1
0
Fork 0
forked from koniifer/ableos

Changed relative addressing

This commit is contained in:
Erin 2023-10-01 16:02:06 +02:00
parent 59be906835
commit 889aefe87a
2 changed files with 117 additions and 123 deletions

View file

@ -1,15 +1,15 @@
#![no_std]
pub type OpR = u8;
type OpR = u8;
pub type OpA = u64;
pub type OpO = u32;
pub type OpP = u16;
type OpA = u64;
type OpO = u32;
type OpP = u16;
pub type OpB = u8;
pub type OpH = u16;
pub type OpW = u32;
pub type OpD = u64;
type OpB = u8;
type OpH = u16;
type OpW = u32;
type OpD = u64;
/// # Safety
/// Has to be valid to be decoded from bytecode.
@ -38,13 +38,12 @@ define_items! {
OpsRRPH (OpR, OpR, OpP, OpH),
OpsRRO (OpR, OpR, OpO ),
OpsRRP (OpR, OpR, OpP ),
OpsO (OpO, ),
OpsP (OpP, ),
OpsN ( ),
}
unsafe impl BytecodeItem for OpA {}
unsafe impl BytecodeItem for OpB {}
unsafe impl BytecodeItem for OpO {}
unsafe impl BytecodeItem for OpP {}
unsafe impl BytecodeItem for () {}
unsafe impl BytecodeItem for u8 {}
::with_builtin_macros::with_builtin! {
let $spec = include_from_root!("instructions.in") in {

View file

@ -2,6 +2,8 @@
//!
//! Have fun
use hbbytecode::OpsN;
use {
super::{
bmc::BlockCopier,
@ -9,14 +11,22 @@ use {
value::{Value, ValueVariant},
Vm, VmRunError, VmRunOk,
},
crate::mem::{addr::AddressOp, Address},
core::{cmp::Ordering, mem::size_of, ops},
crate::mem::Address,
core::{cmp::Ordering, ops},
hbbytecode::{
BytecodeItem, OpA, OpO, OpP, OpsRD, OpsRR, OpsRRAH, OpsRRB, OpsRRD, OpsRRH, OpsRRO,
OpsRROH, OpsRRP, OpsRRPH, OpsRRR, OpsRRRR, OpsRRW,
BytecodeItem, OpsO, OpsP, OpsRD, OpsRR, OpsRRAH, OpsRRB, OpsRRD, OpsRRH, OpsRRO, OpsRROH,
OpsRRP, OpsRRPH, OpsRRR, OpsRRRR, OpsRRW,
},
};
macro_rules! handler {
($self:expr, |$ty:ident ($($ident:pat),* $(,)?)| $expr:expr) => {{
let $ty($($ident),*) = $self.decode::<$ty>();
#[allow(clippy::no_effect)] $expr;
$self.bump_pc::<$ty>();
}};
}
impl<Mem, const TIMER_QUOTIENT: usize> Vm<Mem, TIMER_QUOTIENT>
where
Mem: Memory,
@ -54,14 +64,14 @@ where
.ok_or(VmRunError::ProgramFetchLoadEx(self.pc as _))?
{
UN => {
self.decode::<()>();
self.bump_pc::<OpsN>();
return Err(VmRunError::Unreachable);
}
TX => {
self.decode::<()>();
self.bump_pc::<OpsN>();
return Ok(VmRunOk::End);
}
NOP => self.decode::<()>(),
NOP => handler!(self, |OpsN()| ()),
ADD => self.binary_op(u64::wrapping_add),
SUB => self.binary_op(u64::wrapping_sub),
MUL => self.binary_op(u64::wrapping_mul),
@ -71,13 +81,12 @@ where
SL => self.binary_op(|l, r| u64::wrapping_shl(l, r as u32)),
SR => self.binary_op(|l, r| u64::wrapping_shr(l, r as u32)),
SRS => self.binary_op(|l: u64, r| i64::wrapping_shl(l as i64, r as u32) as u64),
CMP => {
CMP => handler!(self, |OpsRRR(tg, a0, a1)| {
// Compare a0 <=> a1
// < → 0
// > → 1
// = → 2
let OpsRRR(tg, a0, a1) = self.decode();
self.write_reg(
tg,
self.read_reg(a0)
@ -86,10 +95,9 @@ where
as i64
+ 1,
);
}
CMPU => {
}),
CMPU => handler!(self, |OpsRRR(tg, a0, a1)| {
// Unsigned comparsion
let OpsRRR(tg, a0, a1) = self.decode();
self.write_reg(
tg,
self.read_reg(a0)
@ -98,25 +106,22 @@ where
as i64
+ 1,
);
}
NEG => {
}),
NEG => handler!(self, |OpsRR(tg, a0)| {
// Bit negation
let OpsRR(tg, a0) = self.decode();
self.write_reg(tg, !self.read_reg(a0).cast::<u64>())
}
NOT => {
}),
NOT => handler!(self, |OpsRR(tg, a0)| {
// Logical negation
let OpsRR(tg, a0) = self.decode();
self.write_reg(tg, u64::from(self.read_reg(a0).cast::<u64>() == 0));
}
DIR => {
}),
DIR => handler!(self, |OpsRRRR(dt, rt, a0, a1)| {
// Fused Division-Remainder
let OpsRRRR(dt, rt, a0, a1) = self.decode();
let a0 = self.read_reg(a0).cast::<u64>();
let a1 = self.read_reg(a1).cast::<u64>();
self.write_reg(dt, a0.checked_div(a1).unwrap_or(u64::MAX));
self.write_reg(rt, a0.checked_rem(a1).unwrap_or(u64::MAX));
}
}),
ADDI => self.binary_op_imm(u64::wrapping_add),
MULI => self.binary_op_imm(u64::wrapping_sub),
ANDI => self.binary_op_imm::<u64>(ops::BitAnd::bitand),
@ -125,8 +130,7 @@ where
SLI => self.binary_op_ims(u64::wrapping_shl),
SRI => self.binary_op_ims(u64::wrapping_shr),
SRSI => self.binary_op_ims(i64::wrapping_shr),
CMPI => {
let OpsRRD(tg, a0, imm) = self.decode();
CMPI => handler!(self, |OpsRRD(tg, a0, imm)| {
self.write_reg(
tg,
self.read_reg(a0)
@ -134,18 +138,15 @@ where
.cmp(&Value::from(imm).cast::<i64>())
as i64,
);
}
CMPUI => {
let OpsRRD(tg, a0, imm) = self.decode();
}),
CMPUI => handler!(self, |OpsRRD(tg, a0, imm)| {
self.write_reg(tg, self.read_reg(a0).cast::<u64>().cmp(&imm) as i64);
}
CP => {
let OpsRR(tg, a0) = self.decode();
}),
CP => handler!(self, |OpsRR(tg, a0)| {
self.write_reg(tg, self.read_reg(a0));
}
SWA => {
}),
SWA => handler!(self, |OpsRR(r0, r1)| {
// Swap registers
let OpsRR(r0, r1) = self.decode();
match (r0, r1) {
(0, 0) => (),
(dst, 0) | (0, dst) => self.write_reg(dst, 0_u64),
@ -156,36 +157,41 @@ where
);
}
}
}
LI => {
let OpsRD(tg, imm) = self.decode();
}),
LI => handler!(self, |OpsRD(tg, imm)| {
self.write_reg(tg, imm);
}
LRA => {
let OpsRRO(tg, reg, imm) = self.decode();
self.write_reg(tg, self.rel_addr(reg, imm).get());
}
LD => {
}),
LRA => handler!(self, |OpsRRO(tg, reg, imm)| {
self.write_reg(
tg,
(self.pc + self.read_reg(reg).cast::<u64>() + imm + 3_u16).get(),
);
}),
LD => handler!(self, |OpsRRAH(dst, base, off, count)| {
// Load. If loading more than register size, continue on adjecent registers
let OpsRRAH(dst, base, off, count) = self.decode();
self.load(dst, base, off, count)?;
}
ST => {
}),
ST => handler!(self, |OpsRRAH(dst, base, off, count)| {
// Store. Same rules apply as to LD
let OpsRRAH(dst, base, off, count) = self.decode();
self.store(dst, base, off, count)?;
}
LDR => {
let OpsRROH(dst, base, off, count) = self.decode();
self.load(dst, base, u64::from(off).wrapping_add(self.pc.get()), count)?;
}
STR => {
let OpsRROH(dst, base, off, count) = self.decode();
self.store(dst, base, u64::from(off).wrapping_add(self.pc.get()), count)?;
}
}),
LDR => handler!(self, |OpsRROH(dst, base, off, count)| {
self.load(
dst,
base,
u64::from(off).wrapping_add((self.pc + 3_u64).get()),
count,
)?;
}),
STR => handler!(self, |OpsRROH(dst, base, off, count)| {
self.store(
dst,
base,
u64::from(off).wrapping_add((self.pc + 3_u64).get()),
count,
)?;
}),
BMC => {
const INS_SIZE: usize = size_of::<OpsRRH>() + 1;
// Block memory copy
match if let Some(copier) = &mut self.copier {
// There is some copier, poll.
@ -194,9 +200,6 @@ where
// There is none, make one!
let OpsRRH(src, dst, count) = self.decode();
// So we are still on BMC on next cycle
self.pc -= INS_SIZE;
self.copier = Some(BlockCopier::new(
Address::new(self.read_reg(src).cast()),
Address::new(self.read_reg(dst).cast()),
@ -211,21 +214,19 @@ where
// We are done, shift program counter
core::task::Poll::Ready(Ok(())) => {
self.copier = None;
self.pc += INS_SIZE;
self.bump_pc::<OpsRRH>();
}
// Error, shift program counter (for consistency)
// and yield error
core::task::Poll::Ready(Err(e)) => {
self.pc += INS_SIZE;
return Err(e.into());
}
// Not done yet, proceed to next cycle
core::task::Poll::Pending => (),
}
}
BRC => {
BRC => handler!(self, |OpsRRB(src, dst, count)| {
// Block register copy
let OpsRRB(src, dst, count) = self.decode();
if src.checked_add(count).is_none() || dst.checked_add(count).is_none() {
return Err(VmRunError::RegOutOfBounds);
}
@ -235,89 +236,83 @@ where
self.registers.get_unchecked_mut(usize::from(dst)),
usize::from(count),
);
}
JMP => self.pc = self.pc.wrapping_add(self.decode::<OpO>()),
JAL => {
}),
JMP => handler!(self, |OpsO(off)| self.pc = self.pc.wrapping_add(off)),
JAL => handler!(self, |OpsRRW(save, reg, offset)| {
// Jump and link. Save PC after this instruction to
// specified register and jump to reg + offset.
let OpsRRW(save, reg, offset) = self.decode();
self.write_reg(save, self.pc.get());
self.pc = Address::new(
self.read_reg(reg).cast::<u64>().wrapping_add(offset.into()),
);
}
}),
// Conditional jumps, jump only to immediates
JEQ => self.cond_jmp::<u64>(Ordering::Equal),
JNE => {
let OpsRRP(a0, a1, ja) = self.decode();
JNE => handler!(self, |OpsRRP(a0, a1, ja)| {
if self.read_reg(a0).cast::<u64>() != self.read_reg(a1).cast::<u64>() {
self.pc = Address::new(
((self.pc.get() as i64).wrapping_add(ja as i64)) as u64,
)
}
}
}),
JLT => self.cond_jmp::<u64>(Ordering::Less),
JGT => self.cond_jmp::<u64>(Ordering::Greater),
JLTU => self.cond_jmp::<i64>(Ordering::Less),
JGTU => self.cond_jmp::<i64>(Ordering::Greater),
ECA => {
self.decode::<()>();
// So we don't get timer interrupt after ECALL
if TIMER_QUOTIENT != 0 {
self.timer = self.timer.wrapping_add(1);
}
self.bump_pc::<OpsN>();
return Ok(VmRunOk::Ecall);
}
EBP => {
self.decode::<()>();
self.bump_pc::<OpsN>();
return Ok(VmRunOk::Breakpoint);
}
ADDF => self.binary_op::<f64>(ops::Add::add),
SUBF => self.binary_op::<f64>(ops::Sub::sub),
MULF => self.binary_op::<f64>(ops::Mul::mul),
DIRF => {
let OpsRRRR(dt, rt, a0, a1) = self.decode();
DIRF => handler!(self, |OpsRRRR(dt, rt, a0, a1)| {
let a0 = self.read_reg(a0).cast::<f64>();
let a1 = self.read_reg(a1).cast::<f64>();
self.write_reg(dt, a0 / a1);
self.write_reg(rt, a0 % a1);
}
FMAF => {
let OpsRRRR(dt, a0, a1, a2) = self.decode();
}),
FMAF => handler!(self, |OpsRRRR(dt, a0, a1, a2)| {
self.write_reg(
dt,
self.read_reg(a0).cast::<f64>() * self.read_reg(a1).cast::<f64>()
+ self.read_reg(a2).cast::<f64>(),
);
}
NEGF => {
let OpsRR(dt, a0) = self.decode();
}),
NEGF => handler!(self, |OpsRR(dt, a0)| {
self.write_reg(dt, -self.read_reg(a0).cast::<f64>());
}
ITF => {
let OpsRR(dt, a0) = self.decode();
}),
ITF => handler!(self, |OpsRR(dt, a0)| {
self.write_reg(dt, self.read_reg(a0).cast::<i64>() as f64);
}
}),
FTI => {
let OpsRR(dt, a0) = self.decode();
self.write_reg(dt, self.read_reg(a0).cast::<f64>() as i64);
}
ADDFI => self.binary_op_imm::<f64>(ops::Add::add),
MULFI => self.binary_op_imm::<f64>(ops::Mul::mul),
LRA16 => {
let OpsRRP(tg, reg, imm) = self.decode();
self.write_reg(tg, self.rel_addr(reg, imm).get());
}
LDR16 => {
let OpsRRPH(dst, base, off, count) = self.decode();
LRA16 => handler!(self, |OpsRRP(tg, reg, imm)| {
self.write_reg(
tg,
(self.pc + self.read_reg(reg).cast::<u64>() + imm + 3_u16).get(),
);
}),
LDR16 => handler!(self, |OpsRRPH(dst, base, off, count)| {
self.load(dst, base, u64::from(off).wrapping_add(self.pc.get()), count)?;
}
STR16 => {
let OpsRRPH(dst, base, off, count) = self.decode();
}),
STR16 => handler!(self, |OpsRRPH(dst, base, off, count)| {
self.store(dst, base, u64::from(off).wrapping_add(self.pc.get()), count)?;
}
JMPR16 => self.pc = self.pc.wrapping_add(self.decode::<OpP>()),
}),
JMPR16 => handler!(self, |OpsP(off)| self.pc = self.pc.wrapping_add(off)),
op => return Err(VmRunError::InvalidOpcode(op)),
}
}
@ -331,13 +326,16 @@ where
}
}
/// Bump instruction pointer
#[inline(always)]
fn bump_pc<T: BytecodeItem>(&mut self) {
self.pc = self.pc.wrapping_add(core::mem::size_of::<T>() + 1);
}
/// Decode instruction operands
#[inline(always)]
unsafe fn decode<T: BytecodeItem>(&mut self) -> T {
let pc1 = self.pc + 1_u64;
let data = self.memory.prog_read_unchecked::<T>(pc1 as _);
self.pc += 1 + size_of::<T>();
data
self.memory.prog_read_unchecked::<T>(self.pc + 1_u64)
}
/// Load
@ -391,6 +389,7 @@ where
tg,
op(self.read_reg(a0).cast::<T>(), self.read_reg(a1).cast::<T>()),
);
self.bump_pc::<OpsRRR>();
}
/// Perform binary operation over register and immediate
@ -401,6 +400,7 @@ where
tg,
op(self.read_reg(reg).cast::<T>(), Value::from(imm).cast::<T>()),
);
self.bump_pc::<OpsRRD>();
}
/// Perform binary operation over register and shift immediate
@ -408,14 +408,7 @@ where
unsafe fn binary_op_ims<T: ValueVariant>(&mut self, op: impl Fn(T, u32) -> T) {
let OpsRRW(tg, reg, imm) = self.decode();
self.write_reg(tg, op(self.read_reg(reg).cast::<T>(), imm));
}
/// Compute address relative to program counter an register value
#[inline(always)]
fn rel_addr(&self, reg: u8, imm: impl AddressOp) -> Address {
self.pc
.wrapping_add(self.read_reg(reg).cast::<u64>())
.wrapping_add(imm)
self.bump_pc::<OpsRRW>();
}
/// Jump at `PC + #3` if ordering on `#0 <=> #1` is equal to expected
@ -430,6 +423,8 @@ where
{
self.pc = Address::new(((self.pc.get() as i64).wrapping_add(ja as i64)) as u64);
}
self.bump_pc::<OpsRRP>();
}
/// Read register