1
0
Fork 0
forked from koniifer/ableos
ableos-framebuffer/hbvm/src/vm/mod.rs

440 lines
17 KiB
Rust
Raw Normal View History

//! HoleyBytes Virtual Machine
//!
//! All unsafe code here should be sound, if input bytecode passes validation.
// # General safety notice:
// - Validation has to assure there is 256 registers (r0 - r255)
// - Instructions have to be valid as specified (values and sizes)
// - Mapped pages should be at least 4 KiB
2023-07-11 10:04:48 -05:00
use self::mem::HandlePageFault;
2023-06-24 17:16:14 -05:00
pub mod mem;
pub mod value;
use {
crate::validate,
core::ops,
hbbytecode::{OpParam, ParamBB, ParamBBB, ParamBBBB, ParamBBD, ParamBBDH, ParamBD},
mem::Memory,
static_assertions::assert_impl_one,
value::Value,
};
2023-06-24 17:16:14 -05:00
/// Extract a parameter from program
macro_rules! param {
($self:expr, $ty:ty) => {{
assert_impl_one!($ty: OpParam);
let data = $self
.program
.as_ptr()
.add($self.pc + 1)
.cast::<$ty>()
.read();
$self.pc += 1 + core::mem::size_of::<$ty>();
data
}};
}
2023-06-24 17:16:14 -05:00
/// Perform binary operation `#0 ← #1 OP #2`
macro_rules! binary_op {
($self:expr, $ty:ident, $handler:expr) => {{
let ParamBBB(tg, a0, a1) = param!($self, ParamBBB);
$self.write_reg(
tg,
$handler(
Value::$ty(&$self.read_reg(a0)),
Value::$ty(&$self.read_reg(a1)),
2023-07-07 08:22:03 -05:00
),
);
}};
2023-07-24 09:48:13 -05:00
($self:expr, $ty:ident, $handler:expr, $con:ty) => {{
let ParamBBB(tg, a0, a1) = param!($self, ParamBBB);
$self.write_reg(
tg,
$handler(
Value::$ty(&$self.read_reg(a0)),
2023-07-24 09:48:13 -05:00
Value::$ty(&$self.read_reg(a1)) as $con,
),
);
}};
}
2023-06-24 17:16:14 -05:00
/// Perform binary operation with immediate `#0 ← #1 OP imm #2`
macro_rules! binary_op_imm {
($self:expr, $ty:ident, $handler:expr) => {{
let ParamBBD(tg, a0, imm) = param!($self, ParamBBD);
$self.write_reg(
tg,
2023-07-07 08:22:03 -05:00
$handler(Value::$ty(&$self.read_reg(a0)), Value::$ty(&imm.into())),
);
}};
2023-07-24 09:48:13 -05:00
($self:expr, $ty:ident, $handler:expr, $con:ty) => {{
let ParamBBD(tg, a0, imm) = param!($self, ParamBBD);
$self.write_reg(
tg,
$handler(Value::$ty(&$self.read_reg(a0)), Value::$ty(&imm.into()) as $con),
);
}};
}
2023-06-24 17:16:14 -05:00
/// Jump at `#3` if ordering on `#0 <=> #1` is equal to expected
macro_rules! cond_jump {
($self:expr, $ty:ident, $expected:ident) => {{
let ParamBBD(a0, a1, jt) = param!($self, ParamBBD);
if core::cmp::Ord::cmp(&$self.read_reg(a0).as_u64(), &$self.read_reg(a1).as_u64())
== core::cmp::Ordering::$expected
{
$self.pc = jt as usize;
}
}};
}
2023-06-24 17:16:14 -05:00
/// HoleyBytes Virtual Machine
2023-07-11 10:04:48 -05:00
pub struct Vm<'a, PfHandler, const TIMER_QUOTIENT: usize> {
2023-06-24 17:16:14 -05:00
/// Holds 256 registers
///
/// Writing to register 0 is considered undefined behaviour
/// in terms of HoleyBytes program execution
pub registers: [Value; 256],
2023-06-24 17:16:14 -05:00
/// Memory implementation
pub memory: Memory,
2023-06-24 17:16:14 -05:00
/// Trap handler
2023-07-11 10:04:48 -05:00
pub pfhandler: PfHandler,
2023-06-24 17:16:14 -05:00
2023-07-21 19:42:43 -05:00
/// Program counter
pc: usize,
2023-06-24 17:16:14 -05:00
/// Program
program: &'a [u8],
2023-07-11 03:29:23 -05:00
2023-07-13 04:05:41 -05:00
/// Cached program length (without unreachable end)
program_len: usize,
2023-07-11 03:29:23 -05:00
/// Program timer
timer: usize,
}
2023-07-11 10:04:48 -05:00
impl<'a, PfHandler: HandlePageFault, const TIMER_QUOTIENT: usize>
Vm<'a, PfHandler, TIMER_QUOTIENT>
{
2023-06-24 17:16:14 -05:00
/// Create a new VM with program and trap handler
///
/// # Safety
/// Program code has to be validated
2023-07-11 10:04:48 -05:00
pub unsafe fn new_unchecked(program: &'a [u8], traph: PfHandler) -> Self {
Self {
registers: [Value::from(0_u64); 256],
memory: Default::default(),
2023-07-11 10:04:48 -05:00
pfhandler: traph,
pc: 0,
2023-07-13 04:05:41 -05:00
program_len: program.len() - 12,
program,
2023-07-11 03:29:23 -05:00
timer: 0,
}
}
2023-06-24 17:16:14 -05:00
/// Create a new VM with program and trap handler only if it passes validation
2023-07-11 10:04:48 -05:00
pub fn new_validated(program: &'a [u8], traph: PfHandler) -> Result<Self, validate::Error> {
validate::validate(program)?;
2023-06-24 17:16:14 -05:00
Ok(unsafe { Self::new_unchecked(program, traph) })
}
2023-06-24 17:16:14 -05:00
/// Execute program
///
/// Program can return [`VmRunError`] if a trap handling failed
2023-07-11 03:29:23 -05:00
pub fn run(&mut self) -> Result<VmRunOk, VmRunError> {
use hbbytecode::opcode::*;
loop {
2023-07-13 04:05:41 -05:00
// Check instruction boundary
if self.pc >= self.program_len {
return Ok(VmRunOk::End);
}
2023-07-11 03:29:23 -05:00
2023-06-24 17:16:14 -05:00
// Big match
//
// Contribution guide:
// - Zero register shall never be overwitten. It's value has to always be 0.
// - Prefer `Self::read_reg` and `Self::write_reg` functions
// - Extract parameters using `param!` macro
// - Prioritise speed over code size
// - Memory is cheap, CPUs not that much
// - Do not heap allocate at any cost
// - Yes, user-provided trap handler may allocate,
// but that is not our »fault«.
// - Unsafe is kinda must, but be sure you have validated everything
// - Your contributions have to pass sanitizers and Miri
// - Strictly follow the spec
// - The spec does not specify how you perform actions, in what order,
// just that the observable effects have to be performed in order and
// correctly.
// - Yes, we assume you run 64 bit CPU. Else ?conradluget a better CPU
// sorry 8 bit fans, HBVM won't run on your Speccy :(
unsafe {
2023-07-13 04:05:41 -05:00
match *self.program.get_unchecked(self.pc) {
UN => {
param!(self, ());
return Err(VmRunError::Unreachable);
}
NOP => param!(self, ()),
ADD => binary_op!(self, as_u64, u64::wrapping_add),
SUB => binary_op!(self, as_u64, u64::wrapping_sub),
MUL => binary_op!(self, as_u64, u64::wrapping_mul),
AND => binary_op!(self, as_u64, ops::BitAnd::bitand),
OR => binary_op!(self, as_u64, ops::BitOr::bitor),
XOR => binary_op!(self, as_u64, ops::BitXor::bitxor),
2023-07-24 09:48:13 -05:00
SL => binary_op!(self, as_u64, u64::wrapping_shl, u32),
SR => binary_op!(self, as_u64, u64::wrapping_shr, u32),
SRS => binary_op!(self, as_i64, i64::wrapping_shr, u32),
CMP => {
2023-07-21 17:46:30 -05:00
// Compare a0 <=> a1
// < → -1
// > → 1
// = → 0
let ParamBBB(tg, a0, a1) = param!(self, ParamBBB);
self.write_reg(
tg,
2023-07-07 08:22:03 -05:00
self.read_reg(a0).as_i64().cmp(&self.read_reg(a1).as_i64()) as i64,
);
}
CMPU => {
2023-07-21 17:46:30 -05:00
// Unsigned comparsion
let ParamBBB(tg, a0, a1) = param!(self, ParamBBB);
self.write_reg(
tg,
2023-07-07 08:22:03 -05:00
self.read_reg(a0).as_u64().cmp(&self.read_reg(a1).as_u64()) as i64,
);
}
NOT => {
2023-07-21 17:46:30 -05:00
// Logical negation
let param = param!(self, ParamBB);
2023-07-07 08:22:03 -05:00
self.write_reg(param.0, !self.read_reg(param.1).as_u64());
}
NEG => {
2023-07-21 17:46:30 -05:00
// Bitwise negation
let param = param!(self, ParamBB);
self.write_reg(
param.0,
match self.read_reg(param.1).as_u64() {
0 => 1_u64,
_ => 0,
2023-07-07 08:22:03 -05:00
},
);
}
DIR => {
2023-07-21 17:46:30 -05:00
// Fused Division-Remainder
let ParamBBBB(dt, rt, a0, a1) = param!(self, ParamBBBB);
let a0 = self.read_reg(a0).as_u64();
let a1 = self.read_reg(a1).as_u64();
2023-07-07 08:22:03 -05:00
self.write_reg(dt, a0.checked_div(a1).unwrap_or(u64::MAX));
self.write_reg(rt, a0.checked_rem(a1).unwrap_or(u64::MAX));
}
ADDI => binary_op_imm!(self, as_u64, ops::Add::add),
MULI => binary_op_imm!(self, as_u64, ops::Mul::mul),
ANDI => binary_op_imm!(self, as_u64, ops::BitAnd::bitand),
ORI => binary_op_imm!(self, as_u64, ops::BitOr::bitor),
XORI => binary_op_imm!(self, as_u64, ops::BitXor::bitxor),
2023-07-24 09:48:13 -05:00
SLI => binary_op_imm!(self, as_u64, u64::wrapping_shl, u32),
SRI => binary_op_imm!(self, as_u64, u64::wrapping_shr, u32),
SRSI => binary_op_imm!(self, as_i64, i64::wrapping_shr, u32),
CMPI => {
let ParamBBD(tg, a0, imm) = param!(self, ParamBBD);
self.write_reg(
tg,
2023-07-07 08:22:03 -05:00
self.read_reg(a0).as_i64().cmp(&Value::from(imm).as_i64()) as i64,
);
}
CMPUI => {
let ParamBBD(tg, a0, imm) = param!(self, ParamBBD);
2023-07-07 08:22:03 -05:00
self.write_reg(tg, self.read_reg(a0).as_u64().cmp(&imm) as i64);
}
CP => {
let param = param!(self, ParamBB);
self.write_reg(param.0, self.read_reg(param.1));
}
SWA => {
2023-07-21 17:46:30 -05:00
// Swap registers
let ParamBB(r0, r1) = param!(self, ParamBB);
match (r0, r1) {
(0, 0) => (),
(dst, 0) | (0, dst) => self.write_reg(dst, 0_u64),
(r0, r1) => {
core::ptr::swap(
self.registers.get_unchecked_mut(usize::from(r0)),
self.registers.get_unchecked_mut(usize::from(r1)),
);
}
}
}
LI => {
let param = param!(self, ParamBD);
2023-07-07 08:22:03 -05:00
self.write_reg(param.0, param.1);
}
LD => {
2023-07-21 17:46:30 -05:00
// Load. If loading more than register size, continue on adjecent registers
let ParamBBDH(dst, base, off, count) = param!(self, ParamBBDH);
let n: usize = match dst {
0 => 1,
_ => 0,
};
2023-06-24 17:16:14 -05:00
self.memory.load(
self.read_reg(base).as_u64() + off + n as u64,
self.registers.as_mut_ptr().add(usize::from(dst) + n).cast(),
usize::from(count).saturating_sub(n),
2023-07-11 10:04:48 -05:00
&mut self.pfhandler,
2023-06-24 17:16:14 -05:00
)?;
}
ST => {
2023-07-21 17:46:30 -05:00
// Store. Same rules apply as to LD
let ParamBBDH(dst, base, off, count) = param!(self, ParamBBDH);
2023-06-24 17:16:14 -05:00
self.memory.store(
self.read_reg(base).as_u64() + off,
self.registers.as_ptr().add(usize::from(dst)).cast(),
count.into(),
2023-07-11 10:04:48 -05:00
&mut self.pfhandler,
2023-06-24 17:16:14 -05:00
)?;
}
BMC => {
2023-07-21 17:46:30 -05:00
// Block memory copy
2023-07-12 05:50:07 -05:00
let ParamBBD(src, dst, count) = param!(self, ParamBBD);
2023-06-24 17:16:14 -05:00
self.memory.block_copy(
self.read_reg(src).as_u64(),
self.read_reg(dst).as_u64(),
count as _,
2023-07-11 10:04:48 -05:00
&mut self.pfhandler,
2023-06-24 17:16:14 -05:00
)?;
}
BRC => {
2023-07-21 17:46:30 -05:00
// Block register copy
2023-07-12 05:50:07 -05:00
let ParamBBB(src, dst, count) = param!(self, ParamBBB);
core::ptr::copy(
self.registers.get_unchecked(usize::from(src)),
self.registers.get_unchecked_mut(usize::from(dst)),
usize::from(count),
);
}
2023-07-12 05:45:50 -05:00
JAL => {
2023-07-21 17:46:30 -05:00
// Jump and link. Save PC after this instruction to
// specified register and jump to reg + offset.
2023-07-12 05:45:50 -05:00
let ParamBBD(save, reg, offset) = param!(self, ParamBBD);
self.write_reg(save, self.pc as u64);
self.pc = (self.read_reg(reg).as_u64() + offset) as usize;
}
2023-07-21 17:46:30 -05:00
// Conditional jumps, jump only to immediates
JEQ => cond_jump!(self, int, Equal),
JNE => {
let ParamBBD(a0, a1, jt) = param!(self, ParamBBD);
if self.read_reg(a0).as_u64() != self.read_reg(a1).as_u64() {
self.pc = jt as usize;
}
}
JLT => cond_jump!(self, int, Less),
JGT => cond_jump!(self, int, Greater),
JLTU => cond_jump!(self, sint, Less),
JGTU => cond_jump!(self, sint, Greater),
ECALL => {
param!(self, ());
2023-07-21 17:46:30 -05:00
// So we don't get timer interrupt after ECALL
if TIMER_QUOTIENT != 0 {
self.timer = self.timer.wrapping_add(1);
}
2023-07-11 10:04:48 -05:00
return Ok(VmRunOk::Ecall);
}
ADDF => binary_op!(self, as_f64, ops::Add::add),
2023-07-07 08:22:03 -05:00
SUBF => binary_op!(self, as_f64, ops::Sub::sub),
MULF => binary_op!(self, as_f64, ops::Mul::mul),
DIRF => {
let ParamBBBB(dt, rt, a0, a1) = param!(self, ParamBBBB);
let a0 = self.read_reg(a0).as_f64();
let a1 = self.read_reg(a1).as_f64();
2023-07-07 08:22:03 -05:00
self.write_reg(dt, a0 / a1);
self.write_reg(rt, a0 % a1);
}
2023-07-07 08:23:53 -05:00
FMAF => {
2023-07-07 08:22:03 -05:00
let ParamBBBB(dt, a0, a1, a2) = param!(self, ParamBBBB);
self.write_reg(
dt,
self.read_reg(a0).as_f64() * self.read_reg(a1).as_f64()
+ self.read_reg(a2).as_f64(),
);
}
NEGF => {
let ParamBB(dt, a0) = param!(self, ParamBB);
self.write_reg(dt, -self.read_reg(a0).as_f64());
}
ITF => {
let ParamBB(dt, a0) = param!(self, ParamBB);
self.write_reg(dt, self.read_reg(a0).as_i64() as f64);
}
FTI => {
let ParamBB(dt, a0) = param!(self, ParamBB);
self.write_reg(dt, self.read_reg(a0).as_f64() as i64);
}
ADDFI => binary_op_imm!(self, as_f64, ops::Add::add),
MULFI => binary_op_imm!(self, as_f64, ops::Mul::mul),
2023-07-11 10:04:48 -05:00
op => return Err(VmRunError::InvalidOpcode(op)),
}
}
2023-07-11 03:32:26 -05:00
if TIMER_QUOTIENT != 0 {
self.timer = self.timer.wrapping_add(1);
if self.timer % TIMER_QUOTIENT == 0 {
return Ok(VmRunOk::Timer);
}
}
}
}
2023-06-24 17:16:14 -05:00
/// Read register
#[inline]
unsafe fn read_reg(&self, n: u8) -> Value {
2023-06-24 17:16:14 -05:00
*self.registers.get_unchecked(n as usize)
}
2023-06-24 17:16:14 -05:00
/// Write a register.
/// Writing to register 0 is no-op.
#[inline]
2023-07-07 08:22:03 -05:00
unsafe fn write_reg(&mut self, n: u8, value: impl Into<Value>) {
if n != 0 {
2023-07-07 08:22:03 -05:00
*self.registers.get_unchecked_mut(n as usize) = value.into();
}
}
}
2023-06-24 17:16:14 -05:00
/// Virtual machine halt error
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(u8)]
2023-06-24 17:16:14 -05:00
pub enum VmRunError {
2023-07-11 10:04:48 -05:00
/// Tried to execute invalid instruction
InvalidOpcode(u8),
2023-06-24 17:16:14 -05:00
/// Unhandled load access exception
2023-06-24 17:28:20 -05:00
LoadAccessEx(u64),
2023-06-24 17:16:14 -05:00
/// Unhandled store access exception
2023-06-24 17:28:20 -05:00
StoreAccessEx(u64),
2023-07-13 04:05:41 -05:00
/// Reached unreachable code
Unreachable,
}
2023-07-11 03:29:23 -05:00
/// Virtual machine halt ok
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum VmRunOk {
2023-07-11 03:33:55 -05:00
/// Program has eached its end
2023-07-11 03:29:23 -05:00
End,
2023-07-11 03:33:55 -05:00
/// Program was interrupted by a timer
2023-07-11 03:29:23 -05:00
Timer,
2023-07-11 10:04:48 -05:00
/// Environment call
Ecall,
2023-07-11 03:29:23 -05:00
}