//! HoleyBytes Virtual Machine //! //! All unsafe code here should be sound, if input bytecode passes validation. // # General safety notice: // - Validation has to assure there is 256 registers (r0 - r255) // - Instructions have to be valid as specified (values and sizes) // - Mapped pages should be at least 4 KiB // - Yes, I am aware of the UB when jumping in-mid of instruction where // the read byte corresponds to an instruction whose lenght exceets the // program size. If you are (rightfully) worried about the UB, for now just // append your program with 11 zeroes. mod mem; mod value; use { crate::validate, core::ops, hbbytecode::{OpParam, ParamBB, ParamBBB, ParamBBBB, ParamBBD, ParamBBDH, ParamBD}, mem::Memory, static_assertions::assert_impl_one, value::Value, }; macro_rules! param { ($self:expr, $ty:ty) => {{ assert_impl_one!($ty: OpParam); let data = $self .program .as_ptr() .add($self.pc + 1) .cast::<$ty>() .read(); $self.pc += 1 + core::mem::size_of::<$ty>(); data }}; } macro_rules! binary_op { ($self:expr, $ty:ident, $handler:expr) => {{ let ParamBBB(tg, a0, a1) = param!($self, ParamBBB); $self.write_reg( tg, $handler( Value::$ty(&$self.read_reg(a0)), Value::$ty(&$self.read_reg(a1)), ) .into(), ); }}; } macro_rules! binary_op_imm { ($self:expr, $ty:ident, $handler:expr) => {{ let ParamBBD(tg, a0, imm) = param!($self, ParamBBD); $self.write_reg( tg, $handler(Value::$ty(&$self.read_reg(a0)), Value::$ty(&imm.into())).into(), ); }}; } macro_rules! cond_jump { ($self:expr, $ty:ident, $expected:ident) => {{ let ParamBBD(a0, a1, jt) = param!($self, ParamBBD); if core::cmp::Ord::cmp(&$self.read_reg(a0).as_u64(), &$self.read_reg(a1).as_u64()) == core::cmp::Ordering::$expected { $self.pc = jt as usize; } }}; } pub struct Vm<'a> { pub registers: [Value; 256], pub memory: Memory, pc: usize, program: &'a [u8], } impl<'a> Vm<'a> { /// # Safety /// Program code has to be validated pub unsafe fn new_unchecked(program: &'a [u8]) -> Self { Self { registers: [Value::from(0_u64); 256], memory: Default::default(), pc: 0, program, } } pub fn new_validated(program: &'a [u8]) -> Result { validate::validate(program)?; Ok(unsafe { Self::new_unchecked(program) }) } pub fn run(&mut self) -> HaltReason { use hbbytecode::opcode::*; loop { let Some(&opcode) = self.program.get(self.pc) else { return HaltReason::ProgramEnd }; unsafe { match opcode { NOP => param!(self, ()), ADD => binary_op!(self, as_u64, u64::wrapping_add), SUB => binary_op!(self, as_u64, u64::wrapping_sub), MUL => binary_op!(self, as_u64, u64::wrapping_mul), AND => binary_op!(self, as_u64, ops::BitAnd::bitand), OR => binary_op!(self, as_u64, ops::BitOr::bitor), XOR => binary_op!(self, as_u64, ops::BitXor::bitxor), SL => binary_op!(self, as_u64, ops::Shl::shl), SR => binary_op!(self, as_u64, ops::Shr::shr), SRS => binary_op!(self, as_i64, ops::Shr::shr), CMP => { let ParamBBB(tg, a0, a1) = param!(self, ParamBBB); self.write_reg( tg, (self.read_reg(a0).as_i64().cmp(&self.read_reg(a1).as_i64()) as i64) .into(), ); } CMPU => { let ParamBBB(tg, a0, a1) = param!(self, ParamBBB); self.write_reg( tg, (self.read_reg(a0).as_u64().cmp(&self.read_reg(a1).as_u64()) as i64) .into(), ); } NOT => { let param = param!(self, ParamBB); self.write_reg(param.0, (!self.read_reg(param.1).as_u64()).into()); } NEG => { let param = param!(self, ParamBB); self.write_reg( param.0, match self.read_reg(param.1).as_u64() { 0 => 1_u64, _ => 0, } .into(), ); } DIR => { let ParamBBBB(dt, rt, a0, a1) = param!(self, ParamBBBB); let a0 = self.read_reg(a0).as_u64(); let a1 = self.read_reg(a1).as_u64(); self.write_reg(dt, (a0.checked_div(a1).unwrap_or(u64::MAX)).into()); self.write_reg(rt, (a0.checked_rem(a1).unwrap_or(u64::MAX)).into()); } ADDI => binary_op_imm!(self, as_u64, ops::Add::add), MULI => binary_op_imm!(self, as_u64, ops::Mul::mul), ANDI => binary_op_imm!(self, as_u64, ops::BitAnd::bitand), ORI => binary_op_imm!(self, as_u64, ops::BitOr::bitor), XORI => binary_op_imm!(self, as_u64, ops::BitXor::bitxor), SLI => binary_op_imm!(self, as_u64, ops::Shl::shl), SRI => binary_op_imm!(self, as_u64, ops::Shr::shr), SRSI => binary_op_imm!(self, as_i64, ops::Shr::shr), CMPI => { let ParamBBD(tg, a0, imm) = param!(self, ParamBBD); self.write_reg( tg, (self.read_reg(a0).as_i64().cmp(&Value::from(imm).as_i64()) as i64) .into(), ); } CMPUI => { let ParamBBD(tg, a0, imm) = param!(self, ParamBBD); self.write_reg(tg, (self.read_reg(a0).as_u64().cmp(&imm) as i64).into()); } CP => { let param = param!(self, ParamBB); self.write_reg(param.0, self.read_reg(param.1)); } SWA => { let ParamBB(src, dst) = param!(self, ParamBB); if src + dst != 0 { core::ptr::swap( self.registers.get_unchecked_mut(usize::from(src)), self.registers.get_unchecked_mut(usize::from(dst)), ); } } LI => { let param = param!(self, ParamBD); self.write_reg(param.0, param.1.into()); } LD => { let ParamBBDH(dst, base, off, count) = param!(self, ParamBBDH); let n: usize = match dst { 0 => 1, _ => 0, }; if self .memory .load( self.read_reg(base).as_u64() + off + n as u64, self.registers.as_mut_ptr().add(usize::from(dst) + n).cast(), usize::from(count).saturating_sub(n), ) .is_err() { return HaltReason::LoadAccessEx; } } ST => { let ParamBBDH(dst, base, off, count) = param!(self, ParamBBDH); if self .memory .store( self.read_reg(base).as_u64() + off, self.registers.as_ptr().add(usize::from(dst)).cast(), count.into(), ) .is_err() { return HaltReason::LoadAccessEx; } } BMC => { let ParamBBD(src, dst, count) = param!(self, ParamBBD); if self .memory .block_copy( self.read_reg(src).as_u64(), self.read_reg(dst).as_u64(), count, ) .is_err() { return HaltReason::LoadAccessEx; } } BRC => { let ParamBBB(src, dst, count) = param!(self, ParamBBB); core::ptr::copy( self.registers.get_unchecked(usize::from(src)), self.registers.get_unchecked_mut(usize::from(dst)), usize::from(count * 8), ); } JMP => { let ParamBD(reg, offset) = param!(self, ParamBD); self.pc = (self.read_reg(reg).as_u64() + offset) as usize; } JEQ => cond_jump!(self, int, Equal), JNE => { let ParamBBD(a0, a1, jt) = param!(self, ParamBBD); if self.read_reg(a0).as_u64() != self.read_reg(a1).as_u64() { self.pc = jt as usize; } } JLT => cond_jump!(self, int, Less), JGT => cond_jump!(self, int, Greater), JLTU => cond_jump!(self, sint, Less), JGTU => cond_jump!(self, sint, Greater), ECALL => { param!(self, ()); return HaltReason::Ecall; } ADDF => binary_op!(self, as_f64, ops::Add::add), MULF => binary_op!(self, as_f64, ops::Mul::mul), DIRF => { let ParamBBBB(dt, rt, a0, a1) = param!(self, ParamBBBB); let a0 = self.read_reg(a0).as_f64(); let a1 = self.read_reg(a1).as_f64(); self.write_reg(dt, (a0 / a1).into()); self.write_reg(rt, (a0 % a1).into()); } ADDFI => binary_op_imm!(self, as_f64, ops::Add::add), MULFI => binary_op_imm!(self, as_f64, ops::Mul::mul), _ => return HaltReason::InvalidOpcode, } } } } #[inline] unsafe fn read_reg(&self, n: u8) -> Value { if n == 0 { 0_u64.into() } else { *self.registers.get_unchecked(n as usize) } } #[inline] unsafe fn write_reg(&mut self, n: u8, value: Value) { if n != 0 { *self.registers.get_unchecked_mut(n as usize) = value; } } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] #[repr(u8)] pub enum HaltReason { ProgramEnd, Ecall, InvalidOpcode, LoadAccessEx, StoreAccessEx, }