loop_aclass(0, &mut self.ci.scope.aclasses[0], &mut self.ci.loops);
self.ci.nodes.load_loop_aclass(
value_index,
&mut self.ci.scope.aclasses[value_index],
&mut self.ci.loops,
);
let base_class = self.ci.scope.aclasses[0].last_store.get();
let last_store = self.ci.scope.aclasses[value_index].last_store.get();
match [base_class, last_store] {
[_, MEM] => {}
[MEM, a] => {
self.ci.scope.aclasses[0].last_store.set(a, &mut self.ci.nodes);
}
[a, b] => {
let a = self.ci.nodes.new_node_nop(ty::Id::VOID, Kind::Join, [0, a, b]);
self.ci.scope.aclasses[0].last_store.set(a, &mut self.ci.nodes);
}
}
}
let (index, _) = self.ci.nodes.aclass_index(region);
if self.ci.nodes[value].kind == Kind::Load {
let (lindex, ..) = self.ci.nodes.aclass_index(self.ci.nodes[value].inputs[1]);
let clobber = self.ci.scope.aclasses[lindex].clobber.get();
if self.ci.nodes.idepth(clobber, None)
> self.ci.nodes.idepth(self.ci.scope.aclasses[index].clobber.get(), None)
{
self.ci.scope.aclasses[index].clobber.set(clobber, &mut self.ci.nodes);
}
}
let aclass = &mut self.ci.scope.aclasses[index];
self.ci.nodes.load_loop_aclass(index, aclass, &mut self.ci.loops);
let vc = Vc::from([aclass.clobber.get(), value, region, aclass.last_store.get()]);
mem::take(&mut aclass.last_store).soft_remove(&mut self.ci.nodes);
let store = self.ci.nodes.new_node(ty, Kind::Stre, vc, self.tys);
aclass.last_store = StrongRef::new(store, &mut self.ci.nodes);
store
}
fn load_mem(&mut self, region: Nid, ty: ty::Id) -> Nid {
debug_assert_ne!(region, VOID);
debug_assert_ne!({ self.ci.nodes[region].ty }, ty::Id::VOID, "{:?}", {
self.ci.nodes[region].lock_rc.set(Nid::MAX);
self.ci.nodes.graphviz_in_browser(self.ty_display(ty::Id::VOID));
});
debug_assert!(
self.ci.nodes[region].kind != Kind::Load
|| self.ci.nodes[region].kind == Kind::Stck
|| self.ci.nodes[region].ty.is_pointer(),
"{:?} {} {} {:?}",
self.ci.nodes.graphviz_in_browser(self.ty_display(ty::Id::VOID)),
self.file().path,
self.ty_display(self.ci.nodes[region].ty),
self.ci.nodes[region],
);
debug_assert!(self.ci.nodes[region].kind != Kind::Stre);
let (index, _) = self.ci.nodes.aclass_index(region);
let aclass = &mut self.ci.scope.aclasses[index];
self.ci.nodes.load_loop_aclass(index, aclass, &mut self.ci.loops);
let vc = [aclass.clobber.get(), region, aclass.last_store.get()];
self.ci.nodes.new_node(ty, Kind::Load, vc, self.tys)
}
fn make_func_reachable(&mut self, func: ty::Func) {
let state_slot = self.ct.active() as usize;
let fuc = &mut self.tys.ins.funcs[func];
if CompState::from(fuc.comp_state[state_slot]) == CompState::Dead {
fuc.comp_state[state_slot] = CompState::Queued(self.tys.tasks.len() as _).into();
self.tys.tasks.push(Some(FTask { file: fuc.file, id: func, ct: self.ct.active() }));
}
}
fn raw_expr(&mut self, expr: &Expr) -> Option<Value> {
self.raw_expr_ctx(expr, Ctx::default())
}
fn raw_expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Value> {
self.ci.pos.push(expr.pos());
let res = self.raw_expr_ctx_low(expr, ctx);
self.ci.pos.pop().unwrap();
res
}
fn raw_expr_ctx_low(&mut self, expr: &Expr, mut ctx: Ctx) -> Option<Value> {
// ordered by complexity of the expression
match *expr {
Expr::Null { pos } => {
inference!(oty, ctx, self, pos, "null pointer", "@as(^<ty>, null)");
let Some(ty) = self.tys.inner_of(oty) else {
self.error(
pos,
fa!(
"'null' expression was inferred to be '{}',
which is not optional",
self.ty_display(oty)
),
);
return Value::NEVER;
};
match oty.loc(self.tys) {
Loc::Reg => Some(self.ci.nodes.new_const_lit(oty, 0)),
Loc::Stack => {
let OptLayout { flag_ty, flag_offset, .. } = self.tys.opt_layout(ty);
let stack = self.new_stack(pos, oty);
let offset = self.offset(stack, flag_offset);
let value = self.ci.nodes.new_const(flag_ty, 0);
self.store_mem(offset, flag_ty, value);
Some(Value::ptr(stack).ty(oty))
}
}
}
Expr::Idk { pos } => {
inference!(ty, ctx, self, pos, "value", "@as(<ty>, idk)");
if ty.loc(self.tys) == Loc::Stack {
Some(Value::ptr(self.new_stack(pos, ty)).ty(ty))
} else {
Some(self.ci.nodes.new_const_lit(ty, 0))
}
}
Expr::Bool { value, .. } => Some(self.ci.nodes.new_const_lit(ty::Id::BOOL, value)),
Expr::Number { value, .. }
if let Some(ty) = ctx.ty
&& ty.is_float() =>
{
Some(self.ci.nodes.new_const_lit(ty, (value as f64).to_bits() as i64))
}
Expr::Number { value, .. } => {
self.gen_inferred_const(ctx, ty::Id::DINT, value, ty::Id::is_integer)
}
Expr::Float { value, .. } => {
self.gen_inferred_const(ctx, ty::Id::F32, value as i64, ty::Id::is_float)
}
Expr::Ident { id, .. } if let Ok(bt) = ty::Builtin::try_from(id) => {
Some(self.ci.nodes.new_const_lit(ty::Id::TYPE, bt))
}
Expr::Ident { id, .. }
if let Some(index) = self.ci.scope.vars.iter().rposition(|v| v.id == id) =>
{
let var = &mut self.ci.scope.vars[index];
self.ci.nodes.load_loop_var(index, var, &mut self.ci.loops);
Some(Value::var(index).ty(var.ty))
}
Expr::Ident { id, pos, .. } => self.find_type_as_value(pos, self.ci.parent, id, ctx),
Expr::Comment { .. } => Some(Value::VOID),
Expr::Char { pos, literal } | Expr::String { pos, literal } => {
let literal = &literal[1..literal.len() - 1];
let mut data = core::mem::take(&mut self.pool.lit_buf);
debug_assert!(data.is_empty());
let report = |bytes: &core::str::Bytes, message: &str| {
self.error(pos + (literal.len() - bytes.len()) as u32 - 1, message);
};
let char_count = crate::endoce_string(literal, &mut data, report).unwrap();
if matches!(expr, Expr::Char { .. }) {
if char_count != 1 {
return self.error(
pos,
fa!("character literal can only contain one character, \
but you supplied {char_count}"),
);
}
let value = match data.as_slice() {
&[v] => v as i64,
_ => return self.error(pos, "TODO: support utf-8 characters"),
};
data.clear();
self.pool.lit_buf = data;
self.gen_inferred_const(ctx, ty::Id::U8, value, ty::Id::is_integer)
} else {
if data.last() != Some(&0) {
self.error(pos, "string literal must end with null byte (for now)");
}
let ty = self.tys.make_ptr(ty::Id::U8);
let global = self
.tys
.strings
.get_or_insert(&data, &mut self.tys.ins.globals, |globals| {
StringRef(globals.push(GlobalData {
data: data.clone(),
ty,
..Default::default()
}))
})
.0;
let global = self.ci.nodes.new_node_nop(ty, Kind::Global { global }, [VOID]);
self.ci.nodes[global].aclass = GLOBAL_ACLASS as _;
data.clear();
self.pool.lit_buf = data;
Some(Value::new(global).ty(ty))
}
}
Expr::Defer { pos, value } => {
self.ci.defers.push((pos, ExprRef::new(value)));
Some(Value::VOID)
}
Expr::Return { pos, val } => {
let mut value = if let Some(val) = val {
self.raw_expr_ctx(val, Ctx { ty: self.ci.ret })?
} else {
Value { ty: ty::Id::VOID, ..Default::default() }
};
self.strip_var(&mut value);
let expected = *self.ci.ret.get_or_insert(value.ty);
self.assert_ty(pos, &mut value, expected, "return value");
self.strip_ptr(&mut value);
self.gen_defers(self.ci.inline_defer_base);
if self.ci.inline_depth == 0 {
debug_assert_ne!(self.ci.ctrl.get(), VOID);
let mut inps = Vc::from([self.ci.ctrl.get(), value.id]);
for (i, aclass) in self.ci.scope.aclasses.iter_mut().enumerate() {
self.ci.nodes.load_loop_aclass(i, aclass, &mut self.ci.loops);
if aclass.last_store.get() != MEM {
inps.push(aclass.last_store.get());
}
}
let ret = self.ci.nodes.new_node_nop(
ty::Id::VOID,
Kind::Return { file: self.ci.file },
inps,
);
self.ci.ctrl.set(NEVER, &mut self.ci.nodes);
self.ci.nodes[ret].pos = pos;
self.ci.nodes.bind(ret, NEVER);
} else if let Some((mut pv, mut ctrl, mut scope, aclass)) =
self.ci.inline_ret.take()
{
if value.ty.loc(self.tys) == Loc::Stack {
let stck = self.new_stack(pos, value.ty);
self.store_mem(stck, value.ty, value.id);
value.id = stck;
value.ptr = true;
}
debug_assert!(
aclass.is_none(),
"TODO: oh no, we cant return structs from divergent branches"
);
ctrl.set(
self.ci.nodes.new_node(
ty::Id::VOID,
Kind::Region,
[self.ci.ctrl.get(), ctrl.get()],
self.tys,
),
&mut self.ci.nodes,
);
self.ci.nodes.merge_scopes(
&mut self.ci.loops,
&ctrl,
&mut scope,
&mut self.ci.scope,
self.tys,
);
self.ci.nodes.unlock(pv.id);
pv.id = self.ci.nodes.new_node(
value.ty,
Kind::Phi,
[ctrl.get(), value.id, pv.id],
self.tys,
);
self.ci.nodes.lock(pv.id);
self.ci.ctrl.set(NEVER, &mut self.ci.nodes);
self.ci.inline_ret = Some((pv, ctrl, scope, aclass));
} else {
if value.ty.loc(self.tys) == Loc::Stack {
let stck = self.new_stack(pos, value.ty);
self.store_mem(stck, value.ty, value.id);
value.id = stck;
value.ptr = true;
}
for (i, aclass) in self.ci.scope.aclasses[..2].iter_mut().enumerate() {
self.ci.nodes.load_loop_aclass(i, aclass, &mut self.ci.loops);
}
self.ci.nodes.lock(value.id);
let mut scope = self.ci.scope.dup(&mut self.ci.nodes);
scope
.vars
.drain(self.ci.inline_var_base..)
.for_each(|v| v.remove(&mut self.ci.nodes));
scope
.aclasses
.drain(self.ci.inline_aclass_base..)
.for_each(|v| v.remove(&mut self.ci.nodes));
let repl = StrongRef::new(NEVER, &mut self.ci.nodes);
let (index, _) = self.ci.nodes.aclass_index(value.id);
let aclass = (self.ci.inline_aclass_base <= index)
.then(|| self.ci.scope.aclasses[index].dup(&mut self.ci.nodes));
self.ci.inline_ret =
Some((value, mem::replace(&mut self.ci.ctrl, repl), scope, aclass));
}
None
}
Expr::Die { .. } => {
self.ci.ctrl.set(
self.ci.nodes.new_node_nop(ty::Id::VOID, Kind::Die, [self.ci.ctrl.get()]),
&mut self.ci.nodes,
);
self.ci.nodes.bind(self.ci.ctrl.get(), NEVER);
None
}
Expr::Field { target, name, pos } => {
self.gen_field(ctx, target, pos, name)?.ok().or_else(|| {
self.error(pos, "method can not be used like this");
Value::NEVER
})
}
Expr::UnOp { op: TokenKind::Band, val, pos } => {
let ctx = Ctx { ty: ctx.ty.and_then(|ty| self.tys.base_of(ty)) };
let mut val = self.raw_expr_ctx(val, ctx)?;
self.strip_var(&mut val);
if val.ptr {
val.ptr = false;
val.ty = self.tys.make_ptr(val.ty);
return Some(val);
}
let stack = self.new_stack(pos, val.ty);
self.store_mem(stack, val.ty, val.id);
Some(Value::new(stack).ty(self.tys.make_ptr(val.ty)))
}
Expr::UnOp { op: TokenKind::Mul, val, pos } => {
let ctx = Ctx { ty: ctx.ty.map(|ty| self.tys.make_ptr(ty)) };
let mut vl = self.expr_ctx(val, ctx)?;
self.implicit_unwrap(val.pos(), &mut vl);
let Some(base) = self.tys.base_of(vl.ty) else {
return self.error(
pos,
fa!("the '{}' can not be dereferneced", self.ty_display(vl.ty)),
);
};
vl.ptr = true;
vl.ty = base;
Some(vl)
}
Expr::UnOp { pos, op: TokenKind::Dot, val: &Expr::Ident { id, .. } } => {
inference!(ty, ctx, self, pos, "enum type", "<EnumTy>.Variant");
let ty::Kind::Enum(e) = ty.expand() else {
return self.error(
pos,
fa!("expected inferred type to be enum but got '{}'", self.ty_display(ty)),
);
};
let intrnd = self.tys.names.project(self.file().ident_str(id));
self.gen_enum_variant(pos, e, intrnd)
}
Expr::UnOp { pos, op: op @ TokenKind::Sub, val } => {
let val =
self.expr_ctx(val, Ctx::default().with_ty(ctx.ty.unwrap_or(ty::Id::INT)))?;
if val.ty.is_integer() {
Some(self.ci.nodes.new_node_lit(
val.ty,
Kind::UnOp { op },
[VOID, val.id],
self.tys,
))
} else if val.ty.is_float() {
let value = self.ci.nodes.new_const(val.ty, (-1f64).to_bits() as i64);
Some(self.ci.nodes.new_node_lit(
val.ty,
Kind::BinOp { op: TokenKind::Mul },
[VOID, val.id, value],
self.tys,
))
} else {
self.error(pos, fa!("cant negate '{}'", self.ty_display(val.ty)))
}
}
Expr::UnOp { pos, op: op @ TokenKind::Not, val } => {
let val =
self.expr_ctx(val, Ctx::default().with_ty(ctx.ty.unwrap_or(ty::Id::INT)))?;
if val.ty == ty::Id::BOOL {
Some(self.ci.nodes.new_node_lit(
val.ty,
Kind::UnOp { op },
[VOID, val.id],
self.tys,
))
} else {
self.error(pos, fa!("cant logically negate '{}'", self.ty_display(val.ty)))
}
}
Expr::BinOp { left, op: TokenKind::Decl, right, pos } => {
let mut right = self.expr(right)?;
if right.ty.loc(self.tys) == Loc::Stack {
let stck = self.new_stack(pos, right.ty);
self.store_mem(stck, right.ty, right.id);
right.id = stck;
right.ptr = true;
}
self.assign_pattern(left, right);
Some(Value::VOID)
}
Expr::BinOp { left: Expr::Wildcard { .. }, op: TokenKind::Assign, right, .. } => {
self.expr(right)?;
Some(Value::VOID)
}
Expr::BinOp { left, pos, op: TokenKind::Assign, right } => {
let dest = self.raw_expr(left)?;
let mut value = self.expr_ctx(right, Ctx::default().with_ty(dest.ty))?;
self.assert_ty(pos, &mut value, dest.ty, "assignment source");
if dest.var {
let var = &mut self.ci.scope.vars[(u16::MAX - dest.id) as usize];
if var.ptr {
let val = var.value();
let ty = var.ty;
self.store_mem(val, ty, value.id);
} else {
var.set_value_remove(value.id, &mut self.ci.nodes);
}
} else if dest.ptr {
self.store_mem(dest.id, dest.ty, value.id);
} else {
self.error(pos, "cannot assign to this expression");
}
Some(Value::VOID)
}
Expr::BinOp { left: &Expr::Null { pos }, .. } => {
self.error(pos, "'null' must always be no the right side of an expression")
}
Expr::BinOp {
left,
op: op @ (TokenKind::Eq | TokenKind::Ne),
right: Expr::Null { .. },
..
} => {
let mut cmped = self.raw_expr(left)?;
self.strip_var(&mut cmped);
let Some(ty) = self.tys.inner_of(cmped.ty) else {
return self.error(
left.pos(),
fa!("'{}' is never null, remove this check", self.ty_display(cmped.ty)),
);
};
Some(Value::new(self.gen_null_check(cmped, ty, op)).ty(ty::Id::BOOL))
}
Expr::BinOp { left, pos, op, right }
if !matches!(op, TokenKind::Assign | TokenKind::Decl) =>
{
let mut lhs = self.raw_expr_ctx(left, ctx)?;
self.strip_var(&mut lhs);
self.implicit_unwrap(left.pos(), &mut lhs);
match lhs.ty.expand() {
_ if lhs.ty.is_pointer()
|| lhs.ty.is_integer()
|| lhs.ty == ty::Id::BOOL
|| (lhs.ty == ty::Id::TYPE
&& matches!(op, TokenKind::Eq | TokenKind::Ne))
|| (lhs.ty.is_float() && op.is_supported_float_op()) =>
{
self.strip_ptr(&mut lhs);
self.ci.nodes.lock(lhs.id);
let rhs = self.expr_ctx(right, Ctx::default().with_ty(lhs.ty));
self.ci.nodes.unlock(lhs.id);
let mut rhs = rhs?;
self.strip_var(&mut rhs);
self.implicit_unwrap(right.pos(), &mut rhs);
let (ty, aclass) = self.binop_ty(pos, &mut lhs, &mut rhs, op);
if op.is_compatison() {
if lhs.ty.is_float() {
} else {
self.ci.nodes.lock(rhs.id);
let lty = lhs.ty.extend();
if lty != lhs.ty {
self.extend(&mut lhs, lty);
}
self.ci.nodes.unlock(rhs.id);
let rty = rhs.ty.extend();
if rty != rhs.ty {
self.extend(&mut rhs, rty);
}
}
}
let bop = self.ci.nodes.new_node_lit(
ty.bin_ret(op),
Kind::BinOp { op },
[VOID, lhs.id, rhs.id],
self.tys,
);
self.ci.nodes.pass_aclass(aclass, bop.id);
Some(bop)
}
ty::Kind::Struct(s) if op.is_homogenous() => {
debug_assert!(lhs.ptr);
self.ci.nodes.lock(lhs.id);
let rhs = self.raw_expr_ctx(right, Ctx::default().with_ty(lhs.ty));
self.ci.nodes.unlock(lhs.id);
let mut rhs = rhs?;
self.strip_var(&mut rhs);
debug_assert!(rhs.ptr);
self.assert_ty(pos, &mut rhs, lhs.ty, "struct operand");
let dst = self.new_stack(pos, lhs.ty);
self.struct_op(left.pos(), op, s, dst, lhs.id, rhs.id);
Some(Value::ptr(dst).ty(lhs.ty))
}
ty::Kind::Struct(s) if op.is_compatison() => {
let binding_op = match op {
TokenKind::Eq => TokenKind::Band,
_ => TokenKind::Bor,
};
self.ci.nodes.lock(lhs.id);
let rhs = self.raw_expr_ctx(right, Ctx::default().with_ty(lhs.ty));
self.ci.nodes.unlock(lhs.id);
let mut rhs = rhs?;
self.strip_var(&mut rhs);
self.assert_ty(pos, &mut rhs, lhs.ty, "struct operand");
self.struct_fold_op(left.pos(), op, binding_op, s, lhs.id, rhs.id)
.or(Value::NEVER)
}
_ => self
.error(pos, fa!("'{} {op} _' is not supported", self.ty_display(lhs.ty))),
}
}
Expr::Index { base, index } => {
let mut bs = self.raw_expr(base)?;
self.strip_var(&mut bs);
if let Some(base) = self.tys.base_of(bs.ty) {
bs.ptr = true;
bs.ty = base;
}
let ty::Kind::Slice(s) = bs.ty.expand() else {
return self.error(
base.pos(),
fa!(
"cant index into '{}' which is not array nor slice",
self.ty_display(bs.ty)
),
);
};
let elem = self.tys.ins.slices[s].elem;
let mut idx = self.expr_ctx(index, Ctx::default().with_ty(ty::Id::DINT))?;
self.assert_ty(index.pos(), &mut idx, ty::Id::DINT, "subscript");
let size = self.ci.nodes.new_const(ty::Id::INT, self.tys.size_of(elem));
let inps = [VOID, idx.id, size];
let offset = self.ci.nodes.new_node(
ty::Id::INT,
Kind::BinOp { op: TokenKind::Mul },
inps,
self.tys,
);
let aclass = self.ci.nodes.aclass_index(bs.id).1;
let inps = [VOID, bs.id, offset];
let ptr = self.ci.nodes.new_node(
ty::Id::INT,
Kind::BinOp { op: TokenKind::Add },
inps,
self.tys,
);
self.ci.nodes.pass_aclass(aclass, ptr);
Some(Value::ptr(ptr).ty(elem))
}
Expr::Embed { id, .. } => {
let glob = &self.tys.ins.globals[id];
let g =
self.ci.nodes.new_node(glob.ty, Kind::Global { global: id }, [VOID], self.tys);
Some(Value::ptr(g).ty(glob.ty))
}
Expr::Directive { name: "sizeof", args: [ty], .. } => {
let ty = self.ty(ty);
self.gen_inferred_const(ctx, ty::Id::DINT, self.tys.size_of(ty), ty::Id::is_integer)
}
Expr::Directive { name: "alignof", args: [ty], .. } => {
let ty = self.ty(ty);
let align = self.tys.align_of(ty);
self.gen_inferred_const(ctx, ty::Id::DINT, align, ty::Id::is_integer)
}
Expr::Directive { name: "bitcast", args: [val], pos } => {
let mut val = self.raw_expr(val)?;
self.strip_var(&mut val);
inference!(ty, ctx, self, pos, "type", "@as(<ty>, @bitcast(<expr>))");
let (got, expected) = (self.tys.size_of(val.ty), self.tys.size_of(ty));
if got != expected {
self.error(
pos,
fa!(
"cast from '{}' to '{}' is not supported, \
sizes dont match ({got} != {expected})",
self.ty_display(val.ty),
self.ty_display(ty)
),
);
}
match ty.loc(self.tys) {
Loc::Reg if mem::take(&mut val.ptr) => val.id = self.load_mem(val.id, ty),
Loc::Stack if !val.ptr => {
let stack = self.new_stack(pos, ty);
self.store_mem(stack, val.ty, val.id);
val.id = stack;
val.ptr = true;
}
_ => {}
}
val.ty = ty;
Some(val)
}
Expr::Directive { name: "unwrap", args: [expr], .. } => {
let mut val = self.raw_expr(expr)?;
self.strip_var(&mut val);
if !val.ty.is_optional() {
return self.error(
expr.pos(),
fa!(
"only optional types can be unwrapped ('{}' is not optional)",
self.ty_display(val.ty)
),
);
};
self.explicit_unwrap(expr.pos(), &mut val);
Some(val)
}
Expr::Directive { name: "intcast", args: [expr], pos } => {
let mut val = self.expr(expr)?;
if !val.ty.is_integer() {
return self.error(
expr.pos(),
fa!(
"only integers can be truncated ('{}' is not an integer)",
self.ty_display(val.ty)
),
);
}
inference!(ty, ctx, self, pos, "integer", "@as(<ty>, @intcast(<expr>))");
if !ty.is_integer() {
self.error(
expr.pos(),
fa!(
"intcast is inferred to output '{}', which is not an integer",
self.ty_display(ty)
),
);
}
if self.tys.size_of(val.ty) < self.tys.size_of(ty) {
self.extend(&mut val, ty);
Some(val)
} else {
Some(val.ty(ty))
}
}
Expr::Directive { pos, name: "floatcast", args: [expr] } => {
let val = self.expr(expr)?;
if !val.ty.is_float() {
return self.error(
expr.pos(),
fa!(
"only floats can be truncated ('{}' is not a float)",
self.ty_display(val.ty)
),
);
}
inference!(ty, ctx, self, pos, "float", "@as(<floaty>, @floatcast(<expr>))");
if !ty.is_float() {
self.error(
expr.pos(),
fa!(
"floatcast is inferred to output '{}', which is not a float",
self.ty_display(ty)
),
);
}
if self.tys.size_of(val.ty) != self.tys.size_of(ty) {
Some(self.ci.nodes.new_node_lit(
ty,
Kind::UnOp { op: TokenKind::Float },
[VOID, val.id],
self.tys,
))
} else {
Some(val.ty(ty))
}
}
Expr::Directive { name: "fti", args: [expr], .. } => {
let val = self.expr(expr)?;
let ret_ty = match val.ty {
ty::Id::F32 | ty::Id::F64 => ty::Id::INT,
_ => {
return self.error(
expr.pos(),
fa!("expected float ('{}' is not a float)", self.ty_display(val.ty)),
)
}
};
Some(self.ci.nodes.new_node_lit(
ret_ty,
Kind::UnOp { op: TokenKind::Number },
[VOID, val.id],
self.tys,
))
}
Expr::Directive { name: "itf", args: [expr], .. } => {
let mut val = self.expr_ctx(expr, Ctx::default().with_ty(ty::Id::INT))?;
let (ret_ty, expected) = match val.ty.simple_size().unwrap() {
8 => (ty::Id::F64, ty::Id::INT),
_ => (ty::Id::F32, ty::Id::INT),
};
self.assert_ty(expr.pos(), &mut val, expected, "converted integer");
Some(self.ci.nodes.new_node_lit(
ret_ty,
Kind::UnOp { op: TokenKind::Float },
[VOID, val.id],
self.tys,
))
}
Expr::Directive { name: "as", args: [ty, expr], pos } => {
let ty = self.ty(ty);
let mut val = self.raw_expr_ctx(expr, Ctx::default().with_ty(ty))?;
if let Some(ity) = ctx.ty
&& ity.try_upcast(ty) == Some(ty)
&& val.ty == ity
{
self.error(pos, "the type is known at this point, remove the hint");
}
self.strip_var(&mut val);
self.assert_ty(expr.pos(), &mut val, ty, "hinted expr");
Some(val)
}
Expr::Directive { pos, name: "eca", args } => {
inference!(ty, ctx, self, pos, "return type", "@as(<return_ty>, @eca(<expr>...))");
let mut inps = Vc::from([NEVER]);
let arg_base = self.tys.tmp.args.len();
let mut clobbered_aliases = BitSet::default();
for arg in args {
let value = self.expr(arg)?;
self.add_clobbers(value, &mut clobbered_aliases);
self.tys.tmp.args.push(value.ty);
debug_assert_ne!(self.ci.nodes[value.id].kind, Kind::Stre);
self.ci.nodes.lock(value.id);
inps.push(value.id);
}
let args = self.tys.pack_args(arg_base).expect("TODO");
for &n in inps.iter().skip(1) {
self.ci.nodes.unlock(n);
}
self.append_clobbers(&mut inps, &mut clobbered_aliases);
let alt_value = match ty.loc(self.tys) {
Loc::Reg => None,
Loc::Stack => {
let stck = self.new_stack(pos, ty);
inps.push(stck);
Some(Value::ptr(stck).ty(ty))
}
};
inps[0] = self.ci.ctrl.get();
self.ci.ctrl.set(
self.ci.nodes.new_node_nop(ty, Kind::Call { func: ty::Func::ECA, args }, inps),
&mut self.ci.nodes,
);
self.add_clobber_stores(clobbered_aliases);
alt_value.or(Some(Value::new(self.ci.ctrl.get()).ty(ty)))
}
Expr::Call { func, args, .. } => self.gen_call(func, args, false),
Expr::Directive { name: "inline", args: [func, args @ ..], .. } => {
self.gen_call(func, args, true)
}
Expr::Tupl { pos, ty, fields, .. } => {
ctx.ty = ty
.map(|ty| self.ty(ty))
.or(ctx.ty.map(|ty| self.tys.inner_of(ty).unwrap_or(ty)));
inference!(sty, ctx, self, pos, "struct or slice", "<struct_ty>.(...)");
match sty.expand() {
ty::Kind::Struct(s) => {
let mem = self.new_stack(pos, sty);
let mut offs = OffsetIter::new(s, self.tys);
for field in fields {
let Some((ty, offset)) = offs.next_ty(self.tys) else {
self.error(
field.pos(),
"this init argumen overflows the field count",
);
break;
};
let mut value = self.expr_ctx(field, Ctx::default().with_ty(ty))?;
_ = self.assert_ty(field.pos(), &mut value, ty, "tuple field");
let mem = self.offset(mem, offset);
self.store_mem(mem, ty, value.id);
}
let field_list = offs
.into_iter(self.tys)
.map(|(f, ..)| self.tys.names.ident_str(f.name))
.intersperse(", ")
.collect::<String>();
if !field_list.is_empty() {
self.error(
pos,
fa!("the struct initializer is missing {field_list} \
(append them to the end of the constructor)"),
);
}
Some(Value::ptr(mem).ty(sty))
}
ty::Kind::Slice(s) => {
let slice = &self.tys.ins.slices[s];
let len = slice.len().unwrap_or(fields.len());
let elem = slice.elem;
let elem_size = self.tys.size_of(elem);
let aty = slice
.len()
.map_or_else(|| self.tys.make_array(elem, len as ArrayLen), |_| sty);
if len != fields.len() {
return self.error(
pos,
fa!(
"expected '{}' but constructor has {} elements",
self.ty_display(aty),
fields.len()
),
);
}
let mem = self.new_stack(pos, aty);
for (field, offset) in
fields.iter().zip((0u32..).step_by(elem_size as usize))
{
let mut value = self.expr_ctx(field, Ctx::default().with_ty(elem))?;
_ = self.assert_ty(field.pos(), &mut value, elem, "array value");
let mem = self.offset(mem, offset);
self.store_mem(mem, elem, value.id);
}
Some(Value::ptr(mem).ty(aty))
}
_ => self.error(
pos,
fa!(
"the {}type of the constructor is `{}`, \
but thats not a struct nor slice or array",
if ty.is_some() { "" } else { "inferred " },
self.ty_display(sty),
),
),
}
}
Expr::Struct { .. } => {
let value = self.ty(expr).repr();
Some(self.ci.nodes.new_const_lit(ty::Id::TYPE, value))
}
Expr::Ctor { pos, ty, fields, .. } => {
ctx.ty = ty
.map(|ty| self.ty(ty))
.or(ctx.ty.map(|ty| self.tys.inner_of(ty).unwrap_or(ty)));
inference!(sty, ctx, self, pos, "struct", "<struct_ty>.{...}");
match sty.expand() {
ty::Kind::Union(u) => {
let &[CtorField { pos: fpos, name, value }] = fields else {
return self.error(
pos,
fa!("union initializer needs to have exactly one field"),
);
};
let mem = self.new_stack(pos, sty);
let Some((_, field)) = self.tys.find_union_field(u, name) else {
return self.error(
fpos,
fa!("union '{}' does not have this field", self.ty_display(sty)),
);
};
let (ty, offset) = (field.ty, 0);
let mut value = self.expr_ctx(&value, Ctx::default().with_ty(ty))?;
self.assert_ty(fpos, &mut value, ty, fa!("field {}", name));
let mem = self.offset(mem, offset);
self.store_mem(mem, ty, value.id);
Some(Value::ptr(mem).ty(sty))
}
ty::Kind::Struct(s) => {
let mut offs = OffsetIter::new(s, self.tys)
.into_iter(self.tys)
.map(|(f, o)| (f.ty, o))
.collect::<Vec<_>>();
let mem = self.new_stack(pos, sty);
for field in fields {
let Some(index) = self.tys.find_struct_field(s, field.name) else {
self.error(
field.pos,
fa!(
"struct '{}' does not have this field",
self.ty_display(sty)
),
);
continue;
};
let (ty, offset) =
mem::replace(&mut offs[index], (ty::Id::UNDECLARED, field.pos));
if ty == ty::Id::UNDECLARED {
self.error(field.pos, "the struct field is already initialized");
self.error(offset, "previous initialization is here");
continue;
}
let mut value =
self.expr_ctx(&field.value, Ctx::default().with_ty(ty))?;
self.assert_ty(field.pos, &mut value, ty, fa!("field {}", field.name));
let mem = self.offset(mem, offset);
self.store_mem(mem, ty, value.id);
}
let field_list = self
.tys
.struct_fields(s)
.iter()
.zip(offs)
.filter(|&(_, (ty, _))| ty != ty::Id::UNDECLARED)
.map(|(f, _)| self.tys.names.ident_str(f.name))
.intersperse(", ")
.collect::<String>();
if !field_list.is_empty() {
self.error(pos, fa!("the struct initializer is missing {field_list}"));
}
Some(Value::ptr(mem).ty(sty))
}
_ => self.error(
pos,
fa!(
"the {}type of the constructor is `{}`, \
but thats not a struct or union",
if ty.is_some() { "" } else { "inferred " },
self.ty_display(sty)
),
),
}
}
Expr::Block { stmts, .. } => {
let base = self.ci.scope.vars.len();
let aclass_base = self.ci.scope.aclasses.len();
let defer_base = self.ci.defers.len();
let mut ret = Some(Value::VOID);
for stmt in stmts {
ret = ret.and(self.expr_ctx(stmt, Ctx::default().with_ty(ty::Id::VOID)));
if let Some(mut id) = ret {
if id.ty != ty::Id::VOID {
self.warn(
stmt.pos(),
fa!(
"statements need to evaluate to 'void', \
but this statements evaluates '{}', \
use '_ = <stmt>' to discard the value if its intentional",
self.ty_display(id.ty)
),
);
}
self.assert_ty(stmt.pos(), &mut id, ty::Id::VOID, "statement");
} else {
break;
}
}
if ret.is_some() {
self.gen_defers(defer_base);
}
self.ci.defers.truncate(defer_base);
for var in self.ci.scope.vars.drain(base..) {
var.remove(&mut self.ci.nodes);
}
for aclass in self.ci.scope.aclasses.drain(aclass_base..) {
aclass.remove(&mut self.ci.nodes);
}
ret
}
Expr::Loop { body, .. } => {
self.ci.ctrl.set(
self.ci.nodes.new_node(
ty::Id::VOID,
Kind::Loop,
[self.ci.ctrl.get(), self.ci.ctrl.get(), LOOPS],
self.tys,
),
&mut self.ci.nodes,
);
self.ci.loops.push(Loop {
node: self.ci.ctrl.get(),
ctrl: [StrongRef::DEFAULT; 2],
ctrl_scope: core::array::from_fn(|_| Default::default()),
scope: self.ci.scope.dup(&mut self.ci.nodes),
defer_base: self.ci.defers.len(),
});
for var in self.ci.scope.vars.iter_mut().skip(self.ci.inline_var_base) {
if var.ty != ty::Id::TYPE && !var.ptr {
var.set_value(VOID, &mut self.ci.nodes);
}
}
for aclass in self.ci.scope.aclasses[..2].iter_mut() {
aclass.last_store.set(VOID, &mut self.ci.nodes);
}
for aclass in self.ci.scope.aclasses.iter_mut().skip(self.ci.inline_aclass_base) {
aclass.last_store.set(VOID, &mut self.ci.nodes);
}
self.expr(body);
let Loop { ctrl: [con, ..], ctrl_scope: [cons, ..], .. } =
self.ci.loops.last_mut().unwrap();
let mut cons = mem::take(cons);
if let Some(con) = mem::take(con).unwrap(&mut self.ci.nodes) {
self.ci.ctrl.set(
self.ci.nodes.new_node(
ty::Id::VOID,
Kind::Region,
[con, self.ci.ctrl.get()],
self.tys,
),
&mut self.ci.nodes,
);
self.ci.nodes.merge_scopes(
&mut self.ci.loops,
&self.ci.ctrl,
&mut self.ci.scope,
&mut cons,
self.tys,
);
cons.clear(&mut self.ci.nodes);
}
let Loop {
node,
ctrl: [.., bre],
ctrl_scope: [.., mut bres],
mut scope,
defer_base,
} = self.ci.loops.pop().unwrap();
self.gen_defers(defer_base);
self.ci.defers.truncate(defer_base);
self.ci.nodes.modify_input(node, 1, self.ci.ctrl.get());
if let Some(idx) =
self.ci.nodes[node].outputs.iter().position(|&n| self.ci.nodes.is_cfg(n))
{
self.ci.nodes[node].outputs.swap(idx, 0);
}
let Some(bre) = bre.unwrap(&mut self.ci.nodes) else {
for (loop_var, scope_var) in
self.ci.scope.vars.iter_mut().zip(scope.vars.iter_mut())
{
if self.ci.nodes[scope_var.value()].is_lazy_phi(node) {
if loop_var.value() != scope_var.value() {
scope_var.set_value(
self.ci.nodes.modify_input(
scope_var.value(),
2,
loop_var.value(),
),
&mut self.ci.nodes,
);
} else {
let phi = &self.ci.nodes[scope_var.value()];
let prev = phi.inputs[1];
self.ci.nodes.replace(scope_var.value(), prev);
scope_var.set_value(prev, &mut self.ci.nodes);
}
}
}
for (loop_class, scope_class) in
self.ci.scope.aclasses.iter_mut().zip(scope.aclasses.iter_mut())
{
if self.ci.nodes[scope_class.last_store.get()].is_lazy_phi(node) {
if loop_class.last_store.get() != scope_class.last_store.get()
&& loop_class.last_store.get() != 0
{
scope_class.last_store.set(
self.ci.nodes.modify_input(
scope_class.last_store.get(),
2,
loop_class.last_store.get(),
),
&mut self.ci.nodes,
);
} else {
let phi = &self.ci.nodes[scope_class.last_store.get()];
let prev = phi.inputs[1];
self.ci.nodes.replace(scope_class.last_store.get(), prev);
scope_class.last_store.set(prev, &mut self.ci.nodes);
}
}
if loop_class.last_store.get() == 0 {
loop_class
.last_store
.set(scope_class.last_store.get(), &mut self.ci.nodes);
}
}
debug_assert!(self.ci.scope.aclasses.iter().all(|a| a.last_store.get() != 0));
scope.clear(&mut self.ci.nodes);
self.ci.ctrl.set(NEVER, &mut self.ci.nodes);
return None;
};
self.ci.ctrl.set(bre, &mut self.ci.nodes);
mem::swap(&mut self.ci.scope, &mut bres);
debug_assert_eq!(self.ci.scope.vars.len(), scope.vars.len());
debug_assert_eq!(self.ci.scope.vars.len(), bres.vars.len());
self.ci.nodes.lock(node);
for ((dest_var, scope_var), loop_var) in self
.ci
.scope
.vars
.iter_mut()
.zip(scope.vars.iter_mut())
.zip(bres.vars.iter_mut())
{
if self.ci.nodes[scope_var.value()].is_lazy_phi(node) {
if loop_var.value() != scope_var.value() && loop_var.value() != 0 {
scope_var.set_value(
self.ci.nodes.modify_input(scope_var.value(), 2, loop_var.value()),
&mut self.ci.nodes,
);
} else {
if dest_var.value() == scope_var.value() {
dest_var.set_value(VOID, &mut self.ci.nodes);
}
let phi = &self.ci.nodes[scope_var.value()];
let prev = phi.inputs[1];
self.ci.nodes.replace(scope_var.value(), prev);
scope_var.set_value(prev, &mut self.ci.nodes);
}
}
if dest_var.value() == VOID {
dest_var.set_value(scope_var.value(), &mut self.ci.nodes);
}
debug_assert!(!self.ci.nodes[dest_var.value()].is_lazy_phi(node));
}
for ((dest_class, scope_class), loop_class) in self
.ci
.scope
.aclasses
.iter_mut()
.zip(scope.aclasses.iter_mut())
.zip(bres.aclasses.iter_mut())
{
if self.ci.nodes[scope_class.last_store.get()].is_lazy_phi(node) {
if loop_class.last_store.get() != scope_class.last_store.get()
&& loop_class.last_store.get() != 0
{
scope_class.last_store.set(
self.ci.nodes.modify_input(
scope_class.last_store.get(),
2,
loop_class.last_store.get(),
),
&mut self.ci.nodes,
);
} else {
if dest_class.last_store.get() == scope_class.last_store.get() {
dest_class.last_store.set(VOID, &mut self.ci.nodes);
}
let phi = &self.ci.nodes[scope_class.last_store.get()];
let prev = phi.inputs[1];
self.ci.nodes.replace(scope_class.last_store.get(), prev);
scope_class.last_store.set(prev, &mut self.ci.nodes);
}
}
if dest_class.last_store.get() == VOID {
dest_class.last_store.set(scope_class.last_store.get(), &mut self.ci.nodes);
}
debug_assert!(
!self.ci.nodes[dest_class.last_store.get()].is_lazy_phi(node),
"{:?}",
self.ci.nodes[dest_class.last_store.get()]
);
}
scope.clear(&mut self.ci.nodes);
bres.clear(&mut self.ci.nodes);
self.ci.nodes.unlock(node);
let rpl = self.ci.nodes.late_peephole(node, self.tys).unwrap_or(node);
if self.ci.ctrl.get() == node {
self.ci.ctrl.set_remove(rpl, &mut self.ci.nodes);
}
Some(Value::VOID)
}
Expr::Break { pos } => self.jump_to(pos, 1),
Expr::Continue { pos } => self.jump_to(pos, 0),
Expr::If { cond, then, else_, .. } => {
let mut cnd = self.expr_ctx(cond, Ctx::default().with_ty(ty::Id::BOOL))?;
self.assert_ty(cond.pos(), &mut cnd, ty::Id::BOOL, "condition");
let if_node = self.ci.nodes.new_node(
ty::Id::VOID,
Kind::If,
[self.ci.ctrl.get(), cnd.id],
self.tys,
);
'b: {
let branch = match self.ci.nodes[if_node].ty {
ty::Id::LEFT_UNREACHABLE => else_,
ty::Id::RIGHT_UNREACHABLE => Some(then),
_ => break 'b,
};
self.ci.nodes.remove(if_node);
if let Some(branch) = branch {
return self.expr(branch);
} else {
return Some(Value::VOID);
}
}
let else_scope = self.ci.scope.dup(&mut self.ci.nodes);
self.ci.ctrl.set(
self.ci.nodes.new_node(ty::Id::VOID, Kind::Then, [if_node], self.tys),
&mut self.ci.nodes,
);
let lcntrl = self.expr(then).map_or(Nid::MAX, |_| self.ci.ctrl.get());
let then_scope = mem::replace(&mut self.ci.scope, else_scope);
self.ci.ctrl.set(
self.ci.nodes.new_node(ty::Id::VOID, Kind::Else, [if_node], self.tys),
&mut self.ci.nodes,
);
let rcntrl = if let Some(else_) = else_ {
self.expr(else_).map_or(Nid::MAX, |_| self.ci.ctrl.get())
} else {
self.ci.ctrl.get()
};
self.close_if(lcntrl, rcntrl, then_scope)?;
Some(Value::VOID)
}
Expr::Match { pos, value, branches } => {
let value = self.expr(value)?;
let ty::Kind::Enum(e) = value.ty.expand() else {
return self.error(
pos,
fa!(
"match operates on enums (for now), '{}' is not an enum",
self.ty_display(value.ty)
),
);
};
let mut covered_values = vec![Pos::MAX; self.tys.enum_field_range(e).len()];
let mut scopes = vec![];
let mut else_branch = None::<Expr>;
for &MatchBranch { pat, pos: bp, body } in branches {
if let Expr::Wildcard { .. } = pat {
if let Some(prev) = else_branch {
self.error(bp, "duplicate branch");
self.error(prev.pos(), "...first branch declared here");
}
else_branch = Some(body);
continue;
}
let pat_val = self.eval_const(self.ci.file, self.ci.parent, &pat, value.ty);
if covered_values[pat_val as usize] != Pos::MAX {
self.error(bp, "duplicate branch");
self.error(
covered_values[pat_val as usize],
"...first branch declared here",
);
continue;
}
covered_values[pat_val as usize] = bp;
let pat_val = self.ci.nodes.new_const(value.ty, pat_val as i64);
let cnd = self.ci.nodes.new_node(
ty::Id::BOOL,
Kind::BinOp { op: TokenKind::Eq },
[VOID, value.id, pat_val],
self.tys,
);
let if_node = self.ci.nodes.new_node(
ty::Id::VOID,
Kind::If,
[self.ci.ctrl.get(), cnd],
self.tys,
);
let cached_scope = self.ci.scope.dup(&mut self.ci.nodes);
self.ci.ctrl.set(
self.ci.nodes.new_node(ty::Id::VOID, Kind::Then, [if_node], self.tys),
&mut self.ci.nodes,
);
let ctrl = self.expr(&body).map_or(Nid::MAX, |_| self.ci.ctrl.get());
scopes.push((ctrl, mem::replace(&mut self.ci.scope, cached_scope)));
self.ci.ctrl.set(
self.ci.nodes.new_node(ty::Id::VOID, Kind::Else, [if_node], self.tys),
&mut self.ci.nodes,
);
}
let mut rcntrl = if let Some(ebr) = else_branch {
self.expr(&ebr).map_or(Nid::MAX, |_| self.ci.ctrl.get())
} else {
let missing_branches = covered_values
.into_iter()
.zip(self.tys.enum_fields(e))
.filter(|&(f, _)| f == Pos::MAX)
.map(|(_, f)| self.tys.names.ident_str(f.name))
.intersperse("', '")
.collect::<String>();
if !missing_branches.is_empty() {
self.error(pos, fa!("not all cases covered, missing '{missing_branches}'"));
}
self.ci.ctrl.get()
};
for (lcntrl, then_scope) in scopes.into_iter().rev() {
if let Some(v) = self.close_if(lcntrl, rcntrl, then_scope)
&& v != VOID
{
rcntrl = v;
}
}
if rcntrl == Nid::MAX {
return None;
}
Some(Value::VOID)
}
ref e => {
let ty = self.parse_ty(
TyScope { file: self.ci.file, parent: self.ci.parent, ..Default::default() },
e,
);
Some(self.ci.nodes.new_const_lit(ty::Id::TYPE, ty))
}
}
}
fn gen_field(
&mut self,
ctx: Ctx,
target: &Expr,
pos: Pos,
name: &str,
) -> Option<Result<Value, (ty::Id, Value)>> {
let mut vtarget = self.raw_expr(target)?;
self.strip_var(&mut vtarget);
self.implicit_unwrap(pos, &mut vtarget);
let tty = vtarget.ty;
match self.tys.base_of(tty).unwrap_or(tty).expand() {
ty::Kind::Module(m) => self.find_type_as_value(pos, m, name, ctx),
ty::Kind::Enum(e) => {
let intrnd = self.tys.names.project(name);
self.gen_enum_variant(pos, e, intrnd)
}
ty::Kind::Union(u) => {
if let Some((_, f)) = self.tys.find_union_field(u, name) {
Some(Value::ptr(vtarget.id).ty(f.ty))
} else if let ty = self.find_type(pos, self.ci.file, u, name)
&& let ty::Kind::Func(_) = ty.expand()
{
return Some(Err((ty, vtarget)));
} else {
self.error(
pos,
fa!(
"the '{}' does not have this field, \
but it does have '{}'",
self.ty_display(tty),
self.tys
.union_fields(u)
.iter()
.map(|f| self.tys.names.ident_str(f.name))
.intersperse("', '")
.collect::<String>()
),
)
}
}
ty::Kind::Struct(s) => {
if let Some((offset, ty)) = OffsetIter::offset_of(self.tys, s, name) {
Some(Value::ptr(self.offset(vtarget.id, offset)).ty(ty))
} else if let ty = self.find_type(pos, self.ci.file, s, name)
&& let ty::Kind::Func(_) = ty.expand()
{
return Some(Err((ty, vtarget)));
} else {
self.error(
pos,
fa!(
"the '{}' does not have this field, \
but it does have '{}'",
self.ty_display(tty),
self.tys
.struct_fields(s)
.iter()
.map(|f| self.tys.names.ident_str(f.name))
.intersperse("', '")
.collect::<String>()
),
)
}
}
ty::Kind::TYPE => match self.ci.nodes.as_ty(vtarget.id).expand() {
ty::Kind::Module(m) => self.find_type_as_value(pos, m, name, ctx),
ty::Kind::Enum(e)
if let intrnd = self.tys.names.project(name)
&& let Some(index) =
self.tys.enum_fields(e).iter().position(|f| Some(f.name) == intrnd) =>
{
Some(self.ci.nodes.new_const_lit(e.into(), index as i64))
}
ty @ (ty::Kind::Struct(_) | ty::Kind::Enum(_) | ty::Kind::Union(_)) => {
self.find_type_as_value(pos, ty.compress(), name, ctx)
}
ty @ (ty::Kind::Builtin(_)
| ty::Kind::Ptr(_)
| ty::Kind::Slice(_)
| ty::Kind::Opt(_)
| ty::Kind::Func(_)
| ty::Kind::Template(_)
| ty::Kind::Global(_)
| ty::Kind::Const(_)) => self.error(
pos,
fa!(
"accesing scope on '{}' is not supported yet",
self.ty_display(ty.compress())
),
),
},
_ => self.error(
pos,
fa!(
"the '{}' is not a struct, or pointer to one, or enum, \
fo field access does not make sense",
self.ty_display(tty)
),
),
}
.map(Ok)
}
fn close_if(&mut self, lcntrl: Nid, rcntrl: Nid, mut then_scope: Scope) -> Option<Nid> {
if lcntrl == Nid::MAX && rcntrl == Nid::MAX {
then_scope.clear(&mut self.ci.nodes);
return None;
} else if lcntrl == Nid::MAX {
then_scope.clear(&mut self.ci.nodes);
return Some(VOID);
} else if rcntrl == Nid::MAX {
self.ci.scope.clear(&mut self.ci.nodes);
self.ci.scope = then_scope;
self.ci.ctrl.set(lcntrl, &mut self.ci.nodes);
return Some(VOID);
}
self.ci.ctrl.set(
self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [lcntrl, rcntrl], self.tys),
&mut self.ci.nodes,
);
self.ci.nodes.merge_scopes(
&mut self.ci.loops,
&self.ci.ctrl,
&mut self.ci.scope,
&mut then_scope,
self.tys,
);
then_scope.clear(&mut self.ci.nodes);
Some(self.ci.ctrl.get())
}
fn gen_enum_variant(&mut self, pos: Pos, e: ty::Enum, intrnd: Option<Ident>) -> Option<Value> {
let Some(index) = self.tys.enum_fields(e).iter().position(|f| Some(f.name) == intrnd)
else {
return self.error(
pos,
fa!(
"the '{}' does not have this variant, \
but it does have '{}'",
self.ty_display(e.into()),
self.tys
.enum_fields(e)
.iter()
.map(|f| self.tys.names.ident_str(f.name))
.intersperse("', '")
.collect::<String>()
),
);
};
Some(self.ci.nodes.new_const_lit(e.into(), index as i64))
}
fn gen_inferred_const(
&mut self,
ctx: Ctx,
fallback: ty::Id,
value: impl Into<i64>,
filter: impl Fn(ty::Id) -> bool,
) -> Option<Value> {
Some(
self.ci.nodes.new_const_lit(
ctx.ty
.map(|ty| self.tys.inner_of(ty).unwrap_or(ty))
.filter(|&ty| filter(ty))
.unwrap_or(fallback),
value,
),
)
}
fn gen_call(&mut self, func: &Expr, args: &[Expr], mut inline: bool) -> Option<Value> {
let (ty, mut caller) = match *func {
Expr::Field { target, pos, name } => {
match self.gen_field(Ctx::default(), target, pos, name)? {
Ok(mut fexpr) => {
self.assert_ty(func.pos(), &mut fexpr, ty::Id::TYPE, "function");
(self.ci.nodes.as_ty(fexpr.id), None)
}
Err((ty, val)) => (ty, Some(val)),
}
}
ref e => (self.ty(e), None),
};
let Some(fu) = self.compute_signature(ty, func.pos(), args) else {
return Value::NEVER;
};
let FuncData { expr, file, is_inline, parent, sig, .. } = self.tys.ins.funcs[fu];
let ast = &self.files[file];
let &Expr::Closure { args: cargs, body, .. } = expr.get(ast) else { unreachable!() };
inline |= sig.ret == ty::Id::TYPE;
let arg_count = args.len() + caller.is_some() as usize;
if arg_count != cargs.len() {
self.error(
func.pos(),
fa!(
"expected {} function argumenr{}, got {}",
cargs.len(),
if cargs.len() == 1 { "" } else { "s" },
arg_count
),
);
}
if inline && is_inline {
self.error(
func.pos(),
"function is declared as inline so this @inline directive only reduces readability",
);
}
let (mut tys, mut args, mut cargs) = (sig.args.args(), args.iter(), cargs.iter());
if is_inline || inline {
let var_base = self.ci.scope.vars.len();
let aclass_base = self.ci.scope.aclasses.len();
if let Some(caller) = &mut caller
&& let (Some(Arg::Value(ty)), Some(carg)) = (tys.next(self.tys), cargs.next())
{
match (caller.ty.is_pointer(), ty.is_pointer()) {
(true, false) => {
caller.ty = self.tys.base_of(caller.ty).unwrap();
caller.ptr = true;
}
(false, true) => {
caller.ty = self.tys.make_ptr(caller.ty);
caller.ptr = false;
}
_ => {}
}
self.assert_ty(func.pos(), caller, ty, "caller");
self.ci.scope.vars.push(Variable::new(
carg.id,
ty,
caller.ptr,
caller.id,
&mut self.ci.nodes,
))
}
while let (Some(aty), Some(arg)) = (tys.next(self.tys), args.next()) {
let carg = cargs.next().unwrap();
let var = match aty {
Arg::Type(id) => Variable::new(
carg.id,
ty::Id::TYPE,
false,
self.ci.nodes.new_const(ty::Id::TYPE, id),
&mut self.ci.nodes,
),
Arg::Value(ty) => {
let mut value = self.raw_expr_ctx(arg, Ctx::default().with_ty(ty))?;
self.strip_var(&mut value);
debug_assert_ne!(self.ci.nodes[value.id].kind, Kind::Stre);
debug_assert_ne!(value.id, 0);
self.assert_ty(arg.pos(), &mut value, ty, fa!("argument {}", carg.name));
Variable::new(carg.id, ty, value.ptr, value.id, &mut self.ci.nodes)
}
};
self.ci.scope.vars.push(var);
}
let prev_var_base = mem::replace(&mut self.ci.inline_var_base, var_base);
let prev_aclass_base = mem::replace(&mut self.ci.inline_aclass_base, aclass_base);
let prev_defer_base =
mem::replace(&mut self.ci.inline_defer_base, self.ci.defers.len());
let prev_inline_ret = self.ci.inline_ret.take();
self.ci.inline_depth += 1;
let prev_ret = self.ci.ret.replace(sig.ret);
let prev_file = mem::replace(&mut self.ci.file, file);
let prev_parent = mem::replace(&mut self.ci.parent, parent);
let prev_ctrl = self.ci.ctrl.get();
if self.expr(body).is_some() {
if sig.ret == ty::Id::VOID {
self.expr(&Expr::Return { pos: body.pos(), val: None });
} else {
self.error(
body.pos(),
"expected all paths in the fucntion to return \
or the return type to be 'void'",
);
}
}
self.ci.ret = prev_ret;
self.ci.file = prev_file;
self.ci.parent = prev_parent;
self.ci.inline_depth -= 1;
self.ci.inline_var_base = prev_var_base;
self.ci.inline_aclass_base = prev_aclass_base;
self.ci.inline_defer_base = prev_defer_base;
for var in self.ci.scope.vars.drain(var_base..) {
var.remove(&mut self.ci.nodes);
}
for var in self.ci.scope.aclasses.drain(aclass_base..) {
var.remove(&mut self.ci.nodes);
}
let (v, ctrl, mut scope, aclass) =
mem::replace(&mut self.ci.inline_ret, prev_inline_ret)?;
if is_inline
&& ctrl.get() != prev_ctrl
&& (!self.ci.nodes[ctrl.get()].kind.is_eca()
|| self.ci.nodes[ctrl.get()].inputs[0] != prev_ctrl)
{
self.error(body.pos(), "function is makred inline but it contains controlflow");
}
scope.vars.drain(var_base..).for_each(|v| v.remove(&mut self.ci.nodes));
scope.aclasses.drain(aclass_base..).for_each(|v| v.remove(&mut self.ci.nodes));
self.ci.nodes.unlock(v.id);
self.ci.scope.clear(&mut self.ci.nodes);
self.ci.scope = scope;
if let Some(aclass) = aclass {
let (_, reg) = self.ci.nodes.aclass_index(v.id);
self.ci.nodes[reg].aclass = self.ci.scope.aclasses.len() as _;
self.ci.scope.aclasses.push(aclass);
}
mem::replace(&mut self.ci.ctrl, ctrl).remove(&mut self.ci.nodes);
Some(v)
} else {
self.make_func_reachable(fu);
let mut inps = Vc::from([NEVER]);
let mut clobbered_aliases = BitSet::default();
if let Some(caller) = &mut caller
&& let (Some(Arg::Value(ty)), Some(carg)) = (tys.next(self.tys), cargs.next())
{
match (caller.ty.is_pointer(), ty.is_pointer()) {
(true, false) => {
caller.ty = self.tys.base_of(caller.ty).unwrap();
caller.ptr = true;
}
(false, true) => {
caller.ty = self.tys.make_ptr(caller.ty);
caller.ptr = false;
}
_ => {}
}
self.assert_ty(func.pos(), caller, ty, fa!("caller argument {}", carg.name));
self.strip_ptr(caller);
self.add_clobbers(*caller, &mut clobbered_aliases);
self.ci.nodes.lock(caller.id);
inps.push(caller.id);
}
while let (Some(ty), Some(arg)) = (tys.next(self.tys), args.next()) {
let carg = cargs.next().unwrap();
let Arg::Value(ty) = ty else { continue };
let mut value = self.raw_expr_ctx(arg, Ctx::default().with_ty(ty))?;
self.strip_var(&mut value);
debug_assert_ne!(self.ci.nodes[value.id].kind, Kind::Stre);
self.assert_ty(arg.pos(), &mut value, ty, fa!("argument {}", carg.name));
self.strip_ptr(&mut value);
self.add_clobbers(value, &mut clobbered_aliases);
self.ci.nodes.lock(value.id);
inps.push(value.id);
}
for &n in inps.iter().skip(1) {
self.ci.nodes.unlock(n);
}
self.append_clobbers(&mut inps, &mut clobbered_aliases);
let alt_value = match sig.ret.loc(self.tys) {
Loc::Reg => None,
Loc::Stack => {
let stck = self.new_stack(func.pos(), sig.ret);
clobbered_aliases.set(self.ci.nodes.aclass_index(stck).0 as _);
inps.push(stck);
Some(Value::ptr(stck).ty(sig.ret))
}
};
inps[0] = self.ci.ctrl.get();
self.ci.ctrl.set(
self.ci.nodes.new_node_nop(sig.ret, Kind::Call { func: fu, args: sig.args }, inps),
&mut self.ci.nodes,
);
self.add_clobber_stores(clobbered_aliases);
alt_value.or(Some(Value::new(self.ci.ctrl.get()).ty(sig.ret)))
}
}
fn gen_global(&mut self, global: ty::Global) -> Option<Value> {
let gl = &self.tys.ins.globals[global];
let value = self.ci.nodes.new_node_nop(gl.ty, Kind::Global { global }, [VOID]);
self.ci.nodes[value].aclass = GLOBAL_ACLASS as _;
Some(Value::ptr(value).ty(gl.ty))
}
fn gen_const(&mut self, cnst: ty::Const, ctx: Ctx) -> Option<Value> {
let c = &self.tys.ins.consts[cnst];
let prev_file = mem::replace(&mut self.ci.file, c.file);
let prev_parent = mem::replace(&mut self.ci.parent, c.parent);
let f = &self.files[c.file];
let Expr::BinOp { left, right, .. } = c.ast.get(f) else { unreachable!() };
let mut value = left
.find_pattern_path(c.name, right, |expr, is_ct| {
debug_assert!(is_ct);
self.raw_expr_ctx(expr, ctx)
})
.unwrap_or_else(|_| unreachable!())?;
self.strip_var(&mut value);
self.ci.file = prev_file;
self.ci.parent = prev_parent;
Some(value)
}
fn add_clobbers(&mut self, value: Value, clobbered_aliases: &mut BitSet) {
if let Some(base) = self.tys.base_of(value.ty) {
clobbered_aliases.set(self.ci.nodes.aclass_index(value.id).0 as _);
if base.has_pointers(self.tys) {
clobbered_aliases.set(DEFAULT_ACLASS as _);
}
} else if value.ty.has_pointers(self.tys) {
clobbered_aliases.set(DEFAULT_ACLASS as _);
}
}
fn append_clobbers(&mut self, inps: &mut Vc, clobbered_aliases: &mut BitSet) {
clobbered_aliases.set(GLOBAL_ACLASS as _);
for clobbered in clobbered_aliases.iter() {
let aclass = &mut self.ci.scope.aclasses[clobbered];
self.ci.nodes.load_loop_aclass(clobbered, aclass, &mut self.ci.loops);
inps.push(aclass.last_store.get());
}
}
fn add_clobber_stores(&mut self, clobbered_aliases: BitSet) {
for clobbered in clobbered_aliases.iter() {
debug_assert_matches!(self.ci.nodes[self.ci.ctrl.get()].kind, Kind::Call { .. });
self.ci.scope.aclasses[clobbered].clobber.set(self.ci.ctrl.get(), &mut self.ci.nodes);
}
self.ci.nodes[self.ci.ctrl.get()].clobbers = clobbered_aliases;
}
fn struct_op(
&mut self,
pos: Pos,
op: TokenKind,
s: ty::Struct,
dst: Nid,
lhs: Nid,
rhs: Nid,
) -> bool {
let mut offs = OffsetIter::new(s, self.tys);
while let Some((ty, off)) = offs.next_ty(self.tys) {
let lhs = self.offset(lhs, off);
let rhs = self.offset(rhs, off);
let dst = self.offset(dst, off);
match ty.expand() {
_ if ty.is_pointer() || ty.is_integer() || ty == ty::Id::BOOL => {
let lhs = self.load_mem(lhs, ty);
let rhs = self.load_mem(rhs, ty);
let res =
self.ci.nodes.new_node(ty, Kind::BinOp { op }, [VOID, lhs, rhs], self.tys);
self.store_mem(dst, ty, res);
}
ty::Kind::Struct(is) => {
if !self.struct_op(pos, op, is, dst, lhs, rhs) {
self.error(
pos,
fa!("... when appliing '{0} {op} {0}'", self.ty_display(s.into())),
);
}
}
_ => {
_ = self.error(pos, fa!("'{0} {op} {0}' is not supported", self.ty_display(ty)))
}
}
}
true
}
fn struct_fold_op(
&mut self,
pos: Pos,
op: TokenKind,
fold_op: TokenKind,
s: ty::Struct,
lhs: Nid,
rhs: Nid,
) -> Option<Value> {
debug_assert!(op.is_compatison());
let mut fold = None;
let mut offs = OffsetIter::new(s, self.tys);
while let Some((ty, off)) = offs.next_ty(self.tys) {
let lhs = self.offset(lhs, off);
let rhs = self.offset(rhs, off);
let vl = match ty.expand() {
_ if ty.is_pointer() || ty.is_integer() || ty == ty::Id::BOOL => {
let lhs = self.load_mem(lhs, ty);
let rhs = self.load_mem(rhs, ty);
self.ci.nodes.new_node(
ty::Id::BOOL,
Kind::BinOp { op },
[VOID, lhs, rhs],
self.tys,
)
}
ty::Kind::Struct(is) => match self.struct_fold_op(pos, op, fold_op, is, lhs, rhs) {
Some(v) => v.id,
None => {
self.error(
pos,
fa!("...when appliing '{0} {op} {0}'", self.ty_display(s.into())),
);
return None;
}
},
_ => {
self.error(pos, fa!("'{0} {op} {0}' is not supported", self.ty_display(ty)));
return None;
}
};
fold = Some(match fold {
None => vl,
Some(o) => self.ci.nodes.new_node(
ty::Id::BOOL,
Kind::BinOp { op: fold_op },
[VOID, o, vl],
self.tys,
),
});
}
match op {
_ if let Some(fold) = fold => Some(Value::new(fold).ty(ty::Id::BOOL)),
TokenKind::Eq => Some(self.ci.nodes.new_const_lit(ty::Id::BOOL, true)),
_ => Some(self.ci.nodes.new_const_lit(ty::Id::BOOL, false)),
}
}
fn compute_signature(&mut self, func: ty::Id, pos: Pos, args: &[Expr]) -> Option<ty::Func> {
let template = match func.expand() {
ty::Kind::Func(f) => return Some(f),
ty::Kind::Template(t) => t,
_ => {
self.error(pos, fa!("compiler cant (yet) call '{}'", self.ty_display(func)));
return None;
}
};
let TemplateData { file, expr, parent, name, is_inline, .. } =
self.tys.ins.templates[template];
let fast = &self.files[file];
let &Expr::Closure { pos, args: cargs, ret, .. } = expr.get(fast) else {
unreachable!();
};
let arg_base = self.tys.tmp.args.len();
let base = self.ci.scope.vars.len();
for (arg, carg) in args.iter().zip(cargs) {
let ty = self.ty_in(file, parent, &carg.ty);
self.tys.tmp.args.push(ty);
let sym = parser::find_symbol(&fast.symbols, carg.id);
let ty = if sym.flags & idfl::COMPTIME == 0 {
// FIXME: could fuck us
continue;
} else {
if ty != ty::Id::TYPE {
self.error(
arg.pos(),
fa!(
"arbitrary comptime types are not supported yet \
(expected '{}' got '{}')",
self.ty_display(ty::Id::TYPE),
self.ty_display(ty)
),
);
return None;
}
let ty = self.ty(arg);
self.tys.tmp.args.push(ty);
ty
};
self.ci.scope.vars.push(Variable::new(
carg.id,
ty::Id::TYPE,
false,
self.ci.nodes.new_const(ty::Id::TYPE, ty),
&mut self.ci.nodes,
));
}
let Some(args) = self.tys.pack_args(arg_base) else {
self.error(pos, "function instance has too many arguments");
return None;
};
let ret = self.ty_in(file, parent, ret);
self.ci.scope.vars.drain(base..).for_each(|v| v.remove(&mut self.ci.nodes));
let sym = SymKey::Type(parent, pos, args);
let ct = |ins: &mut TypeIns| {
ins.funcs
.push(FuncData {
file,
parent,
name,
pos,
expr,
sig: Sig { args, ret },
is_inline,
is_generic: true,
comp_state: Default::default(),
})
.into()
};
let ty::Kind::Func(f) = self.tys.syms.get_or_insert(sym, &mut self.tys.ins, ct).expand()
else {
unreachable!()
};
Some(f)
}
fn assign_pattern(&mut self, pat: &Expr, mut right: Value) {
match *pat {
Expr::Ident { id, pos, .. } => {
if parser::find_symbol(&self.file().symbols, id).flags & idfl::REFERENCED != 0
&& !right.ptr
{
let stack = self.new_stack(pos, right.ty);
self.store_mem(stack, right.ty, right.id);
right.id = stack;
right.ptr = true;
}
self.ci.scope.vars.push(Variable::new(
id,
right.ty,
right.ptr,
right.id,
&mut self.ci.nodes,
));
}
Expr::Ctor { pos, fields, .. } => {
let ty::Kind::Struct(idx) = right.ty.expand() else {
self.error(pos, "can't use struct destruct on non struct value (TODO: shold work with modules)");
return;
};
for &CtorField { pos, name, ref value } in fields {
let Some((offset, ty)) = OffsetIter::offset_of(self.tys, idx, name) else {
self.error(pos, format_args!("field not found: {name:?}"));
continue;
};
let off = self.offset(right.id, offset);
self.assign_pattern(value, Value::ptr(off).ty(ty));
}
}
ref pat => self.error_unhandled_ast(pat, "pattern"),
}
}
fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Value> {
let mut n = self.raw_expr_ctx(expr, ctx)?;
self.strip_var(&mut n);
self.strip_ptr(&mut n);
Some(n)
}
fn expr(&mut self, expr: &Expr) -> Option<Value> {
self.expr_ctx(expr, Default::default())
}
fn strip_ptr(&mut self, target: &mut Value) {
if mem::take(&mut target.ptr) {
target.id = self.load_mem(target.id, target.ty);
}
}
fn offset(&mut self, val: Nid, off: Offset) -> Nid {
if off == 0 {
return val;
}
let off = self.ci.nodes.new_const(ty::Id::INT, off);
let aclass = self.ci.nodes.aclass_index(val).1;
let inps = [VOID, val, off];
let seted =
self.ci.nodes.new_node(ty::Id::INT, Kind::BinOp { op: TokenKind::Add }, inps, self.tys);
self.ci.nodes.pass_aclass(aclass, seted);
seted
}
fn strip_var(&mut self, n: &mut Value) {
if mem::take(&mut n.var) {
let id = (u16::MAX - n.id) as usize;
n.ptr = self.ci.scope.vars[id].ptr;
n.id = self.ci.scope.vars[id].value();
}
}
fn gen_defers(&mut self, base: usize) -> Option<()> {
let defers = mem::take(&mut self.ci.defers);
for &(_, defer) in defers.iter().skip(base).rev() {
self.expr(defer.get(self.file()))?;
}
self.ci.defers = defers;
Some(())
}
fn jump_to(&mut self, pos: Pos, id: usize) -> Option<Value> {
let Some(&mut Loop { defer_base, .. }) = self.ci.loops.last_mut() else {
self.error(pos, "break outside a loop");
return None;
};
self.gen_defers(defer_base)?;
let mut loob = self.ci.loops.last_mut().unwrap();
if loob.ctrl[id].is_live() {
loob.ctrl[id].set(
self.ci.nodes.new_node(
ty::Id::VOID,
Kind::Region,
[self.ci.ctrl.get(), loob.ctrl[id].get()],
self.tys,
),
&mut self.ci.nodes,
);
let mut scope = mem::take(&mut loob.ctrl_scope[id]);
let ctrl = mem::take(&mut loob.ctrl[id]);
self.ci.nodes.merge_scopes(
&mut self.ci.loops,
&ctrl,
&mut scope,
&mut self.ci.scope,
self.tys,
);
loob = self.ci.loops.last_mut().unwrap();
loob.ctrl_scope[id] = scope;
loob.ctrl[id] = ctrl;
self.ci.ctrl.set(NEVER, &mut self.ci.nodes);
} else {
let term = StrongRef::new(NEVER, &mut self.ci.nodes);
loob.ctrl[id] = mem::replace(&mut self.ci.ctrl, term);
loob.ctrl_scope[id] = self.ci.scope.dup(&mut self.ci.nodes);
loob.ctrl_scope[id]
.vars
.drain(loob.scope.vars.len()..)
.for_each(|v| v.remove(&mut self.ci.nodes));
loob.ctrl_scope[id]
.aclasses
.drain(loob.scope.aclasses.len()..)
.for_each(|v| v.remove(&mut self.ci.nodes));
}
None
}
fn complete_call_graph(&mut self) -> bool {
let prev_err_len = self.errors.borrow().len();
while self.ci.task_base < self.tys.tasks.len()
&& let Some(task_slot) = self.tys.tasks.pop()
{
let Some(task) = task_slot else { continue };
self.emit_func(task);
}
self.errors.borrow().len() == prev_err_len
}
fn emit_func(&mut self, FTask { file, id, ct }: FTask) {
let func = &mut self.tys.ins.funcs[id];
debug_assert_eq!(func.file, file);
let cct = self.ct.active();
debug_assert_eq!(cct, ct);
func.comp_state[cct as usize] = CompState::Compiled.into();
let sig = func.sig;
let ast = &self.files[file];
let expr = func.expr.get(ast);
self.pool.push_ci(file, func.parent, Some(sig.ret), 0, &mut self.ci);
let prev_err_len = self.errors.borrow().len();
log::info!("{}", self.ast_display(expr));
let &Expr::Closure { body, args, pos, .. } = expr else {
unreachable!("{}", self.ast_display(expr))
};
self.ci.pos.push(pos);
let mut tys = sig.args.args();
let mut argsi = args.iter();
while let Some(aty) = tys.next(self.tys) {
let arg = argsi.next().unwrap();
match aty {
Arg::Type(_) => {}
Arg::Value(ty) => {
let mut deps = Vc::from([VOID]);
if ty.loc(self.tys) == Loc::Stack && self.tys.size_of(ty) <= 16 {
deps.push(MEM);
}
// TODO: whe we not using the deps?
let value = self.ci.nodes.new_node_nop(ty, Kind::Arg, deps);
let ptr = ty.loc(self.tys) == Loc::Stack;
self.ci.scope.vars.push(Variable::new(
arg.id,
ty,
ptr,
value,
&mut self.ci.nodes,
));
if ty.loc(self.tys) == Loc::Stack {
self.ci.nodes[value].aclass = self.ci.scope.aclasses.len() as _;
self.ci.scope.aclasses.push(AClass::new(&mut self.ci.nodes));
}
}
}
}
let mut tys = sig.args.args();
let mut args = args.iter();
while let Some(aty) = tys.next(self.tys) {
let arg = args.next().unwrap();
match aty {
Arg::Type(ty) => {
self.ci.scope.vars.push(Variable::new(
arg.id,
ty::Id::TYPE,
false,
self.ci.nodes.new_const(ty::Id::TYPE, ty),
&mut self.ci.nodes,
));
}
Arg::Value(_) => {}
}
}
if self.expr(body).is_some() {
if sig.ret == ty::Id::VOID {
self.expr(&Expr::Return { pos: body.pos(), val: None });
} else {
self.error(
body.pos(),
fa!(
"expected all paths in the fucntion to return \
or the return type to be 'void' (return type is '{}')",
self.ty_display(sig.ret),
),
);
}
}
self.ci.scope.vars.drain(..).for_each(|v| v.remove_ignore_arg(&mut self.ci.nodes));
if self.finalize(prev_err_len) {
let backend = if !cct { &mut *self.backend } else { &mut *self.ct_backend };
backend.emit_body(id, &self.ci.nodes, self.tys, self.files);
}
self.ci.pos.pop();
self.pool.pop_ci(&mut self.ci);
}
fn finalize(&mut self, prev_err_len: usize) -> bool {
use {AssertKind as AK, CondOptRes as CR};
self.ci.finalize(&mut self.pool.scratch1, self.tys, self.files);
//let mut to_remove = vec![];
for (id, node) in self.ci.nodes.iter() {
let Kind::Assert { kind, pos } = node.kind else { continue };
let res = self.ci.nodes.try_match_cond(id);
// TODO: highlight the pin position
let msg = match (kind, res) {
(AK::UnwrapCheck, CR::Known { value: false, .. }) => {
"unwrap is not needed since the value is (provably) never null, \
remove it, or replace with '@as(<expr_ty>, <opt_expr>)'"
}
(AK::UnwrapCheck, CR::Known { value: true, .. }) => {
"unwrap is incorrect since the value is (provably) always null, \
make sure your logic is correct"
}
(AK::NullCheck, CR::Known { value: true, .. }) => {
"the value is always null, some checks might need to be inverted"
}
(AK::NullCheck, CR::Unknown) => {
"can't prove the value is not 'null', \
use '@unwrap(<opt>)' if you believe compiler is stupid, \
or explicitly check for null and handle it \
('if <opt> == null { /* handle */ } else { /* use opt */ }')"
}
_ => unreachable!(),
};
self.error(pos, msg);
}
for &node in self.ci.nodes[NEVER].inputs.iter() {
if let Kind::Return { file } = self.ci.nodes[node].kind
&& let (_, stck) = self.ci.nodes.aclass_index(self.ci.nodes[node].inputs[1])
&& self.ci.nodes[stck].kind == Kind::Stck
{
let pfile = mem::replace(&mut self.ci.file, file);
debug_assert!(self.ci.nodes[node].pos != 0);
self.error(
self.ci.nodes[node].pos,
"returning value with local provenance \
(pointer will be invalid after function returns)",
);
self.error(
self.ci.nodes[stck].pos,
"...the pointer points to stack allocation created here",
);
self.ci.file = pfile;
}
}
if self.errors.borrow().len() == prev_err_len {
self.ci.nodes.check_final_integrity(self.ty_display(ty::Id::VOID));
self.ci.nodes.graphviz(self.ty_display(ty::Id::VOID));
self.ci.nodes.gcm(
&mut self.pool.scratch1,
&mut self.pool.scratch2,
&mut self.pool.nid_set,
);
self.ci.nodes.check_loop_depth_integrity(self.ty_display(ty::Id::VOID));
self.ci.nodes.basic_blocks();
self.ci.nodes.graphviz(self.ty_display(ty::Id::VOID));
} else {
//self.ci.nodes.graphviz_in_browser(self.ty_display(ty::Id::VOID));
}
self.errors.borrow().len() == prev_err_len
}
fn ty(&mut self, expr: &Expr) -> ty::Id {
self.ty_in(self.ci.file, self.ci.parent, expr)
}
fn ty_in(&mut self, file: Module, parent: ty::Id, expr: &Expr) -> ty::Id {
self.parse_ty(TyScope { file, parent, alloc_const: true, ..Default::default() }, expr)
}
fn ty_display(&self, ty: ty::Id) -> ty::Display {
ty::Display::new(self.tys, self.files, ty)
}
fn ast_display(&self, ast: &'a Expr<'a>) -> parser::Display<'a> {
parser::Display::new(&self.file().file, ast)
}
#[must_use]
#[track_caller]
fn binop_ty(
&mut self,
pos: Pos,
lhs: &mut Value,
rhs: &mut Value,
op: TokenKind,
) -> (ty::Id, Nid) {
if let Some(upcasted) = lhs.ty.try_upcast_low(rhs.ty, true) {
let to_correct = if lhs.ty != upcasted {
Some((lhs, rhs))
} else if rhs.ty != upcasted {
Some((rhs, lhs))
} else {
None
};
if let Some((oper, other)) = to_correct {
if self.tys.size_of(upcasted) > self.tys.size_of(oper.ty) {
self.extend(oper, upcasted);
}
if matches!(op, TokenKind::Add | TokenKind::Sub)
&& let Some(elem) = self.tys.base_of(upcasted)
{
let cnst = self.ci.nodes.new_const(ty::Id::INT, self.tys.size_of(elem));
oper.id = self.ci.nodes.new_node(
upcasted,
Kind::BinOp { op: TokenKind::Mul },
[VOID, oper.id, cnst],
self.tys,
);
return (upcasted, self.ci.nodes.aclass_index(other.id).1);
}
}
(upcasted, VOID)
} else {
let ty = self.ty_display(lhs.ty);
let expected = self.ty_display(rhs.ty);
self.error(pos, fa!("'{ty} {op} {expected}' is not supported"));
(ty::Id::NEVER, VOID)
}
}
fn wrap_in_opt(&mut self, pos: Pos, val: &mut Value) {
debug_assert!(!val.var);
let was_ptr = val.ptr;
let oty = self.tys.make_opt(val.ty);
if let Some((uninit, ..)) = self.tys.nieche_of(val.ty) {
self.strip_ptr(val);
val.ty = oty;
assert!(!uninit, "TODO");
return;
}
let OptLayout { flag_ty, flag_offset, payload_offset } = self.tys.opt_layout(val.ty);
match oty.loc(self.tys) {
Loc::Reg => {
self.strip_ptr(val);
// registers have inverted offsets so that accessing the inner type is a noop
let flag_offset = self.tys.size_of(oty) * 8 - flag_offset * 8 - 1;
let fill = self.ci.nodes.new_const(oty, 1i64 << flag_offset);
val.id = self.ci.nodes.new_node(
oty,
Kind::BinOp { op: TokenKind::Bor },
[VOID, val.id, fill],
self.tys,
);
val.ty = oty;
}
Loc::Stack => {
self.strip_ptr(val);
let stack = self.new_stack(pos, oty);
let fill = self.ci.nodes.new_const(flag_ty, 1);
self.store_mem(stack, flag_ty, fill);
let off = self.offset(stack, payload_offset);
self.store_mem(off, val.ty, val.id);
val.id = stack;
val.ptr = true;
val.ty = oty;
}
}
if !was_ptr {
self.strip_ptr(val);
}
}
fn implicit_unwrap(&mut self, pos: Pos, opt: &mut Value) {
self.unwrap_low(pos, opt, AssertKind::NullCheck);
}
fn explicit_unwrap(&mut self, pos: Pos, opt: &mut Value) {
self.unwrap_low(pos, opt, AssertKind::UnwrapCheck);
}
fn unwrap_low(&mut self, pos: Pos, opt: &mut Value, kind: AssertKind) {
let Some(ty) = self.tys.inner_of(opt.ty) else { return };
let null_check = self.gen_null_check(*opt, ty, TokenKind::Eq);
let oty = mem::replace(&mut opt.ty, ty);
self.unwrap_opt_unchecked(ty, oty, opt);
// TODO: extract the if check int a fucntion
let ass = self.ci.nodes.new_node_nop(oty, Kind::Assert { kind, pos }, [
self.ci.ctrl.get(),
null_check,
opt.id,
]);
self.ci.nodes.pass_aclass(self.ci.nodes.aclass_index(opt.id).1, ass);
opt.id = ass;
}
fn unwrap_opt_unchecked(&mut self, ty: ty::Id, oty: ty::Id, opt: &mut Value) {
if self.tys.nieche_of(ty).is_some() {
return;
}
let OptLayout { payload_offset, .. } = self.tys.opt_layout(ty);
match oty.loc(self.tys) {
Loc::Reg => {}
Loc::Stack => {
opt.id = self.offset(opt.id, payload_offset);
}
}
}
fn gen_null_check(&mut self, mut cmped: Value, ty: ty::Id, op: TokenKind) -> Nid {
let OptLayout { flag_ty, flag_offset, .. } = self.tys.opt_layout(ty);
debug_assert!(cmped.ty.is_optional());
match cmped.ty.loc(self.tys) {
Loc::Reg => {
self.strip_ptr(&mut cmped);
let inps = [VOID, cmped.id, self.ci.nodes.new_const(cmped.ty, 0)];
self.ci.nodes.new_node(ty::Id::BOOL, Kind::BinOp { op }, inps, self.tys)
}
Loc::Stack => {
cmped.id = self.offset(cmped.id, flag_offset);
cmped.ty = flag_ty;
debug_assert!(cmped.ptr);
self.strip_ptr(&mut cmped);
let inps = [VOID, cmped.id, self.ci.nodes.new_const(flag_ty, 0)];
self.ci.nodes.new_node(ty::Id::BOOL, Kind::BinOp { op }, inps, self.tys)
}
}
}
#[track_caller]
fn assert_ty(
&mut self,
pos: Pos,
src: &mut Value,
expected: ty::Id,
hint: impl fmt::Display,
) -> bool {
if let Some(upcasted) = src.ty.try_upcast(expected)
&& upcasted == expected
{
if src.ty.is_never() {
return true;
}
if src.ty != upcasted {
if let Some(inner) = self.tys.inner_of(upcasted) {
if inner != src.ty {
self.assert_ty(pos, src, inner, hint);
}
self.wrap_in_opt(pos, src);
} else {
debug_assert!(
src.ty.is_integer() || src.ty == ty::Id::NEVER,
"{} {}",
self.ty_display(src.ty),
self.ty_display(upcasted)
);
debug_assert!(
upcasted.is_integer() || src.ty == ty::Id::NEVER,
"{} {}",
self.ty_display(src.ty),
self.ty_display(upcasted)
);
self.extend(src, upcasted);
}
}
true
} else {
if let Some(inner) = self.tys.inner_of(src.ty)
&& inner.try_upcast(expected) == Some(expected)
{
self.implicit_unwrap(pos, src);
return self.assert_ty(pos, src, expected, hint);
}
let ty = self.ty_display(src.ty);
let expected = self.ty_display(expected);
self.error(pos, fa!("expected {hint} to be of type {expected}, got {ty}"));
false
}
}
fn extend(&mut self, value: &mut Value, to: ty::Id) {
self.strip_ptr(value);
let inps = [VOID, value.id];
*value =
self.ci.nodes.new_node_lit(to, Kind::UnOp { op: TokenKind::Number }, inps, self.tys);
value.ty = to;
}
#[track_caller]
fn warn(&self, pos: Pos, msg: impl core::fmt::Display) {
let mut buf = self.warnings.borrow_mut();
write!(buf, "(W) {}", self.file().report(pos, msg)).unwrap();
}
#[track_caller]
fn error(&self, pos: Pos, msg: impl core::fmt::Display) -> Option<Value> {
let mut buf = self.errors.borrow_mut();
write!(buf, "{}", self.file().report(pos, msg)).unwrap();
Value::NEVER
}
#[track_caller]
fn error_unhandled_ast(&self, ast: &Expr, hint: impl Display) {
log::info!("{ast:#?}");
self.error(ast.pos(), fa!("compiler does not (yet) know how to handle ({hint})"));
}
fn file(&self) -> &'a parser::Ast {
&self.files[self.ci.file]
}
fn eval_const(&mut self, file: Module, parent: ty::Id, expr: &Expr, ret: ty::Id) -> u64 {
self.ct.activate();
let prev = self.pool.push_ci(file, parent, Some(ret), self.tys.tasks.len(), &mut self.ci);
prev.scope
.vars
.iter()
.filter(|v| v.ty == ty::Id::TYPE)
.map(|v| (prev.nodes.as_ty(v.value()), v.id))
.map(|(v, id)| {
Variable::new(
id,
ty::Id::TYPE,
false,
self.ci.nodes.new_const(ty::Id::TYPE, v),
&mut self.ci.nodes,
)
})
.collect_into(&mut self.ci.scope.vars);
let prev_err_len = self.errors.borrow().len();
self.expr(&Expr::Return { pos: expr.pos(), val: Some(expr) });
let res = if self.finalize(prev_err_len) {
self.emit_and_eval(file, ret, &mut [])
} else {
i64::from(ty::Id::UNDECLARED) as _
};
self.pool.pop_ci(&mut self.ci);
self.ct.deactivate();
res
}
fn infer_type(&mut self, expr: &Expr) -> ty::Id {
self.pool.save_ci(&self.ci);
let ty = self.expr(expr).map_or(ty::Id::NEVER, |v| v.ty);
self.pool.restore_ci(&mut self.ci);
ty
}
fn on_reuse(&mut self, existing: ty::Id) {
let state_slot = self.ct.active() as usize;
if let ty::Kind::Func(id) = existing.expand()
&& let func = &mut self.tys.ins.funcs[id]
&& let CompState::Queued(idx) = func.comp_state[state_slot].into()
&& idx < self.tys.tasks.len()
{
func.comp_state[state_slot] = CompState::Queued(self.tys.tasks.len()).into();
let task = self.tys.tasks[idx].take();
self.tys.tasks.push(task);
}
}
fn eval_global(&mut self, file: Module, parent: ty::Id, name: Ident, expr: &Expr) -> ty::Id {
self.ct.activate();
let gid = self.tys.ins.globals.push(GlobalData { file, name, ..Default::default() });
self.pool.push_ci(file, parent, None, self.tys.tasks.len(), &mut self.ci);
let prev_err_len = self.errors.borrow().len();
self.expr(&(Expr::Return { pos: expr.pos(), val: Some(expr) }));
let ret = self.ci.ret.expect("for return type to be infered");
if self.finalize(prev_err_len) {
let mut mem = vec![0u8; self.tys.size_of(ret) as usize];
self.emit_and_eval(file, ret, &mut mem);
self.tys.ins.globals[gid].data = mem;
}
self.pool.pop_ci(&mut self.ci);
self.tys.ins.globals[gid].ty = ret;
self.ct.deactivate();
gid.into()
}
fn error_low(&self, file: Module, pos: Pos, msg: impl Display) -> ty::Id {
let mut buf = self.errors.borrow_mut();
write!(buf, "{}", self.files[file].report(pos, msg)).unwrap();
ty::Id::NEVER
}
fn warn_low(&self, file: Module, pos: Pos, msg: impl Display) -> ty::Id {
let mut buf = self.warnings.borrow_mut();
write!(buf, "(W) {}", self.files[file].report(pos, msg)).unwrap();
ty::Id::NEVER
}
fn find_local_ty(&mut self, ident: Ident) -> Option<ty::Id> {
self.ci
.scope
.vars
.iter()
.rfind(|v| (v.id == ident && v.ty == ty::Id::TYPE))
.map(|v| self.ci.nodes.as_ty(v.value()))
}
fn find_type_as_value(
&mut self,
pos: Pos,
parent: impl Into<ty::Id>,
id: impl Into<DeclId>,
ctx: Ctx,
) -> Option<Value> {
match self.find_type(pos, self.ci.file, parent, id).expand() {
ty::Kind::NEVER => Value::NEVER,
ty::Kind::Global(global) => self.gen_global(global),
ty::Kind::Const(cnst) => self.gen_const(cnst, ctx),
v => Some(self.ci.nodes.new_const_lit(ty::Id::TYPE, v.compress())),
}
}
fn find_type(
&mut self,
pos: Pos,
from_file: Module,
parent: impl Into<ty::Id>,
id: impl Into<DeclId>,
) -> ty::Id {
self.find_type_low(pos, from_file, parent.into(), id.into())
}
fn find_type_low(&mut self, pos: Pos, from_file: Module, parent: ty::Id, id: DeclId) -> ty::Id {
let file = match parent.expand() {
ty::Kind::Module(m) => m,
_ => self.tys.type_base_of(parent).unwrap().file,
};
let ty = if let DeclId::Ident(id) = id
&& let Some(ty) = self.find_local_ty(id)
{
ty
} else if let DeclId::Ident(id) = id
&& let Some(&ty) = self.tys.syms.get(SymKey::Decl(parent, id), &self.tys.ins)
{
self.on_reuse(ty);
ty
} else {
let f = &self.files[file];
let mut piter = parent;
let Some((expr @ Expr::BinOp { left, right, .. }, name)) = (loop {
if let Some(f) =
parser::find_decl(self.tys.scope_of(piter, f).expect("TODO"), &f.file, id)
{
break Some(f);
}
if let Some((captures, capture_tuple)) = self.tys.captures_of(piter, f)
&& let Some(idx) = captures.iter().position(|&cid| DeclId::Ident(cid) == id)
{
return self.tys.ins.args[capture_tuple.range().start + idx];
}
piter = match self.tys.parent_of(piter) {
Some(p) => p,
None => {
if let ty::Kind::Struct(_) = piter.expand() {
panic!();
}
break None;
}
};
}) else {
return match id {
DeclId::Ident(id) => {
debug_assert_eq!(from_file, file, "{}", f.ident_str(id));
self.error_low(file, pos, "somehow this was not found")
}
DeclId::Name("main") => self.error_low(
from_file,
pos,
format_args!(
"missing main function in '{}', compiler can't \
emmit libraries since such concept is not defined \
(minimal main function: `main := fn(): void {{}}`)",
f.path
),
),
DeclId::Name(name) => self.error_low(
from_file,
pos,
format_args!("undefined indentifier: {name}"),
),
};
};
let ty = if let Some(&ty) = self.tys.syms.get(SymKey::Decl(piter, name), &self.tys.ins)
{
ty
} else {
let ty = left
.find_pattern_path(name, right, |right, is_ct| {
if is_ct && !matches!(right, Expr::Closure { .. }) {
self.tys
.ins
.consts
.push(ConstData {
ast: ExprRef::new(expr),
name,
file,
parent: piter,
})
.into()
} else {
self.parse_ty(
TyScope {
file,
parent: piter,
name: Some(name),
alloc_const: true,
is_ct,
},
right,
)
}
})
.unwrap_or_else(|_| unreachable!());
self.tys.syms.insert(SymKey::Decl(piter, name), ty, &self.tys.ins);
ty
};
if let Err(proper_case) = self.tys.case(ty, self.files)(f.ident_str(name)) {
self.warn_low(
from_file,
pos,
format_args!(
"the declaration does not have conventional \
casing, expected '{proper_case}', \
because the declared type is '{}'",
self.ty_display(ty),
),
);
}
ty
};
if let ty::Kind::Global(g) = ty.expand() {
let g = &self.tys.ins.globals[g];
if g.ty == ty::Id::TYPE {
return ty::Id::from(
u32::from_ne_bytes(g.data.as_slice().try_into().unwrap()) as u64
);
}
}
ty
}
/// returns none if comptime eval is required
fn parse_ty(&mut self, sc: TyScope, expr: &Expr) -> ty::Id {
match *expr {
Expr::Slf { .. } => sc.parent,
Expr::Mod { id, .. } => id.into(),
Expr::UnOp { op: TokenKind::Xor, val, .. } => {
let base = self.parse_ty(sc.anon(), val);
self.tys.make_ptr(base)
}
Expr::UnOp { op: TokenKind::Que, val, .. } => {
let base = self.parse_ty(sc.anon(), val);
self.tys.make_opt(base)
}
Expr::Ident { id, .. } if let Ok(bt) = ty::Builtin::try_from(id) => bt.into(),
Expr::Ident { id, pos, .. } => self.find_type(pos, sc.file, sc.parent, id),
Expr::Field { target, pos, name }
if let ty::Kind::Module(inside) = self.parse_ty(sc.anon(), target).expand() =>
{
self.find_type(pos, sc.file, inside, name)
}
Expr::Directive { name: "TypeOf", args: [expr], .. } => self.infer_type(expr),
Expr::Slice { size: None, item, .. } => {
let ty = self.parse_ty(sc.anon(), item);
self.tys.make_array(ty, ArrayLen::MAX)
}
Expr::Slice { size: Some(&Expr::Number { value, .. }), item, .. } => {
let ty = self.parse_ty(sc.anon(), item);
self.tys.make_array(ty, value as _)
}
Expr::Slice { size, item, .. } => {
let ty = self.parse_ty(sc.anon(), item);
let len = size.map_or(ArrayLen::MAX, |expr| {
self.eval_const(sc.file, sc.parent, expr, ty::Id::U32) as _
});
self.tys.make_array(ty, len)
}
Expr::Struct { pos, fields, packed, captured, .. } => self.parse_base_ty(
pos,
expr,
captured,
fields,
sc,
|s| [&mut s.ins.struct_fields, &mut s.tmp.struct_fields],
|s, field| {
let ty = s.parse_ty(sc.anon(), &field.ty);
StructField { name: s.tys.names.intern(field.name), ty }
},
|s, base| {
s.ins.structs.push(StructData {
base,
explicit_alignment: packed.then_some(1),
..Default::default()
})
},
),
Expr::Enum { pos, variants, captured, .. } => self.parse_base_ty(
pos,
expr,
captured,
variants,
sc,
|s| [&mut s.ins.enum_fields, &mut s.tmp.enum_fields],
|s, field| EnumField { name: s.tys.names.intern(field.name) },
|s, base| s.ins.enums.push(EnumData { base }),
),
Expr::Union { pos, fields, captured, .. } => self.parse_base_ty(
pos,
expr,
captured,
fields,
sc,
|s| [&mut s.ins.struct_fields, &mut s.tmp.struct_fields],
|s, field| {
let ty = s.parse_ty(sc.anon(), &field.ty);
StructField { name: s.tys.names.intern(field.name), ty }
},
|s, base| s.ins.unions.push(UnionData { base, ..Default::default() }),
),
Expr::Closure { pos, args, ret, .. } if let Some(name) = sc.name => {
let sig = 'b: {
let arg_base = self.tys.tmp.args.len();
for arg in args {
let sym = parser::find_symbol(&self.files[sc.file].symbols, arg.id);
if sym.flags & idfl::COMPTIME != 0 {
self.tys.tmp.args.truncate(arg_base);
break 'b None;
}
let ty = self.parse_ty(sc.anon(), &arg.ty);
self.tys.tmp.args.push(ty);
}
let Some(args) = self.tys.pack_args(arg_base) else {
return self.error_low(sc.file, pos, "function has too many argumnets");
};
let ret = self.parse_ty(sc.anon(), ret);
Some(Sig { args, ret })
};
//let returns_type = matches!(ret, &Expr::Ident { id, .. } if );
match sig {
Some(sig) => {
let func = FuncData {
file: sc.file,
parent: sc.parent,
name,
pos,
sig,
expr: ExprRef::new(expr),
is_inline: sc.is_ct,
is_generic: false,
comp_state: Default::default(),
};
self.tys.ins.funcs.push(func).into()
}
None => {
let template = TemplateData {
file: sc.file,
parent: sc.parent,
name,
expr: ExprRef::new(expr),
is_inline: sc.is_ct,
};
self.tys.ins.templates.push(template).into()
}
}
}
_ if sc.alloc_const
&& let Some(name) = sc.name =>
{
self.eval_global(sc.file, sc.parent, name, expr)
}
_ if sc.alloc_const => {
ty::Id::from(self.eval_const(sc.file, sc.parent, expr, ty::Id::TYPE))
}
ref e => {
self.error_unhandled_ast(e, "bruh");
ty::Id::NEVER
}
}
}
#[expect(clippy::too_many_arguments)]
fn parse_base_ty<A: Copy, F, T: Into<ty::Id>>(
&mut self,
pos: Pos,
expr: &Expr,
captured: &[Ident],
fields: FieldList<A>,
sc: TyScope,
get_fields: impl Fn(&mut Types) -> [&mut Vec<F>; 2],
check_field: impl Fn(&mut Self, A) -> F,
check: impl Fn(&mut Types, TypeBase) -> T,
) -> ty::Id {
let captures_start = self.tys.tmp.args.len();
for &cp in captured {
let ty = self.find_local_ty(cp).expect("TODO");
self.tys.tmp.args.push(ty);
}
let captured = self.tys.pack_args(captures_start).expect("TODO");
let sym = SymKey::Type(sc.parent, pos, captured);
if let Some(&ty) = self.tys.syms.get(sym, &self.tys.ins) {
return ty;
}
let prev_tmp = get_fields(self.tys)[1].len();
for field in fields.iter().filter_map(CommentOr::or).filter_map(Result::ok) {
let field = check_field(self, field);
get_fields(self.tys)[1].push(field);
}
let base = TypeBase {
file: sc.file,
parent: sc.parent,
pos,
captured,
name: sc.name.unwrap_or_default(),
field_start: self.tys.ins.struct_fields.len() as _,
ast: ExprRef::new(expr),
};
let [ins, tmp] = get_fields(self.tys);
ins.extend(tmp.drain(prev_tmp..));
let ty = check(self.tys, base).into();
self.tys.syms.insert(sym, ty, &self.tys.ins);
ty
}
}
#[derive(Clone, Copy, Default)]
struct TyScope {
file: Module,
parent: ty::Id,
name: Option<Ident>,
alloc_const: bool,
is_ct: bool,
}
impl TyScope {
fn anon(self) -> Self {
Self { name: None, is_ct: false, ..self }
}
}
#[cfg(test)]
mod tests {
use {
crate::{
backend::hbvm::{self, HbvmBackend},
son::CodegenCtx,
ty,
},
alloc::{string::String, vec::Vec},
core::fmt::Write,
};
fn generate(ident: &'static str, input: &'static str, output: &mut String) {
_ = log::set_logger(&crate::fs::Logger);
log::set_max_level(log::LevelFilter::Info);
//log::set_max_level(log::LevelFilter::Trace);
let mut ctx = CodegenCtx::default();
let (ref files, embeds) = crate::test_parse_files(ident, input, &mut ctx.parser);
let mut backend = HbvmBackend::default();
let mut codegen = super::Codegen::new(&mut backend, files, &mut ctx);
codegen.push_embeds(embeds);
codegen.generate(ty::Module::MAIN);
{
let errors = codegen.errors.borrow();
if !errors.is_empty() {
output.push_str(&errors);
return;
}
}
let mut out = Vec::new();
codegen.assemble(&mut out);
let err = codegen.disasm(output, &out);
if let Err(e) = err {
writeln!(output, "!!! asm is invalid: {e}").unwrap();
} else {
log::info!("================ running {ident} ==============");
log::trace!("{output}");
hbvm::test_run_vm(&out, output);
}
}
crate::run_tests! { generate:
// Tour Examples
main_fn;
arithmetic;
floating_point_arithmetic;
functions;
comments;
if_statements;
variables;
hex_octal_binary_literals;
loops;
pointers;
structs;
struct_scopes;
enums;
unions;
nullable_types;
struct_operators;
global_variables;
constants;
directives;
c_strings;
struct_patterns;
arrays;
inline;
idk;
generic_functions;
die;
defer;
// Incomplete Examples;
//comptime_pointers;
generic_types;
fb_driver;
// Purely Testing Examples;
method_receiver_by_value;
comparing_floating_points;
pointer_comparison;
different_function_destinations;
triggering_store_in_divergent_branch;
wrong_dead_code_elimination;
memory_swap;
very_nested_loops;
generic_type_mishap;
storing_into_nullable_struct;
scheduling_block_did_dirty;
null_check_returning_small_global;
null_check_in_the_loop;
stack_provenance;
advanced_floating_point_arithmetic;
nullable_structure;
needless_unwrap;
inlining_issues;
null_check_test;
only_break_loop;
reading_idk;
nonexistent_ident_import;
big_array_crash;
returning_global_struct;
small_struct_bitcast;
small_struct_assignment;
intcast_store;
string_flip;
signed_to_unsigned_upcast;
wide_ret;
comptime_min_reg_leak;
different_types;
struct_return_from_module_function;
sort_something_viredly;
struct_in_register;
comptime_function_from_another_file;
inline_test;
inlined_generic_functions;
some_generic_code;
integer_inference_issues;
writing_into_string;
request_page;
tests_ptr_to_ptr_copy;
global_variable_wiredness;
inline_return_stack;
// Just Testing Optimizations;
const_folding_with_arg;
branch_assignments;
exhaustive_loop_testing;
pointer_opts;
conditional_stores;
loop_stores;
dead_code_in_loop;
infinite_loop_after_peephole;
aliasing_overoptimization;
global_aliasing_overptimization;
overwrite_aliasing_overoptimization;
more_if_opts;
optional_from_eca;
returning_optional_issues;
}
}