#![allow(dead_code)] use { crate::{ ident::{self, Ident}, instrs::{self}, lexer::{self, TokenKind}, log, parser::{ self, idfl::{self}, CommentOr, Expr, ExprRef, FileId, Pos, StructField, }, task, ty::{self}, Field, Func, HashMap, Reloc, Sig, Struct, SymKey, TypedReloc, Types, }, core::fmt, regalloc2::VReg, std::{ cell::RefCell, collections::hash_map, fmt::{Debug, Display, Write}, hash::{Hash as _, Hasher}, mem::{self, MaybeUninit}, ops::{self, Deref, DerefMut, Not}, ptr::Unique, }, }; const VC_SIZE: usize = 16; const INLINE_ELEMS: usize = VC_SIZE / 2 - 1; const VOID: Nid = 0; const NEVER: Nid = 1; union Vc { inline: InlineVc, alloced: AllocedVc, } impl Default for Vc { fn default() -> Self { Vc { inline: InlineVc { elems: MaybeUninit::uninit(), cap: 0 } } } } impl Debug for Vc { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { self.as_slice().fmt(f) } } impl Vc { fn is_inline(&self) -> bool { unsafe { self.inline.cap <= INLINE_ELEMS as Nid } } fn layout(&self) -> Option { unsafe { self.is_inline() .not() .then(|| std::alloc::Layout::array::(self.alloced.cap as _).unwrap_unchecked()) } } fn len(&self) -> usize { unsafe { if self.is_inline() { self.inline.cap as _ } else { self.alloced.len as _ } } } fn len_mut(&mut self) -> &mut Nid { unsafe { if self.is_inline() { &mut self.inline.cap } else { &mut self.alloced.len } } } fn as_ptr(&self) -> *const Nid { unsafe { match self.is_inline() { true => self.inline.elems.as_ptr().cast(), false => self.alloced.base.as_ptr(), } } } fn as_mut_ptr(&mut self) -> *mut Nid { unsafe { match self.is_inline() { true => self.inline.elems.as_mut_ptr().cast(), false => self.alloced.base.as_ptr(), } } } fn as_slice(&self) -> &[Nid] { unsafe { std::slice::from_raw_parts(self.as_ptr(), self.len()) } } fn as_slice_mut(&mut self) -> &mut [Nid] { unsafe { std::slice::from_raw_parts_mut(self.as_mut_ptr(), self.len()) } } fn push(&mut self, value: Nid) { if let Some(layout) = self.layout() && unsafe { self.alloced.len == self.alloced.cap } { unsafe { self.alloced.cap *= 2; self.alloced.base = Unique::new_unchecked( std::alloc::realloc( self.alloced.base.as_ptr().cast(), layout, self.alloced.cap as usize * std::mem::size_of::(), ) .cast(), ); } } else if self.len() == INLINE_ELEMS { unsafe { let mut allcd = Self::alloc((self.inline.cap + 1).next_power_of_two() as _, self.len()); std::ptr::copy_nonoverlapping(self.as_ptr(), allcd.as_mut_ptr(), self.len()); *self = allcd; } } unsafe { *self.len_mut() += 1; self.as_mut_ptr().add(self.len() - 1).write(value); } } unsafe fn alloc(cap: usize, len: usize) -> Self { debug_assert!(cap > INLINE_ELEMS); let layout = unsafe { std::alloc::Layout::array::(cap).unwrap_unchecked() }; let alloc = unsafe { std::alloc::alloc(layout) }; unsafe { Vc { alloced: AllocedVc { base: Unique::new_unchecked(alloc.cast()), len: len as _, cap: cap as _, }, } } } fn swap_remove(&mut self, index: usize) { let len = self.len() - 1; self.as_slice_mut().swap(index, len); *self.len_mut() -= 1; } fn remove(&mut self, index: usize) { self.as_slice_mut().copy_within(index + 1.., index); *self.len_mut() -= 1; } } impl Drop for Vc { fn drop(&mut self) { if let Some(layout) = self.layout() { unsafe { std::alloc::dealloc(self.alloced.base.as_ptr().cast(), layout); } } } } impl Clone for Vc { fn clone(&self) -> Self { self.as_slice().into() } } impl IntoIterator for Vc { type IntoIter = VcIntoIter; type Item = Nid; fn into_iter(self) -> Self::IntoIter { VcIntoIter { start: 0, end: self.len(), vc: self } } } struct VcIntoIter { start: usize, end: usize, vc: Vc, } impl Iterator for VcIntoIter { type Item = Nid; fn next(&mut self) -> Option { if self.start == self.end { return None; } let ret = unsafe { std::ptr::read(self.vc.as_slice().get_unchecked(self.start)) }; self.start += 1; Some(ret) } fn size_hint(&self) -> (usize, Option) { let len = self.end - self.start; (len, Some(len)) } } impl DoubleEndedIterator for VcIntoIter { fn next_back(&mut self) -> Option { if self.start == self.end { return None; } self.end -= 1; Some(unsafe { std::ptr::read(self.vc.as_slice().get_unchecked(self.end)) }) } } impl ExactSizeIterator for VcIntoIter {} impl From<[Nid; SIZE]> for Vc { fn from(value: [Nid; SIZE]) -> Self { value.as_slice().into() } } impl<'a> From<&'a [Nid]> for Vc { fn from(value: &'a [Nid]) -> Self { if value.len() <= INLINE_ELEMS { let mut dflt = Self::default(); unsafe { std::ptr::copy_nonoverlapping(value.as_ptr(), dflt.as_mut_ptr(), value.len()) }; dflt.inline.cap = value.len() as _; dflt } else { let mut allcd = unsafe { Self::alloc(value.len(), value.len()) }; unsafe { std::ptr::copy_nonoverlapping(value.as_ptr(), allcd.as_mut_ptr(), value.len()) }; allcd } } } impl Deref for Vc { type Target = [Nid]; fn deref(&self) -> &Self::Target { self.as_slice() } } impl DerefMut for Vc { fn deref_mut(&mut self) -> &mut Self::Target { self.as_slice_mut() } } #[derive(Clone, Copy)] #[repr(C)] struct InlineVc { cap: Nid, elems: MaybeUninit<[Nid; INLINE_ELEMS]>, } #[derive(Clone, Copy)] #[repr(C)] struct AllocedVc { cap: Nid, len: Nid, base: Unique, } #[derive(Default)] struct BitSet { data: Vec, } impl BitSet { const ELEM_SIZE: usize = std::mem::size_of::() * 8; pub fn clear(&mut self, bit_size: usize) { let new_len = (bit_size + Self::ELEM_SIZE - 1) / Self::ELEM_SIZE; self.data.clear(); self.data.resize(new_len, 0); } #[track_caller] pub fn set(&mut self, idx: Nid) -> bool { let idx = idx as usize; let data_idx = idx / Self::ELEM_SIZE; let sub_idx = idx % Self::ELEM_SIZE; let prev = self.data[data_idx] & (1 << sub_idx); self.data[data_idx] |= 1 << sub_idx; prev == 0 } } type Nid = u16; pub mod reg { pub const STACK_PTR: Reg = 254; pub const ZERO: Reg = 0; pub const RET: Reg = 1; pub const RET_ADDR: Reg = 31; pub type Reg = u8; } struct LookupEntry { nid: Nid, hash: u64, } #[derive(Default)] struct IdentityHash(u64); impl std::hash::Hasher for IdentityHash { fn finish(&self) -> u64 { self.0 } fn write(&mut self, _: &[u8]) { unimplemented!() } fn write_u64(&mut self, i: u64) { self.0 = i; } } impl std::hash::Hash for LookupEntry { fn hash(&self, state: &mut H) { state.write_u64(self.hash); } } type Lookup = std::collections::hash_map::HashMap< LookupEntry, (), std::hash::BuildHasherDefault, >; struct Nodes { values: Vec>, visited: BitSet, free: Nid, lookup: Lookup, } impl Default for Nodes { fn default() -> Self { Self { values: Default::default(), free: Nid::MAX, lookup: Default::default(), visited: Default::default(), } } } impl Nodes { fn remove_low(&mut self, id: Nid) -> Node { let value = mem::replace(&mut self.values[id as usize], Err(self.free)).unwrap(); self.free = id; value } fn clear(&mut self) { self.values.clear(); self.lookup.clear(); self.free = Nid::MAX; } fn new_node_nop(&mut self, ty: impl Into, kind: Kind, inps: impl Into) -> Nid { let ty = ty.into(); let node = Node { ralloc_backref: u16::MAX, inputs: inps.into(), kind, ty, ..Default::default() }; let mut lookup_meta = None; if !node.is_lazy_phi() { let (raw_entry, hash) = Self::find_node(&mut self.lookup, &self.values, &node); let entry = match raw_entry { hash_map::RawEntryMut::Occupied(mut o) => return o.get_key_value().0.nid, hash_map::RawEntryMut::Vacant(v) => v, }; lookup_meta = Some((entry, hash)); } if self.free == Nid::MAX { self.free = self.values.len() as _; self.values.push(Err(Nid::MAX)); } let free = self.free; for &d in node.inputs.as_slice() { debug_assert_ne!(d, free); self.values[d as usize].as_mut().unwrap_or_else(|_| panic!("{d}")).outputs.push(free); } self.free = mem::replace(&mut self.values[free as usize], Ok(node)).unwrap_err(); if let Some((entry, hash)) = lookup_meta { entry.insert(LookupEntry { nid: free, hash }, ()); } free } fn find_node<'a>( lookup: &'a mut Lookup, values: &[Result], node: &Node, ) -> ( hash_map::RawEntryMut<'a, LookupEntry, (), std::hash::BuildHasherDefault>, u64, ) { let mut hasher = crate::FnvHasher::default(); node.key().hash(&mut hasher); let hash = hasher.finish(); let entry = lookup .raw_entry_mut() .from_hash(hash, |n| values[n.nid as usize].as_ref().unwrap().key() == node.key()); (entry, hash) } fn remove_node_lookup(&mut self, target: Nid) { if !self[target].is_lazy_phi() { match Self::find_node( &mut self.lookup, &self.values, self.values[target as usize].as_ref().unwrap(), ) .0 { hash_map::RawEntryMut::Occupied(o) => o.remove(), hash_map::RawEntryMut::Vacant(_) => unreachable!(), }; } } fn new_node(&mut self, ty: impl Into, kind: Kind, inps: impl Into) -> Nid { let id = self.new_node_nop(ty, kind, inps); if let Some(opt) = self.peephole(id) { debug_assert_ne!(opt, id); self.lock(opt); self.remove(id); self.unlock(opt); opt } else { id } } fn lock(&mut self, target: Nid) { self[target].lock_rc += 1; } #[track_caller] fn unlock(&mut self, target: Nid) { self[target].lock_rc -= 1; } fn remove(&mut self, target: Nid) -> bool { if !self[target].is_dangling() { return false; } for i in 0..self[target].inputs.len() { let inp = self[target].inputs[i]; let index = self[inp].outputs.iter().position(|&p| p == target).unwrap(); self[inp].outputs.swap_remove(index); self.remove(inp); } self.remove_node_lookup(target); self.remove_low(target); true } fn peephole(&mut self, target: Nid) -> Option { match self[target].kind { Kind::Start => {} Kind::End => {} Kind::BinOp { op } => return self.peephole_binop(target, op), Kind::UnOp { op } => return self.peephole_unop(target, op), Kind::Return => {} Kind::Tuple { .. } => {} Kind::CInt { .. } => {} Kind::Call { .. } => {} Kind::If => return self.peephole_if(target), Kind::Region => {} Kind::Phi => return self.peephole_phi(target), Kind::Loop => {} } None } fn peephole_phi(&mut self, target: Nid) -> Option { if self[target].inputs[1] == self[target].inputs[2] { return Some(self[target].inputs[1]); } None } fn peephole_if(&mut self, target: Nid) -> Option { let cond = self[target].inputs[1]; if let Kind::CInt { value } = self[cond].kind { let ty = if value == 0 { ty::LEFT_UNREACHABLE } else { ty::RIGHT_UNREACHABLE }; return Some(self.new_node_nop(ty, Kind::If, [self[target].inputs[0], cond])); } None } fn peephole_unop(&mut self, target: Nid, op: TokenKind) -> Option { let &[ctrl, oper] = self[target].inputs.as_slice() else { unreachable!() }; let ty = self[target].ty; if let Kind::CInt { value } = self[oper].kind { return Some(self.new_node(ty, Kind::CInt { value: op.apply_unop(value) }, [ctrl])); } None } fn peephole_binop(&mut self, target: Nid, op: TokenKind) -> Option { use {Kind as K, TokenKind as T}; let &[ctrl, mut lhs, mut rhs] = self[target].inputs.as_slice() else { unreachable!() }; let ty = self[target].ty; if let (&K::CInt { value: a }, &K::CInt { value: b }) = (&self[lhs].kind, &self[rhs].kind) { return Some(self.new_node(ty, K::CInt { value: op.apply_binop(a, b) }, [ctrl])); } if lhs == rhs { match op { T::Sub => return Some(self.new_node(ty, K::CInt { value: 0 }, [ctrl])), T::Add => { let rhs = self.new_node_nop(ty, K::CInt { value: 2 }, [ctrl]); return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, lhs, rhs])); } _ => {} } } // this is more general the pushing constants to left to help deduplicate expressions more let mut changed = false; if op.is_comutative() && self[lhs].key() < self[rhs].key() { std::mem::swap(&mut lhs, &mut rhs); changed = true; } if let K::CInt { value } = self[rhs].kind { match (op, value) { (T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs), (T::Mul, 0) => return Some(rhs), _ => {} } } if op.is_comutative() && self[lhs].kind == (K::BinOp { op }) { let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() }; if let K::CInt { value: av } = self[b].kind && let K::CInt { value: bv } = self[rhs].kind { // (a op #b) op #c => a op (#b op #c) let new_rhs = self.new_node_nop(ty, K::CInt { value: op.apply_binop(av, bv) }, [ctrl]); return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs])); } if self.is_const(b) { // (a op #b) op c => (a op c) op #b let new_lhs = self.new_node(ty, K::BinOp { op }, [ctrl, a, rhs]); return Some(self.new_node(ty, K::BinOp { op }, [ctrl, new_lhs, b])); } } if op == T::Add && self[lhs].kind == (K::BinOp { op: T::Mul }) && self[lhs].inputs[1] == rhs && let K::CInt { value } = self[self[lhs].inputs[2]].kind { // a * #n + a => a * (#n + 1) let new_rhs = self.new_node_nop(ty, K::CInt { value: value + 1 }, [ctrl]); return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, rhs, new_rhs])); } if op == T::Sub && self[lhs].kind == (K::BinOp { op }) { // (a - b) - c => a - (b + c) let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() }; let c = rhs; let new_rhs = self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, b, c]); return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs])); } changed.then(|| self.new_node(ty, self[target].kind, [ctrl, lhs, rhs])) } fn is_const(&self, id: Nid) -> bool { matches!(self[id].kind, Kind::CInt { .. }) } fn replace(&mut self, target: Nid, with: Nid) { let mut back_press = 0; for i in 0..self[target].outputs.len() { let out = self[target].outputs[i - back_press]; let index = self[out].inputs.iter().position(|&p| p == target).unwrap(); let prev_len = self[target].outputs.len(); self.modify_input(out, index, with); back_press += (self[target].outputs.len() != prev_len) as usize; } self.remove(target); } fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid { self.remove_node_lookup(target); debug_assert_ne!(self[target].inputs[inp_index], with); let prev = self[target].inputs[inp_index]; self[target].inputs[inp_index] = with; let (entry, hash) = Self::find_node( &mut self.lookup, &self.values, self.values[target as usize].as_ref().unwrap(), ); match entry { hash_map::RawEntryMut::Occupied(mut other) => { let rpl = other.get_key_value().0.nid; self[target].inputs[inp_index] = prev; self.replace(target, rpl); rpl } hash_map::RawEntryMut::Vacant(slot) => { slot.insert(LookupEntry { nid: target, hash }, ()); let index = self[prev].outputs.iter().position(|&o| o == target).unwrap(); self[prev].outputs.swap_remove(index); self[with].outputs.push(target); target } } } #[track_caller] fn unlock_remove(&mut self, id: Nid) -> bool { self[id].lock_rc -= 1; self.remove(id) } fn iter(&self) -> impl DoubleEndedIterator { self.values.iter().enumerate().filter_map(|(i, s)| Some((i as _, s.as_ref().ok()?))) } fn graphviz_low(&self, out: &mut String) -> std::fmt::Result { use std::fmt::Write; for (i, node) in self.iter() { let color = if self.is_cfg(i) { "yellow" } else { "white" }; writeln!(out, "node{i}[label=\"{}\" color={color}]", node.kind)?; for (j, &o) in node.outputs.iter().enumerate() { let color = if self.is_cfg(i) && self.is_cfg(o) { "red" } else { "lightgray" }; let index = self[o].inputs.iter().position(|&inp| i == inp).unwrap(); let style = if index == 0 && !self.is_cfg(o) { "style=dotted" } else { "" }; writeln!( out, "node{o} -> node{i}[color={color} taillabel={index} headlabel={j} {style}]", )?; } } Ok(()) } #[allow(clippy::format_in_format_args)] fn basic_blocks_instr(&mut self, out: &mut String, node: Nid) -> std::fmt::Result { if self[node].kind != Kind::Loop && self[node].kind != Kind::Region { write!(out, " {node:>2}-c{:>2}: ", self[node].ralloc_backref)?; } match self[node].kind { Kind::Start => unreachable!(), Kind::End => unreachable!(), Kind::If => write!(out, " if: "), Kind::Region | Kind::Loop => writeln!(out, " goto: {node}"), Kind::Return => write!(out, " ret: "), Kind::CInt { value } => write!(out, "cint: #{value:<4}"), Kind::Phi => write!(out, " phi: "), Kind::Tuple { index } => write!(out, " arg: {index:<5}"), Kind::BinOp { op } | Kind::UnOp { op } => { write!(out, "{:>4}: ", op.name()) } Kind::Call { func } => { write!(out, "call: {func} {} ", self[node].depth) } }?; if self[node].kind != Kind::Loop && self[node].kind != Kind::Region { writeln!( out, " {:<14} {}", format!("{:?}", self[node].inputs), format!("{:?}", self[node].outputs) )?; } Ok(()) } fn basic_blocks_low(&mut self, out: &mut String, mut node: Nid) -> std::fmt::Result { let iter = |nodes: &Nodes, node| nodes[node].outputs.clone().into_iter().rev(); while self.visited.set(node) { match self[node].kind { Kind::Start => { writeln!(out, "start: {}", self[node].depth)?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self[o].kind == (Kind::Tuple { index: 0 }) { cfg_index = o; } } node = cfg_index; } Kind::End => break, Kind::If => { self.basic_blocks_low(out, self[node].outputs[0])?; node = self[node].outputs[1]; } Kind::Region => { writeln!( out, "region{node}: {} {} {:?}", self[node].depth, self[node].loop_depth, self[node].inputs )?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::Loop => { writeln!( out, "loop{node}: {} {} {:?}", self[node].depth, self[node].loop_depth, self[node].outputs )?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::Return => { node = self[node].outputs[0]; } Kind::Tuple { .. } => { writeln!( out, "b{node}: {} {} {:?}", self[node].depth, self[node].loop_depth, self[node].outputs )?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::Call { .. } => { let mut cfg_index = Nid::MAX; let mut print_ret = true; for o in iter(self, node) { if self[o].inputs[0] == node && (self[node].outputs[0] != o || std::mem::take(&mut print_ret)) { self.basic_blocks_instr(out, o)?; } if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::CInt { .. } | Kind::Phi | Kind::BinOp { .. } | Kind::UnOp { .. } => { unreachable!() } } } Ok(()) } fn basic_blocks(&mut self) { let mut out = String::new(); self.visited.clear(self.values.len()); self.basic_blocks_low(&mut out, VOID).unwrap(); log::inf!("{out}"); } fn graphviz(&self) { let out = &mut String::new(); _ = self.graphviz_low(out); log::inf!("{out}"); } fn is_cfg(&self, o: Nid) -> bool { self[o].kind.is_cfg() } fn check_final_integrity(&self) { //let mut failed = false; for (_, node) in self.iter() { debug_assert_eq!(node.lock_rc, 0, "{:?}", node.kind); // if !matches!(node.kind, Kind::Return | Kind::End) && node.outputs.is_empty() { // log::err!("outputs are empry {i} {:?}", node.kind); // failed = true; // } // let mut allowed_cfgs = 1 + (node.kind == Kind::If) as usize; // for &o in node.outputs.iter() { // if self.is_cfg(i) { // if allowed_cfgs == 0 && self.is_cfg(o) { // log::err!( // "multiple cfg outputs detected: {:?} -> {:?}", // node.kind, // self[o].kind // ); // failed = true; // } else { // allowed_cfgs += self.is_cfg(o) as usize; // } // } // let other = match &self.values[o as usize] { // Ok(other) => other, // Err(_) => { // log::err!("the edge points to dropped node: {i} {:?} {o}", node.kind,); // failed = true; // continue; // } // }; // let occurs = self[o].inputs.iter().filter(|&&el| el == i).count(); // let self_occurs = self[i].outputs.iter().filter(|&&el| el == o).count(); // if occurs != self_occurs { // log::err!( // "the edge is not bidirectional: {i} {:?} {self_occurs} {o} {:?} {occurs}", // node.kind, // other.kind // ); // failed = true; // } // } } //if failed { // panic!() //} } fn climb_expr(&mut self, from: Nid, mut for_each: impl FnMut(Nid, &Node) -> bool) -> bool { fn climb_impl( nodes: &mut Nodes, from: Nid, for_each: &mut impl FnMut(Nid, &Node) -> bool, ) -> bool { for i in 0..nodes[from].inputs.len() { let n = nodes[from].inputs[i]; if n != Nid::MAX && nodes.visited.set(n) && !nodes.is_cfg(n) && (for_each(n, &nodes[n]) || climb_impl(nodes, n, for_each)) { return true; } } false } self.visited.clear(self.values.len()); climb_impl(self, from, &mut for_each) } fn late_peephole(&mut self, target: Nid) -> Nid { if let Some(id) = self.peephole(target) { self.replace(target, id); return id; } target } fn load_loop_value(&mut self, index: usize, value: &mut Nid, loops: &mut [Loop]) { if *value != 0 { return; } let [loob, loops @ ..] = loops else { unreachable!() }; let lvalue = &mut loob.scope[index].value; self.load_loop_value(index, lvalue, loops); if !self[*lvalue].is_lazy_phi() { self.unlock(*value); let inps = [loob.node, *lvalue, VOID]; self.unlock(inps[1]); let ty = self[inps[1]].ty; let phi = self.new_node_nop(ty, Kind::Phi, inps); self[phi].lock_rc += 2; *value = phi; *lvalue = phi; } else { self.lock(*lvalue); self.unlock(*value); *value = *lvalue; } } fn check_dominance(&mut self, nd: Nid, min: Nid, check_outputs: bool) { let node = self[nd].clone(); for &i in node.inputs.iter() { let dom = idom(self, i); debug_assert!( self.dominates(dom, min), "{dom} {min} {node:?} {:?}", self.basic_blocks() ); } if check_outputs { for &o in node.outputs.iter() { let dom = use_block(nd, o, self); debug_assert!( self.dominates(min, dom), "{min} {dom} {node:?} {:?}", self.basic_blocks() ); } } } fn dominates(&mut self, dominator: Nid, mut dominated: Nid) -> bool { loop { if dominator == dominated { break true; } if idepth(self, dominator) > idepth(self, dominated) { break false; } dominated = idom(self, dominated); } } fn iter_mut(&mut self) -> impl Iterator { self.values.iter_mut().flat_map(Result::as_mut) } } impl ops::Index for Nodes { type Output = Node; fn index(&self, index: Nid) -> &Self::Output { self.values[index as usize].as_ref().unwrap() } } impl ops::IndexMut for Nodes { fn index_mut(&mut self, index: Nid) -> &mut Self::Output { self.values[index as usize].as_mut().unwrap() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Default)] #[repr(u8)] pub enum Kind { #[default] Start, End, If, Region, Loop, Return, CInt { value: i64, }, Phi, Tuple { index: u32, }, UnOp { op: lexer::TokenKind, }, BinOp { op: lexer::TokenKind, }, Call { func: ty::Func, }, } impl Kind { fn is_pinned(&self) -> bool { self.is_cfg() || matches!(self, Self::Phi) } fn is_cfg(&self) -> bool { matches!( self, Self::Start | Self::End | Self::Return | Self::Tuple { .. } | Self::Call { .. } | Self::If | Self::Region | Self::Loop ) } fn ends_basic_block(&self) -> bool { matches!(self, Self::Return | Self::If | Self::End) } fn starts_basic_block(&self) -> bool { matches!(self, Self::Start | Self::End | Self::Tuple { .. } | Self::Region | Self::Loop) } } impl fmt::Display for Kind { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Kind::CInt { value } => write!(f, "#{value}"), Kind::Tuple { index } => write!(f, "tupl[{index}]"), Kind::BinOp { op } => write!(f, "{op}"), Kind::Call { func, .. } => write!(f, "call {func}"), slf => write!(f, "{slf:?}"), } } } #[derive(Debug, Default, Clone)] //#[repr(align(64))] struct Node { inputs: Vc, outputs: Vc, kind: Kind, ralloc_backref: RallocBRef, depth: IDomDepth, lock_rc: LockRc, ty: ty::Id, loop_depth: LoopDepth, offset: Offset, } impl Node { fn is_dangling(&self) -> bool { self.outputs.len() + self.lock_rc as usize == 0 } fn key(&self) -> (Kind, &[Nid], ty::Id) { (self.kind, &self.inputs, self.ty) } fn is_lazy_phi(&self) -> bool { self.kind == Kind::Phi && self.inputs[2] == 0 } } type Offset = u32; type Size = u32; type RallocBRef = u16; type LoopDepth = u16; type CallCount = u16; type LockRc = u16; type IDomDepth = u16; struct Loop { node: Nid, ctrl: [Nid; 2], ctrl_scope: [Vec; 2], scope: Vec, } #[derive(Clone, Copy)] struct Variable { id: Ident, value: Nid, } struct ColorMeta { rc: u32, depth: LoopDepth, loc: Loc, } #[derive(Default)] struct ItemCtx { file: FileId, id: ty::Id, ret: Option, task_base: usize, nodes: Nodes, ctrl: Nid, loop_depth: LoopDepth, call_count: u16, filled: Vec, delayed_frees: Vec, loops: Vec, vars: Vec, ret_relocs: Vec, relocs: Vec, jump_relocs: Vec<(Nid, Reloc)>, code: Vec, } impl ItemCtx { fn emit(&mut self, instr: (usize, [u8; instrs::MAX_SIZE])) { crate::emit(&mut self.code, instr); } } fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) { let value = value.to_ne_bytes(); doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]); } struct FTask { file: FileId, id: ty::Func, } #[derive(Default, Debug)] struct Ctx { ty: Option, } impl Ctx { pub fn with_ty(self, ty: impl Into) -> Self { Self { ty: Some(ty.into()) } } } #[derive(Clone, Copy, Debug, Default, PartialEq, Eq)] struct Loc { reg: reg::Reg, } #[derive(Default, Debug, Clone, Copy)] struct GenCtx { loc: Option, } impl GenCtx { pub fn with_loc(self, loc: impl Into) -> Self { Self { loc: Some(loc.into()) } } } #[derive(Default)] struct Pool { cis: Vec, } #[derive(Default)] pub struct Codegen { pub files: Vec, tasks: Vec>, tys: Types, ci: ItemCtx, pool: Pool, errors: RefCell, } impl Codegen { pub fn generate(&mut self) { self.find_or_declare(0, 0, None, "main"); self.make_func_reachable(0); self.complete_call_graph(); } fn make_func_reachable(&mut self, func: ty::Func) { let fuc = &mut self.tys.funcs[func as usize]; if fuc.offset == u32::MAX { fuc.offset = task::id(self.tasks.len() as _); self.tasks.push(Some(FTask { file: fuc.file, id: func })); } } fn expr(&mut self, expr: &Expr) -> Option { self.expr_ctx(expr, Ctx::default()) } fn build_struct(&mut self, fields: &[CommentOr]) -> ty::Struct { let fields = fields .iter() .filter_map(CommentOr::or) .map(|sf| Field { name: sf.name.into(), ty: self.ty(&sf.ty) }) .collect(); self.tys.structs.push(Struct { fields }); self.tys.structs.len() as u32 - 1 } fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option { let msg = "i know nothing about this name gal which is vired \ because we parsed succesfully"; match *expr { Expr::Comment { .. } => Some(VOID), Expr::Ident { pos, id, .. } => { let Some(index) = self.ci.vars.iter().position(|v| v.id == id) else { self.report(pos, msg); return Some(NEVER); }; self.ci.nodes.load_loop_value( index, &mut self.ci.vars[index].value, &mut self.ci.loops, ); Some(self.ci.vars[index].value) } Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right } => { let value = self.expr(right)?; self.ci.nodes.lock(value); self.ci.vars.push(Variable { id, value }); Some(VOID) } Expr::BinOp { left: &Expr::Ident { id, pos, .. }, op: TokenKind::Assign, right } => { let value = self.expr(right)?; self.ci.nodes.lock(value); let Some(var) = self.ci.vars.iter_mut().find(|v| v.id == id) else { self.report(pos, msg); return Some(NEVER); }; let prev = std::mem::replace(&mut var.value, value); self.ci.nodes.unlock_remove(prev); Some(VOID) } Expr::BinOp { left, op, right } => { let lhs = self.expr_ctx(left, ctx)?; self.ci.nodes.lock(lhs); let rhs = self.expr_ctx(right, Ctx::default().with_ty(self.tof(lhs))); self.ci.nodes.unlock(lhs); let rhs = rhs?; let ty = self.assert_ty( left.pos(), self.tof(rhs), self.tof(lhs), false, "right operand", ); let inps = [VOID, lhs, rhs]; Some(self.ci.nodes.new_node(ty::bin_ret(ty, op), Kind::BinOp { op }, inps)) } Expr::UnOp { pos, op, val } => { let val = self.expr_ctx(val, ctx)?; if !self.tof(val).is_integer() { self.report( pos, format_args!("cant negate '{}'", self.ty_display(self.tof(val))), ); } Some(self.ci.nodes.new_node(self.tof(val), Kind::UnOp { op }, [VOID, val])) } Expr::If { cond, then, else_, .. } => { let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?; let if_node = self.ci.nodes.new_node(ty::VOID, Kind::If, [self.ci.ctrl, cond]); 'b: { let branch = match self.tof(if_node).expand().inner() { ty::LEFT_UNREACHABLE => else_, ty::RIGHT_UNREACHABLE => Some(then), _ => break 'b, }; self.ci.nodes.lock(self.ci.ctrl); self.ci.nodes.remove(if_node); self.ci.nodes.unlock(self.ci.ctrl); if let Some(branch) = branch { return self.expr(branch); } else { return Some(VOID); } } let mut else_scope = self.ci.vars.clone(); for &el in &self.ci.vars { self.ci.nodes.lock(el.value); } self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [if_node]); let lcntrl = self.expr(then).map_or(Nid::MAX, |_| self.ci.ctrl); let mut then_scope = std::mem::replace(&mut self.ci.vars, else_scope); self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 1 }, [if_node]); let rcntrl = if let Some(else_) = else_ { self.expr(else_).map_or(Nid::MAX, |_| self.ci.ctrl) } else { self.ci.ctrl }; if lcntrl == Nid::MAX && rcntrl == Nid::MAX { for then_var in then_scope { self.ci.nodes.unlock_remove(then_var.value); } return None; } else if lcntrl == Nid::MAX { for then_var in then_scope { self.ci.nodes.unlock_remove(then_var.value); } return Some(VOID); } else if rcntrl == Nid::MAX { for else_var in &self.ci.vars { self.ci.nodes.unlock_remove(else_var.value); } self.ci.vars = then_scope; self.ci.ctrl = lcntrl; return Some(VOID); } self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Region, [lcntrl, rcntrl]); else_scope = std::mem::take(&mut self.ci.vars); Self::merge_scopes( &mut self.ci.nodes, &mut self.ci.loops, self.ci.ctrl, &mut else_scope, &mut then_scope, true, ); self.ci.vars = else_scope; Some(VOID) } Expr::Loop { body, .. } => { self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Loop, [self.ci.ctrl; 2]); self.ci.loops.push(Loop { node: self.ci.ctrl, ctrl: [Nid::MAX; 2], ctrl_scope: std::array::from_fn(|_| vec![]), scope: self.ci.vars.clone(), }); for var in &mut self.ci.vars { var.value = VOID; } self.ci.nodes[VOID].lock_rc += self.ci.vars.len() as LockRc; self.expr(body); let Loop { node, ctrl: [mut con, bre], ctrl_scope: [mut cons, mut bres], scope } = self.ci.loops.pop().unwrap(); if con != Nid::MAX { con = self.ci.nodes.new_node(ty::VOID, Kind::Region, [con, self.ci.ctrl]); Self::merge_scopes( &mut self.ci.nodes, &mut self.ci.loops, con, &mut self.ci.vars, &mut cons, true, ); self.ci.ctrl = con; } self.ci.nodes.modify_input(node, 1, self.ci.ctrl); let idx = self.ci.nodes[node] .outputs .iter() .position(|&n| self.ci.nodes.is_cfg(n)) .unwrap(); self.ci.nodes[node].outputs.swap(idx, 0); if bre == Nid::MAX { self.ci.ctrl = NEVER; return None; } self.ci.ctrl = bre; self.ci.nodes.lock(self.ci.ctrl); std::mem::swap(&mut self.ci.vars, &mut bres); for ((dest_var, mut scope_var), loop_var) in self.ci.vars.iter_mut().zip(scope).zip(bres) { self.ci.nodes.unlock(loop_var.value); if loop_var.value != VOID { self.ci.nodes.unlock(scope_var.value); if loop_var.value != scope_var.value { scope_var.value = self.ci.nodes.modify_input(scope_var.value, 2, loop_var.value); self.ci.nodes.lock(scope_var.value); } else { let phi = &self.ci.nodes[scope_var.value]; debug_assert_eq!(phi.kind, Kind::Phi); debug_assert_eq!(phi.inputs[2], VOID); let prev = phi.inputs[1]; self.ci.nodes.replace(scope_var.value, prev); scope_var.value = prev; self.ci.nodes.lock(prev); } } if dest_var.value == VOID { self.ci.nodes.unlock(dest_var.value); dest_var.value = scope_var.value; self.ci.nodes.lock(dest_var.value); } self.ci.nodes.unlock_remove(scope_var.value); } self.ci.nodes.unlock(self.ci.ctrl); Some(VOID) } Expr::Break { pos } => self.jump_to(pos, 1), Expr::Continue { pos } => self.jump_to(pos, 0), Expr::Call { func: &Expr::Ident { pos, id, name, .. }, args, .. } => { self.ci.call_count += 1; let func = self.find_or_declare(pos, self.ci.file, Some(id), name); let ty::Kind::Func(func) = func else { self.report( pos, format_args!( "compiler cant (yet) call '{}'", self.ty_display(func.compress()) ), ); return Some(NEVER); }; self.make_func_reachable(func); let fuc = &self.tys.funcs[func as usize]; let sig = fuc.sig.expect("TODO: generic functions"); let ast = self.files[fuc.file as usize].clone(); let Expr::BinOp { right: &Expr::Closure { args: cargs, .. }, .. } = fuc.expr.get(&ast).unwrap() else { unreachable!() }; self.assert_report( args.len() == cargs.len(), pos, format_args!( "expected {} function argumenr{}, got {}", cargs.len(), if cargs.len() == 1 { "" } else { "s" }, args.len() ), ); let mut inps = Vc::from([self.ci.ctrl]); for ((arg, carg), tyx) in args.iter().zip(cargs).zip(sig.args.range()) { let ty = self.tys.args[tyx]; if self.tys.size_of(ty) == 0 { continue; } let value = self.expr_ctx(arg, Ctx::default().with_ty(ty))?; _ = self.assert_ty( arg.pos(), self.tof(value), ty, true, format_args!("argument {}", carg.name), ); inps.push(value); } self.ci.ctrl = self.ci.nodes.new_node(sig.ret, Kind::Call { func }, inps); Some(self.ci.ctrl) } Expr::Return { pos, val } => { let value = if let Some(val) = val { self.expr_ctx(val, Ctx { ty: self.ci.ret })? } else { VOID }; let inps = [self.ci.ctrl, value]; let out = &mut String::new(); self.report_log_to(pos, "returning here", out); self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Return, inps); self.ci.nodes[NEVER].inputs.push(self.ci.ctrl); self.ci.nodes[self.ci.ctrl].outputs.push(NEVER); let expected = *self.ci.ret.get_or_insert(self.tof(value)); _ = self.assert_ty(pos, self.tof(value), expected, true, "return value"); None } Expr::Block { stmts, .. } => { let base = self.ci.vars.len(); let mut ret = Some(VOID); for stmt in stmts { ret = ret.and(self.expr(stmt)); if let Some(id) = ret { _ = self.assert_ty( stmt.pos(), self.tof(id), ty::VOID.into(), true, "statement", ); } else { break; } } self.ci.nodes.lock(self.ci.ctrl); for var in self.ci.vars.drain(base..) { self.ci.nodes.unlock_remove(var.value); } self.ci.nodes.unlock(self.ci.ctrl); ret } Expr::Number { value, .. } => Some(self.ci.nodes.new_node( ctx.ty.filter(|ty| ty.is_integer() || ty.is_pointer()).unwrap_or(ty::INT.into()), Kind::CInt { value }, [VOID], )), ref e => { self.report_unhandled_ast(e, "bruh"); Some(NEVER) } } } fn jump_to(&mut self, pos: Pos, id: usize) -> Option { let Some(mut loob) = self.ci.loops.last_mut() else { self.report(pos, "break outside a loop"); return None; }; if loob.ctrl[id] == Nid::MAX { loob.ctrl[id] = self.ci.ctrl; loob.ctrl_scope[id] = self.ci.vars[..loob.scope.len()].to_owned(); for v in &loob.ctrl_scope[id] { self.ci.nodes.lock(v.value) } } else { let reg = self.ci.nodes.new_node(ty::VOID, Kind::Region, [self.ci.ctrl, loob.ctrl[id]]); let mut scope = std::mem::take(&mut loob.ctrl_scope[id]); Self::merge_scopes( &mut self.ci.nodes, &mut self.ci.loops, reg, &mut scope, &mut self.ci.vars, false, ); loob = self.ci.loops.last_mut().unwrap(); loob.ctrl_scope[id] = scope; loob.ctrl[id] = reg; } self.ci.ctrl = NEVER; None } fn merge_scopes( nodes: &mut Nodes, loops: &mut [Loop], ctrl: Nid, to: &mut [Variable], from: &mut [Variable], drop_from: bool, ) { for (i, (else_var, then_var)) in to.iter_mut().zip(from).enumerate() { if else_var.value != then_var.value { nodes.load_loop_value(i, &mut then_var.value, loops); nodes.load_loop_value(i, &mut else_var.value, loops); if else_var.value != then_var.value { let ty = nodes[else_var.value].ty; debug_assert_eq!(ty, nodes[then_var.value].ty, "TODO: typecheck properly"); let inps = [ctrl, then_var.value, else_var.value]; nodes.unlock(else_var.value); else_var.value = nodes.new_node(ty, Kind::Phi, inps); nodes.lock(else_var.value); } } if drop_from { nodes.unlock_remove(then_var.value); } } } #[inline(always)] fn tof(&self, id: Nid) -> ty::Id { self.ci.nodes[id].ty } fn complete_call_graph(&mut self) { while self.ci.task_base < self.tasks.len() && let Some(task_slot) = self.tasks.pop() { let Some(task) = task_slot else { continue }; self.emit_func(task); } } fn emit_func(&mut self, FTask { file, id }: FTask) { let func = &mut self.tys.funcs[id as usize]; func.offset = u32::MAX - 1; debug_assert!(func.file == file); let sig = func.sig.unwrap(); let ast = self.files[file as usize].clone(); let expr = func.expr.get(&ast).unwrap(); let repl = ItemCtx { file, id: ty::Kind::Func(id).compress(), ret: Some(sig.ret), ..self.pool.cis.pop().unwrap_or_default() }; let prev_ci = std::mem::replace(&mut self.ci, repl); let start = self.ci.nodes.new_node(ty::VOID, Kind::Start, []); debug_assert_eq!(start, VOID); let end = self.ci.nodes.new_node(ty::NEVER, Kind::End, []); debug_assert_eq!(end, NEVER); self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [VOID]); let Expr::BinOp { left: Expr::Ident { .. }, op: TokenKind::Decl, right: &Expr::Closure { body, args, .. }, } = expr else { unreachable!("{expr}") }; let mut sig_args = sig.args.range(); for (arg, index) in args.iter().zip(1u32..) { let ty = self.tys.args[sig_args.next().unwrap()]; let value = self.ci.nodes.new_node(ty, Kind::Tuple { index }, [VOID]); self.ci.nodes.lock(value); let sym = parser::find_symbol(&ast.symbols, arg.id); assert!(sym.flags & idfl::COMPTIME == 0, "TODO"); self.ci.vars.push(Variable { id: arg.id, value }); } let orig_vars = self.ci.vars.clone(); if self.expr(body).is_some() { self.report(body.pos(), "expected all paths in the fucntion to return"); } for var in self.ci.vars.drain(..) { self.ci.nodes.unlock(var.value); } if self.errors.borrow().is_empty() { self.gcm(); #[cfg(debug_assertions)] { self.ci.nodes.check_final_integrity(); } '_open_function: { self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0)); self.ci.emit(instrs::st(reg::RET_ADDR, reg::STACK_PTR, 0, 0)); } self.ci.nodes.basic_blocks(); //self.ci.nodes.graphviz(); self.ci.vars = orig_vars; self.ci.nodes.visited.clear(self.ci.nodes.values.len()); let saved = self.emit_body(sig); self.ci.vars.clear(); if let Some(last_ret) = self.ci.ret_relocs.last() && last_ret.offset as usize == self.ci.code.len() - 5 { self.ci.code.truncate(self.ci.code.len() - 5); self.ci.ret_relocs.pop(); } // FIXME: maybe do this incrementally for (nd, rel) in self.ci.jump_relocs.drain(..) { let offset = self.ci.nodes[nd].offset; rel.apply_jump(&mut self.ci.code, offset, 0); } let end = self.ci.code.len(); for ret_rel in self.ci.ret_relocs.drain(..) { ret_rel.apply_jump(&mut self.ci.code, end as _, 0); } '_close_function: { let pushed = (saved as i64 + 1) * 8; let stack = 0; write_reloc(&mut self.ci.code, 3, -(pushed + stack), 8); write_reloc(&mut self.ci.code, 3 + 8 + 3, stack, 8); write_reloc(&mut self.ci.code, 3 + 8 + 3 + 8, pushed, 2); self.ci.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _)); self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _)); self.ci.emit(instrs::jala(reg::ZERO, reg::RET_ADDR, 0)); } } self.tys.funcs[id as usize].code.append(&mut self.ci.code); self.tys.funcs[id as usize].relocs.append(&mut self.ci.relocs); self.ci.nodes.clear(); self.ci.filled.clear(); self.pool.cis.push(std::mem::replace(&mut self.ci, prev_ci)); } fn emit_body(&mut self, sig: Sig) -> usize { // FIXME: make this more efficient (allocated with arena) #[derive(Debug)] struct Block { nid: Nid, preds: Vec, succs: Vec, instrs: regalloc2::InstRange, params: Vec, branch_blockparams: Vec, } #[derive(Debug)] struct Instr { nid: Nid, ops: Vec, } struct Function<'a> { sig: Sig, nodes: &'a mut Nodes, tys: &'a Types, blocks: Vec, instrs: Vec, } impl Debug for Function<'_> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { for (i, block) in self.blocks.iter().enumerate() { writeln!(f, "sb{i}{:?}-{:?}:", block.params, block.preds)?; for inst in block.instrs.iter() { let instr = &self.instrs[inst.index()]; writeln!( f, "{}: i{:?}:{:?}", inst.index(), self.nodes[instr.nid].kind, instr.ops )?; } writeln!(f, "eb{i}{:?}-{:?}:", block.branch_blockparams, block.succs)?; } Ok(()) } } impl<'a> Function<'a> { fn new(nodes: &'a mut Nodes, tys: &'a Types, sig: Sig) -> Self { let mut s = Self { nodes, tys, sig, blocks: Default::default(), instrs: Default::default(), }; s.nodes.visited.clear(s.nodes.values.len()); s.emit_node(VOID, VOID); s.add_block(0); s.blocks.pop(); s } fn add_block(&mut self, nid: Nid) -> RallocBRef { if let Some(prev) = self.blocks.last_mut() { prev.instrs = regalloc2::InstRange::new( prev.instrs.first(), regalloc2::Inst::new(self.instrs.len()), ); } self.blocks.push(Block { nid, preds: Default::default(), succs: Default::default(), instrs: regalloc2::InstRange::new( regalloc2::Inst::new(self.instrs.len()), regalloc2::Inst::new(self.instrs.len() + 1), ), params: Default::default(), branch_blockparams: Default::default(), }); self.blocks.len() as RallocBRef - 1 } fn add_instr(&mut self, nid: Nid, ops: Vec) { self.instrs.push(Instr { nid, ops }); } fn urg(&mut self, nid: Nid) -> regalloc2::Operand { regalloc2::Operand::reg_use(self.rg(nid)) } fn def_nid(&mut self, _nid: Nid) {} fn drg(&mut self, nid: Nid) -> regalloc2::Operand { self.def_nid(nid); regalloc2::Operand::reg_def(self.rg(nid)) } fn rg(&self, nid: Nid) -> VReg { regalloc2::VReg::new(nid as _, regalloc2::RegClass::Int) } fn emit_node(&mut self, nid: Nid, prev: Nid) { if matches!(self.nodes[nid].kind, Kind::Region | Kind::Loop) { let prev_bref = self.nodes[prev].ralloc_backref; let node = self.nodes[nid].clone(); let idx = 1 + node.inputs.iter().position(|&i| i == prev).unwrap(); for ph in node.outputs { if self.nodes[ph].kind != Kind::Phi { continue; } let rg = self.rg(self.nodes[ph].inputs[idx]); self.blocks[prev_bref as usize].branch_blockparams.push(rg); } self.add_instr(nid, vec![]); match (self.nodes[nid].kind, self.nodes.visited.set(nid)) { (Kind::Loop, false) => { for i in node.inputs { self.bridge(i, nid); } return; } (Kind::Region, true) => return, _ => {} } } else if !self.nodes.visited.set(nid) { return; } let node = self.nodes[nid].clone(); match node.kind { Kind::Start => self.emit_node(node.outputs[0], VOID), Kind::End => {} Kind::If => { self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref; let &[_, cond] = node.inputs.as_slice() else { unreachable!() }; let &[mut then, mut else_] = node.outputs.as_slice() else { unreachable!() }; if let Kind::BinOp { op } = self.nodes[cond].kind && let Some((_, swapped)) = op.cond_op(node.ty.is_signed()) { if swapped { std::mem::swap(&mut then, &mut else_); } let &[_, lhs, rhs] = self.nodes[cond].inputs.as_slice() else { unreachable!() }; let ops = vec![self.urg(lhs), self.urg(rhs)]; self.add_instr(nid, ops); } else { todo!() } self.emit_node(then, nid); self.emit_node(else_, nid); } Kind::Region | Kind::Loop => { self.nodes[nid].ralloc_backref = self.add_block(nid); if node.kind == Kind::Region { for i in node.inputs { self.bridge(i, nid); } } let mut block = vec![]; for ph in node.outputs.clone() { if self.nodes[ph].kind != Kind::Phi { continue; } self.def_nid(ph); block.push(self.rg(ph)); } self.blocks[self.nodes[nid].ralloc_backref as usize].params = block; for o in node.outputs.into_iter().rev() { self.emit_node(o, nid); } } Kind::Return => { let ops = if node.inputs[1] != VOID { vec![regalloc2::Operand::reg_fixed_use( self.rg(node.inputs[1]), regalloc2::PReg::new(1, regalloc2::RegClass::Int), )] } else { vec![] }; self.add_instr(nid, ops); self.emit_node(node.outputs[0], nid); } Kind::CInt { .. } => { let ops = vec![self.drg(nid)]; self.add_instr(nid, ops); } Kind::Phi => {} Kind::Tuple { index } => { let is_start = self.nodes[node.inputs[0]].kind == Kind::Start && index == 0; if is_start || (self.nodes[node.inputs[0]].kind == Kind::If && index < 2) { self.nodes[nid].ralloc_backref = self.add_block(nid); self.bridge(prev, nid); if is_start { let mut parama = self.tys.parama(self.sig.ret); for (arg, ti) in self.nodes[VOID] .clone() .outputs .into_iter() .skip(1) .zip(self.sig.args.range()) { let ty = self.tys.args[ti]; match self.tys.size_of(ty) { 0 => continue, 1..=8 => { self.def_nid(arg); self.add_instr(NEVER, vec![ regalloc2::Operand::reg_fixed_def( self.rg(arg), regalloc2::PReg::new( parama.next() as _, regalloc2::RegClass::Int, ), ), ]); } _ => todo!(), } } } for o in node.outputs.into_iter().rev() { self.emit_node(o, nid); } } else { todo!(); } } Kind::BinOp { op } => { let &[_, lhs, rhs] = node.inputs.as_slice() else { unreachable!() }; let ops = if let Kind::CInt { .. } = self.nodes[rhs].kind && op.imm_binop(node.ty.is_signed(), 8).is_some() { vec![self.drg(nid), self.urg(lhs)] } else if op.binop(node.ty.is_signed(), 8).is_some() { vec![self.drg(nid), self.urg(lhs), self.urg(rhs)] } else if op.cond_op(node.ty.is_signed()).is_some() { return; } else { todo!("{op}") }; self.add_instr(nid, ops); } Kind::UnOp { .. } => { let ops = vec![self.drg(nid), self.urg(node.inputs[1])]; self.add_instr(nid, ops); } Kind::Call { func } => { self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref; let mut ops = vec![]; let fuc = self.tys.funcs[func as usize].sig.unwrap(); if self.tys.size_of(fuc.ret) != 0 { self.def_nid(nid); ops.push(regalloc2::Operand::reg_fixed_def( self.rg(nid), regalloc2::PReg::new(1, regalloc2::RegClass::Int), )); } let mut parama = self.tys.parama(fuc.ret); for (&i, ti) in node.inputs[1..].iter().zip(fuc.args.range()) { let ty = self.tys.args[ti]; match self.tys.size_of(ty) { 0 => continue, 1..=8 => { ops.push(regalloc2::Operand::reg_fixed_use( self.rg(i), regalloc2::PReg::new( parama.next() as _, regalloc2::RegClass::Int, ), )); } _ => todo!(), } } self.add_instr(nid, ops); for o in node.outputs.into_iter().rev() { if self.nodes[o].inputs[0] == nid { self.emit_node(o, nid); } } } } } fn bridge(&mut self, pred: u16, succ: u16) { if self.nodes[pred].ralloc_backref == u16::MAX || self.nodes[succ].ralloc_backref == u16::MAX { return; } self.blocks[self.nodes[pred].ralloc_backref as usize] .succs .push(regalloc2::Block::new(self.nodes[succ].ralloc_backref as usize)); self.blocks[self.nodes[succ].ralloc_backref as usize] .preds .push(regalloc2::Block::new(self.nodes[pred].ralloc_backref as usize)); } } impl<'a> regalloc2::Function for Function<'a> { fn num_insts(&self) -> usize { self.instrs.len() } fn num_blocks(&self) -> usize { self.blocks.len() } fn entry_block(&self) -> regalloc2::Block { regalloc2::Block(0) } fn block_insns(&self, block: regalloc2::Block) -> regalloc2::InstRange { self.blocks[block.index()].instrs } fn block_succs(&self, block: regalloc2::Block) -> &[regalloc2::Block] { &self.blocks[block.index()].succs } fn block_preds(&self, block: regalloc2::Block) -> &[regalloc2::Block] { &self.blocks[block.index()].preds } fn block_params(&self, block: regalloc2::Block) -> &[regalloc2::VReg] { &self.blocks[block.index()].params } fn is_ret(&self, insn: regalloc2::Inst) -> bool { self.nodes[self.instrs[insn.index()].nid].kind == Kind::Return } fn is_branch(&self, insn: regalloc2::Inst) -> bool { matches!( self.nodes[self.instrs[insn.index()].nid].kind, Kind::If | Kind::Tuple { .. } | Kind::Loop | Kind::Region ) } fn branch_blockparams( &self, block: regalloc2::Block, _insn: regalloc2::Inst, _succ_idx: usize, ) -> &[regalloc2::VReg] { debug_assert!( self.blocks[block.index()].succs.len() == 1 || self.blocks[block.index()].branch_blockparams.is_empty() ); &self.blocks[block.index()].branch_blockparams } fn inst_operands(&self, insn: regalloc2::Inst) -> &[regalloc2::Operand] { &self.instrs[insn.index()].ops } fn inst_clobbers(&self, insn: regalloc2::Inst) -> regalloc2::PRegSet { if matches!(self.nodes[self.instrs[insn.index()].nid].kind, Kind::Call { .. }) { let mut set = regalloc2::PRegSet::default(); for i in 2..12 { set.add(regalloc2::PReg::new(i, regalloc2::RegClass::Int)); } set } else { regalloc2::PRegSet::default() } } fn num_vregs(&self) -> usize { self.nodes.values.len() } fn spillslot_size(&self, regclass: regalloc2::RegClass) -> usize { match regclass { regalloc2::RegClass::Int => 1, regalloc2::RegClass::Float => unreachable!(), regalloc2::RegClass::Vector => unreachable!(), } } } let mut nodes = std::mem::take(&mut self.ci.nodes); let func = Function::new(&mut nodes, &self.tys, sig); let env = regalloc2::MachineEnv { preferred_regs_by_class: [ (1..13).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(), vec![], vec![], ], non_preferred_regs_by_class: [ (13..64).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(), vec![], vec![], ], scratch_by_class: Default::default(), fixed_stack_slots: Default::default(), }; let options = regalloc2::RegallocOptions { verbose_log: false, validate_ssa: true }; let output = regalloc2::run(&func, &env, &options).unwrap_or_else(|err| panic!("{err}")); let mut saved_regs = HashMap::::default(); let mut atr = |allc: regalloc2::Allocation| { debug_assert!(allc.is_reg()); let hvenc = regalloc2::PReg::from_index(allc.index()).hw_enc() as u8; if hvenc <= 12 { return hvenc; } let would_insert = saved_regs.len() as u8 + reg::RET_ADDR + 1; *saved_regs.entry(hvenc).or_insert(would_insert) }; for (i, block) in func.blocks.iter().enumerate() { let blk = regalloc2::Block(i as _); func.nodes[block.nid].offset = self.ci.code.len() as _; for instr_or_edit in output.block_insts_and_edits(&func, blk) { let inst = match instr_or_edit { regalloc2::InstOrEdit::Inst(inst) => inst, regalloc2::InstOrEdit::Edit(®alloc2::Edit::Move { from, to }) => { self.ci.emit(instrs::cp(atr(to), atr(from))); continue; } }; let nid = func.instrs[inst.index()].nid; if nid == NEVER { continue; }; let allocs = output.inst_allocs(inst); let node = &func.nodes[nid]; match node.kind { Kind::Start => todo!(), Kind::End => todo!(), Kind::If => { let &[_, cond] = node.inputs.as_slice() else { unreachable!() }; if let Kind::BinOp { op } = func.nodes[cond].kind && let Some((op, swapped)) = op.cond_op(node.ty.is_signed()) { let rel = Reloc::new(self.ci.code.len(), 3, 2); self.ci.jump_relocs.push((node.outputs[!swapped as usize], rel)); let &[lhs, rhs] = allocs else { unreachable!() }; self.ci.emit(op(atr(lhs), atr(rhs), 0)); } else { todo!() } } Kind::Loop | Kind::Region => { if node.ralloc_backref as usize != i + 1 { let rel = Reloc::new(self.ci.code.len(), 1, 4); self.ci.jump_relocs.push((nid, rel)); self.ci.emit(instrs::jmp(0)); } } Kind::Return => { if i != func.blocks.len() - 1 { let rel = Reloc::new(self.ci.code.len(), 1, 4); self.ci.ret_relocs.push(rel); self.ci.emit(instrs::jmp(0)); } } Kind::CInt { value } => { self.ci.emit(instrs::li64(atr(allocs[0]), value as _)); } Kind::Phi => todo!(), Kind::Tuple { .. } => todo!(), Kind::UnOp { op } => { let op = op.unop().expect("TODO: unary operator not supported"); let &[dst, oper] = allocs else { unreachable!() }; self.ci.emit(op(atr(dst), atr(oper))); } Kind::BinOp { op } => { let &[.., rhs] = node.inputs.as_slice() else { unreachable!() }; if let Kind::CInt { value } = func.nodes[rhs].kind && let Some(op) = op.imm_binop(node.ty.is_signed(), func.tys.size_of(node.ty)) { let &[dst, lhs] = allocs else { unreachable!() }; self.ci.emit(op(atr(dst), atr(lhs), value as _)); } else if let Some(op) = op.binop(node.ty.is_signed(), func.tys.size_of(node.ty)) { let &[dst, lhs, rhs] = allocs else { unreachable!() }; self.ci.emit(op(atr(dst), atr(lhs), atr(rhs))); } else if op.cond_op(node.ty.is_signed()).is_some() { } else { todo!() } } Kind::Call { func } => { self.ci.relocs.push(TypedReloc { target: ty::Kind::Func(func).compress(), reloc: Reloc::new(self.ci.code.len(), 3, 4), }); self.ci.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0)); } } } } self.ci.nodes = nodes; saved_regs.len() } // TODO: sometimes its better to do this in bulk fn ty(&mut self, expr: &Expr) -> ty::Id { match *expr { Expr::Ident { id, .. } if ident::is_null(id) => id.into(), ref e => { self.report_unhandled_ast(e, "type"); ty::NEVER.into() } } } fn find_or_declare( &mut self, pos: Pos, file: FileId, name: Option, lit_name: &str, ) -> ty::Kind { log::trc!("find_or_declare: {lit_name} {file}"); let f = self.files[file as usize].clone(); let Some((expr, ident)) = f.find_decl(name.ok_or(lit_name)) else { match name.ok_or(lit_name) { Ok(name) => { let name = self.cfile().ident_str(name); self.report(pos, format_args!("idk indentifier: {name}")) } Err("main") => self.report( pos, format_args!( "missing main function in '{}', compiler can't \ emmit libraries since such concept is not defined", f.path ), ), Err(name) => self.report(pos, format_args!("idk indentifier: {name}")), } return ty::Kind::Builtin(ty::NEVER); }; if let Some(existing) = self.tys.syms.get(&SymKey { file, ident }) { if let ty::Kind::Func(id) = existing.expand() && let func = &mut self.tys.funcs[id as usize] && let Err(idx) = task::unpack(func.offset) && idx < self.tasks.len() { func.offset = task::id(self.tasks.len()); let task = self.tasks[idx].take(); self.tasks.push(task); } return existing.expand(); } let prev_file = std::mem::replace(&mut self.ci.file, file); let sym = match expr { Expr::BinOp { left: &Expr::Ident { .. }, op: TokenKind::Decl, right: &Expr::Closure { pos, args, ret, .. }, } => { let func = Func { file, sig: '_b: { let arg_base = self.tys.args.len(); for arg in args { let sym = parser::find_symbol(&f.symbols, arg.id); assert!(sym.flags & idfl::COMPTIME == 0, "TODO"); let ty = self.ty(&arg.ty); self.tys.args.push(ty); } let Some(args) = self.pack_args(arg_base) else { self.fatal_report( pos, "you cant be serious, using more the 31 arguments in a function", ); }; let ret = self.ty(ret); Some(Sig { args, ret }) }, expr: { let refr = ExprRef::new(expr); debug_assert!(refr.get(&f).is_some()); refr }, ..Default::default() }; let id = self.tys.funcs.len() as _; self.tys.funcs.push(func); ty::Kind::Func(id) } Expr::BinOp { left: &Expr::Ident { .. }, op: TokenKind::Decl, right: Expr::Struct { fields, .. }, } => ty::Kind::Struct(self.build_struct(fields)), Expr::BinOp { .. } => { todo!() } e => unimplemented!("{e:#?}"), }; self.ci.file = prev_file; self.tys.syms.insert(SymKey { ident, file }, sym.compress()); sym } fn ty_display(&self, ty: ty::Id) -> ty::Display { ty::Display::new(&self.tys, &self.files, ty) } #[must_use] #[track_caller] fn assert_ty( &self, pos: Pos, ty: ty::Id, expected: ty::Id, preserve_expected: bool, hint: impl fmt::Display, ) -> ty::Id { if let Some(res) = ty.try_upcast(expected) && (!preserve_expected || res == expected) { res } else { let ty = self.ty_display(ty); let expected = self.ty_display(expected); self.report(pos, format_args!("expected {hint} to be of type {expected}, got {ty}")); ty::NEVER.into() } } fn report_log(&self, pos: Pos, msg: impl std::fmt::Display) { let mut buf = self.errors.borrow_mut(); self.report_log_to(pos, msg, &mut *buf); } fn report_log_to(&self, pos: Pos, msg: impl std::fmt::Display, out: &mut impl std::fmt::Write) { self.cfile().report_to(pos, msg, out); } #[track_caller] fn assert_report(&self, cond: bool, pos: Pos, msg: impl std::fmt::Display) { if !cond { self.report(pos, msg); } } #[track_caller] fn report(&self, pos: Pos, msg: impl std::fmt::Display) { self.report_log(pos, msg); } #[track_caller] fn report_unhandled_ast(&self, ast: &Expr, hint: &str) { self.report( ast.pos(), format_args!( "compiler does not (yet) know how to handle ({hint}):\n\ {ast:}\n\ info for weak people:\n\ {ast:#?}" ), ); } fn cfile(&self) -> &parser::Ast { &self.files[self.ci.file as usize] } fn pack_args(&mut self, arg_base: usize) -> Option { let needle = &self.tys.args[arg_base..]; if needle.is_empty() { return Some(ty::Tuple::empty()); } let len = needle.len(); // FIXME: maybe later when this becomes a bottleneck we use more // efficient search (SIMD?, indexing?) let sp = self.tys.args.windows(needle.len()).position(|val| val == needle).unwrap(); self.tys.args.truncate((sp + needle.len()).max(arg_base)); ty::Tuple::new(sp, len) } fn fatal_report(&self, pos: Pos, msg: impl Display) -> ! { self.report(pos, msg); eprintln!("{}", self.errors.borrow()); std::process::exit(1); } fn gcm(&mut self) { self.ci.nodes.visited.clear(self.ci.nodes.values.len()); push_up(&mut self.ci.nodes, NEVER); // TODO: handle infinte loops self.ci.nodes.visited.clear(self.ci.nodes.values.len()); push_down(&mut self.ci.nodes, VOID); } } fn loop_depth(target: Nid, nodes: &mut Nodes) -> LoopDepth { if nodes[target].loop_depth != 0 { return nodes[target].loop_depth; } nodes[target].loop_depth = match nodes[target].kind { Kind::Tuple { .. } | Kind::Call { .. } | Kind::Return | Kind::If => { loop_depth(nodes[target].inputs[0], nodes) } Kind::Region => { let l = loop_depth(nodes[target].inputs[0], nodes); let r = loop_depth(nodes[target].inputs[1], nodes); debug_assert_eq!(r, l); l } Kind::Loop => { let depth = loop_depth(nodes[target].inputs[0], nodes) + 1; nodes[target].loop_depth = depth; let mut cursor = nodes[target].inputs[1]; while cursor != target { nodes[cursor].loop_depth = depth; let next = if nodes[cursor].kind == Kind::Region { loop_depth(nodes[cursor].inputs[0], nodes); nodes[cursor].inputs[1] } else { idom(nodes, cursor) }; debug_assert_ne!(next, VOID); if let Kind::Tuple { index } = nodes[cursor].kind && nodes[next].kind == Kind::If { let other = *nodes[next] .outputs .iter() .find( |&&n| matches!(nodes[n].kind, Kind::Tuple { index: oi } if index != oi), ) .unwrap(); if nodes[other].loop_depth == 0 { nodes[other].loop_depth = depth - 1; } } cursor = next; } depth } Kind::Start | Kind::End => 1, Kind::CInt { .. } | Kind::Phi | Kind::BinOp { .. } | Kind::UnOp { .. } => { unreachable!() } }; if target == 19 { //panic!("{}", nodes[target].loop_depth); } nodes[target].loop_depth } fn better(nodes: &mut Nodes, is: Nid, then: Nid) -> bool { loop_depth(is, nodes) < loop_depth(then, nodes) || idepth(nodes, is) > idepth(nodes, then) || nodes[then].kind == Kind::If } fn idepth(nodes: &mut Nodes, target: Nid) -> IDomDepth { if target == VOID { return 0; } if nodes[target].depth == 0 { nodes[target].depth = match nodes[target].kind { Kind::End | Kind::Start => unreachable!(), Kind::Loop | Kind::CInt { .. } | Kind::BinOp { .. } | Kind::UnOp { .. } | Kind::Call { .. } | Kind::Phi | Kind::Tuple { .. } | Kind::Return | Kind::If => idepth(nodes, nodes[target].inputs[0]), Kind::Region => { idepth(nodes, nodes[target].inputs[0]).max(idepth(nodes, nodes[target].inputs[1])) } } + 1; } nodes[target].depth } fn push_up(nodes: &mut Nodes, node: Nid) { if !nodes.visited.set(node) { return; } if nodes[node].kind.is_pinned() { for i in 0..nodes[node].inputs.len() { let i = nodes[node].inputs[i]; push_up(nodes, i); } } else { let mut max = VOID; for i in 0..nodes[node].inputs.len() { let i = nodes[node].inputs[i]; let is_call = matches!(nodes[i].kind, Kind::Call { .. }); if nodes.is_cfg(i) && !is_call { continue; } push_up(nodes, i); if idepth(nodes, i) > idepth(nodes, max) { max = if is_call { i } else { idom(nodes, i) }; } } #[cfg(debug_assertions)] { nodes.check_dominance(node, max, false); } if max == VOID { return; } let index = nodes[0].outputs.iter().position(|&p| p == node).unwrap(); nodes[0].outputs.remove(index); nodes[node].inputs[0] = max; debug_assert!( !nodes[max].outputs.contains(&node) || matches!(nodes[max].kind, Kind::Call { .. }), "{node} {:?} {max} {:?}", nodes[node], nodes[max] ); nodes[max].outputs.push(node); } } fn push_down(nodes: &mut Nodes, node: Nid) { if !nodes.visited.set(node) { return; } // TODO: handle memory nodes first if nodes[node].kind.is_pinned() { // TODO: use buffer to avoid allocation or better yet queue the location changes for i in nodes[node].outputs.clone() { push_down(nodes, i); } } else { let mut min = None::; for i in 0..nodes[node].outputs.len() { let i = nodes[node].outputs[i]; push_down(nodes, i); let i = use_block(node, i, nodes); min = min.map(|m| common_dom(i, m, nodes)).or(Some(i)); } let mut min = min.unwrap(); debug_assert!(nodes.dominates(nodes[node].inputs[0], min)); let mut cursor = min; loop { if better(nodes, cursor, min) { min = cursor; } if cursor == nodes[node].inputs[0] { break; } cursor = idom(nodes, cursor); } if nodes[min].kind.ends_basic_block() { min = idom(nodes, min); } #[cfg(debug_assertions)] { nodes.check_dominance(node, min, true); } let prev = nodes[node].inputs[0]; if min != prev { debug_assert!(idepth(nodes, min) > idepth(nodes, prev)); let index = nodes[prev].outputs.iter().position(|&p| p == node).unwrap(); nodes[prev].outputs.remove(index); nodes[node].inputs[0] = min; nodes[min].outputs.push(node); } } } fn use_block(target: Nid, from: Nid, nodes: &mut Nodes) -> Nid { if nodes[from].kind != Kind::Phi { return idom(nodes, from); } let index = nodes[from].inputs.iter().position(|&n| n == target).unwrap(); nodes[nodes[from].inputs[0]].inputs[index - 1] } fn idom(nodes: &mut Nodes, target: Nid) -> Nid { match nodes[target].kind { Kind::Start => VOID, Kind::End => unreachable!(), Kind::Loop | Kind::CInt { .. } | Kind::BinOp { .. } | Kind::UnOp { .. } | Kind::Call { .. } | Kind::Phi | Kind::Tuple { .. } | Kind::Return | Kind::If => nodes[target].inputs[0], Kind::Region => { let &[lcfg, rcfg] = nodes[target].inputs.as_slice() else { unreachable!() }; common_dom(lcfg, rcfg, nodes) } } } fn common_dom(mut a: Nid, mut b: Nid, nodes: &mut Nodes) -> Nid { while a != b { let [ldepth, rdepth] = [idepth(nodes, a), idepth(nodes, b)]; if ldepth >= rdepth { a = idom(nodes, a); } if ldepth <= rdepth { b = idom(nodes, b); } } a } #[cfg(test)] mod tests { use std::fmt::Write; const README: &str = include_str!("../README.md"); fn generate(ident: &'static str, input: &'static str, output: &mut String) { _ = env_logger::builder().is_test(true).try_init(); let mut codegen = super::Codegen { files: crate::test_parse_files(ident, input), ..Default::default() }; codegen.generate(); { let errors = codegen.errors.borrow(); if !errors.is_empty() { output.push_str(&errors); return; } } let mut out = Vec::new(); codegen.tys.assemble(&mut out); let mut buf = Vec::::new(); let err = codegen.tys.disasm(&out, &codegen.files, &mut buf, |_| {}); output.push_str(String::from_utf8(buf).unwrap().as_str()); if let Err(e) = err { writeln!(output, "!!! asm is invalid: {e}").unwrap(); return; } println!("{output}"); crate::test_run_vm(&out, output); } crate::run_tests! { generate: arithmetic => README; variables => README; functions => README; comments => README; if_statements => README; loops => README; fb_driver => README; //pointers => README; //structs => README; //different_types => README; //struct_operators => README; //directives => README; //global_variables => README; //generic_types => README; //generic_functions => README; //c_strings => README; //struct_patterns => README; //arrays => README; //struct_return_from_module_function => README; ////comptime_pointers => README; //sort_something_viredly => README; hex_octal_binary_literals => README; //comptime_min_reg_leak => README; ////structs_in_registers => README; //comptime_function_from_another_file => README; //inline => README; //inline_test => README; const_folding_with_arg => README; // FIXME: contains redundant copies branch_assignments => README; exhaustive_loop_testing => README; } }