#![allow(dead_code)] use { crate::{ ident::{self, Ident}, instrs, lexer::{self, TokenKind}, log, parser::{ self, idfl::{self}, Expr, ExprRef, FileId, Pos, }, HashMap, }, core::fmt, std::{ cell::RefCell, collections::BTreeMap, fmt::Display, mem, ops::{self, Range}, rc::Rc, usize, }, }; macro_rules! node_color { ($self:expr, $value:expr) => { $self.ci.colors[$self.ci.nodes[$value].color as usize - 1] }; } macro_rules! node_loc { ($self:expr, $value:expr) => { $self.ci.colors[$self.ci.nodes[$value].color as usize - 1].loc }; } struct Drom(&'static str); impl Drop for Drom { fn drop(&mut self) { log::inf!("{}", self.0); } } #[derive(Default)] struct BitSet { data: Vec, } impl BitSet { const ELEM_SIZE: usize = std::mem::size_of::() * 8; pub fn clear(&mut self, bit_size: usize) { let new_len = (bit_size + Self::ELEM_SIZE - 1) / Self::ELEM_SIZE; self.data.clear(); self.data.resize(new_len, 0); } pub fn set(&mut self, idx: usize) -> bool { let data_idx = idx / Self::ELEM_SIZE; let sub_idx = idx % Self::ELEM_SIZE; let prev = self.data[data_idx] & (1 << sub_idx); self.data[data_idx] |= 1 << sub_idx; prev == 0 } } type Nid = u32; mod reg { pub const STACK_PTR: Reg = 254; pub const ZERO: Reg = 0; pub const RET: Reg = 1; pub const RET_ADDR: Reg = 31; pub type Reg = u8; #[derive(Default)] struct AllocMeta { rc: u16, depth: u16, #[cfg(debug_assertions)] allocated_at: Option, } struct Metas([AllocMeta; 256]); impl Default for Metas { fn default() -> Self { Metas(std::array::from_fn(|_| AllocMeta::default())) } } #[derive(Default)] pub struct Alloc { meta: Metas, free: Vec, max_used: Reg, } impl Alloc { pub fn init(&mut self) { self.free.clear(); self.free.extend((32..=253).rev()); self.max_used = RET_ADDR; } pub fn allocate(&mut self, depth: u16) -> Reg { let reg = self.free.pop().expect("TODO: we need to spill"); self.max_used = self.max_used.max(reg); self.meta.0[reg as usize] = AllocMeta { depth, rc: 1, #[cfg(debug_assertions)] allocated_at: Some(std::backtrace::Backtrace::capture()), }; reg } pub fn dup(&mut self, reg: Reg) { self.meta.0[reg as usize].rc += 1; } pub fn free(&mut self, reg: Reg) { if self.meta.0[reg as usize].rc == 1 { self.free.push(reg); self.meta.0[reg as usize] = Default::default(); } else { self.meta.0[reg as usize].rc -= 1; } } pub fn pushed_size(&self) -> usize { ((self.max_used as usize).saturating_sub(RET_ADDR as usize) + 1) * 8 } pub fn mark_leaked(&mut self, reg: u8) { self.meta.0[reg as usize].rc = u16::MAX; } } } mod ty { use { crate::{ lexer::TokenKind, parser::{self, Expr}, son::ArrayLen, }, std::{num::NonZeroU32, ops::Range}, }; pub type Builtin = u32; pub type Struct = u32; pub type Ptr = u32; pub type Func = u32; pub type Global = u32; pub type Module = u32; pub type Param = u32; pub type Slice = u32; #[derive(Clone, Copy)] pub struct Tuple(pub u32); impl Tuple { const LEN_BITS: u32 = 5; const LEN_MASK: usize = Self::MAX_LEN - 1; const MAX_LEN: usize = 1 << Self::LEN_BITS; pub fn new(pos: usize, len: usize) -> Option { if len >= Self::MAX_LEN { return None; } Some(Self((pos << Self::LEN_BITS | len) as u32)) } pub fn view(self, slice: &[Id]) -> &[Id] { &slice[self.0 as usize >> Self::LEN_BITS..][..self.len()] } pub fn range(self) -> Range { let start = self.0 as usize >> Self::LEN_BITS; start..start + self.len() } pub fn len(self) -> usize { self.0 as usize & Self::LEN_MASK } pub fn is_empty(self) -> bool { self.0 == 0 } pub fn empty() -> Self { Self(0) } pub fn repr(&self) -> u32 { self.0 } } #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)] pub struct Id(NonZeroU32); impl Default for Id { fn default() -> Self { Self(unsafe { NonZeroU32::new_unchecked(UNDECLARED) }) } } impl Id { pub const fn from_bt(bt: u32) -> Self { Self(unsafe { NonZeroU32::new_unchecked(bt) }) } pub fn is_signed(self) -> bool { (I8..=INT).contains(&self.repr()) } pub fn is_unsigned(self) -> bool { (U8..=UINT).contains(&self.repr()) } pub fn is_integer(self) -> bool { (U8..=INT).contains(&self.repr()) } pub fn strip_pointer(self) -> Self { match self.expand() { Kind::Ptr(_) => Kind::Builtin(UINT).compress(), _ => self, } } pub fn is_pointer(self) -> bool { matches!(Kind::from_ty(self), Kind::Ptr(_)) } pub fn try_upcast(self, ob: Self) -> Option { let (oa, ob) = (Self(self.0.min(ob.0)), Self(self.0.max(ob.0))); let (a, b) = (oa.strip_pointer(), ob.strip_pointer()); Some(match () { _ if oa == ob => oa, _ if oa.is_pointer() && ob.is_pointer() => return None, _ if a.is_signed() && b.is_signed() || a.is_unsigned() && b.is_unsigned() => ob, _ if a.is_unsigned() && b.is_signed() && a.repr() - U8 < b.repr() - I8 => ob, _ if oa.is_integer() && ob.is_pointer() => ob, _ => return None, }) } pub fn expand(self) -> Kind { Kind::from_ty(self) } pub const fn repr(self) -> u32 { self.0.get() } } impl From for Id { fn from(id: u64) -> Self { Self(unsafe { NonZeroU32::new_unchecked(id as _) }) } } impl From for Id { fn from(id: u32) -> Self { Kind::Builtin(id).compress() } } const fn array_to_lower_case(array: [u8; N]) -> [u8; N] { let mut result = [0; N]; let mut i = 0; while i < N { result[i] = array[i].to_ascii_lowercase(); i += 1; } result } // const string to lower case macro_rules! builtin_type { ($($name:ident;)*) => { $(pub const $name: Builtin = ${index(0)} + 1;)* mod __lc_names { use super::*; $(pub const $name: &[u8] = &array_to_lower_case(unsafe { *(stringify!($name).as_ptr() as *const [u8; stringify!($name).len()]) });)* } pub fn from_str(name: &str) -> Option { match name.as_bytes() { $(__lc_names::$name => Some($name),)* _ => None, } } pub fn to_str(ty: Builtin) -> &'static str { match ty { $($name => unsafe { std::str::from_utf8_unchecked(__lc_names::$name) },)* v => unreachable!("invalid type: {}", v), } } }; } builtin_type! { UNDECLARED; NEVER; VOID; TYPE; BOOL; U8; U16; U32; UINT; I8; I16; I32; INT; LEFT_UNREACHABLE; RIGHT_UNREACHABLE; } macro_rules! type_kind { ($(#[$meta:meta])* $vis:vis enum $name:ident {$( $variant:ident, )*}) => { $(#[$meta])* $vis enum $name { $($variant($variant),)* } impl $name { const FLAG_BITS: u32 = (${count($variant)} as u32).next_power_of_two().ilog2(); const FLAG_OFFSET: u32 = std::mem::size_of::() as u32 * 8 - Self::FLAG_BITS; const INDEX_MASK: u32 = (1 << (32 - Self::FLAG_BITS)) - 1; $vis fn from_ty(ty: Id) -> Self { let (flag, index) = (ty.repr() >> Self::FLAG_OFFSET, ty.repr() & Self::INDEX_MASK); match flag { $(${index(0)} => Self::$variant(index),)* i => unreachable!("{i}"), } } $vis const fn compress(self) -> Id { let (index, flag) = match self { $(Self::$variant(index) => (index, ${index(0)}),)* }; Id(unsafe { NonZeroU32::new_unchecked((flag << Self::FLAG_OFFSET) | index) }) } $vis const fn inner(self) -> u32 { match self { $(Self::$variant(index) => index,)* } } } }; } type_kind! { #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum Kind { Builtin, Struct, Ptr, Func, Global, Module, Slice, } } impl Default for Kind { fn default() -> Self { Self::Builtin(UNDECLARED) } } pub struct Display<'a> { tys: &'a super::Types, files: &'a [parser::Ast], ty: Id, } impl<'a> Display<'a> { pub(super) fn new(tys: &'a super::Types, files: &'a [parser::Ast], ty: Id) -> Self { Self { tys, files, ty } } fn rety(&self, ty: Id) -> Self { Self::new(self.tys, self.files, ty) } } impl<'a> std::fmt::Display for Display<'a> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { use Kind as TK; match TK::from_ty(self.ty) { TK::Module(idx) => write!(f, "module{}", idx), TK::Builtin(ty) => write!(f, "{}", to_str(ty)), TK::Ptr(ty) => { write!(f, "^{}", self.rety(self.tys.ptrs[ty as usize].base)) } _ if let Some((key, _)) = self .tys .syms .iter() .find(|(sym, &ty)| sym.file < self.files.len() as u32 && ty == self.ty) && let Some(name) = self.files[key.file as usize].exprs().iter().find_map( |expr| match expr { Expr::BinOp { left: &Expr::Ident { name, id, .. }, op: TokenKind::Decl, .. } if id == key.ident => Some(name), _ => None, }, ) => { write!(f, "{name}") } TK::Struct(idx) => { let record = &self.tys.structs[idx as usize]; write!(f, "{{")?; for (i, &super::Field { ref name, ty }) in record.fields.iter().enumerate() { if i != 0 { write!(f, ", ")?; } write!(f, "{name}: {}", self.rety(ty))?; } write!(f, "}}") } TK::Func(idx) => write!(f, "fn{idx}"), TK::Global(idx) => write!(f, "global{idx}"), TK::Slice(idx) => { let array = self.tys.arrays[idx as usize]; match array.len { ArrayLen::MAX => write!(f, "[{}]", self.rety(array.ty)), len => write!(f, "[{}; {len}]", self.rety(array.ty)), } } } } } pub fn bin_ret(ty: Id, op: TokenKind) -> Id { use TokenKind as T; match op { T::Lt | T::Gt | T::Le | T::Ge | T::Ne | T::Eq => BOOL.into(), _ => ty, } } } struct Nodes { values: Vec, visited: BitSet, free: u32, lookup: HashMap<(Kind, [Nid; MAX_INPUTS], ty::Id), Nid>, } impl Default for Nodes { fn default() -> Self { Self { values: Default::default(), free: u32::MAX, lookup: Default::default(), visited: Default::default(), } } } impl Nodes { fn add(&mut self, value: Node) -> u32 { if self.free == u32::MAX { self.free = self.values.len() as _; self.values.push(PoolSlot::Next(u32::MAX)); } let free = self.free; self.free = match mem::replace(&mut self.values[free as usize], PoolSlot::Value(value)) { PoolSlot::Value(_) => unreachable!("{free}"), PoolSlot::Next(free) => free, }; free } fn remove_low(&mut self, id: u32) -> Node { let value = match mem::replace(&mut self.values[id as usize], PoolSlot::Next(self.free)) { PoolSlot::Value(value) => value, PoolSlot::Next(_) => unreachable!("{id}"), }; self.free = id; value } fn clear(&mut self) { self.values.clear(); self.lookup.clear(); self.free = u32::MAX; } fn new_node_nop( &mut self, ty: impl Into, kind: Kind, inps: [Nid; SIZE], ) -> Nid { let mut inputs = [Nid::MAX; MAX_INPUTS]; inputs[..inps.len()].copy_from_slice(&inps); let ty = ty.into(); if let Some(&id) = self.lookup.get(&(kind.clone(), inputs, ty)) { debug_assert_eq!(&self[id].kind, &kind); debug_assert_eq!(self[id].inputs, inputs); return id; } let id = self.add(Node { inputs, kind: kind.clone(), color: 0, depth: u32::MAX, lock_rc: 0, ty, outputs: vec![], }); let prev = self.lookup.insert((kind, inputs, ty), id); debug_assert_eq!(prev, None); self.add_deps(id, &inps); id } fn new_node( &mut self, ty: impl Into, kind: Kind, inps: [Nid; SIZE], ) -> Nid { let id = self.new_node_nop(ty, kind, inps); if let Some(opt) = self.peephole(id) { debug_assert_ne!(opt, id); self.lock(opt); self.remove(id); self.unlock(opt); opt } else { id } } fn lock(&mut self, target: Nid) { self[target].lock_rc += 1; } #[track_caller] fn unlock(&mut self, target: Nid) { self[target].lock_rc -= 1; } fn remove(&mut self, target: Nid) -> bool { if !self[target].is_dangling() { return false; } for i in 0..self[target].inputs().len() { let inp = self[target].inputs[i]; let index = self[inp].outputs.iter().position(|&p| p == target).unwrap(); self[inp].outputs.swap_remove(index); self.remove(inp); } let res = self.lookup.remove(&(self[target].kind.clone(), self[target].inputs, self[target].ty)); debug_assert_eq!(res, Some(target)); self.remove_low(target); true } fn peephole(&mut self, target: Nid) -> Option { match self[target].kind { Kind::Start => {} Kind::End => {} Kind::BinOp { op } => return self.peephole_binop(target, op), Kind::Return => {} Kind::Tuple { .. } => {} Kind::ConstInt { .. } => {} Kind::Call { .. } => {} Kind::If => return self.peephole_if(target), Kind::Region => {} Kind::Phi => {} Kind::Loop => {} } None } fn peephole_if(&mut self, target: Nid) -> Option { let cond = self[target].inputs[1]; if let Kind::ConstInt { value } = self[cond].kind { let ty = if value == 0 { ty::LEFT_UNREACHABLE } else { ty::RIGHT_UNREACHABLE }; return Some(self.new_node_nop(ty, Kind::If, [self[target].inputs[0], cond])); } None } fn peephole_binop(&mut self, target: Nid, op: TokenKind) -> Option { use TokenKind as T; let [mut lhs, mut rhs, ..] = self[target].inputs; if lhs == rhs { match op { T::Sub => { return Some(self.new_node(self[target].ty, Kind::ConstInt { value: 0 }, [])); } T::Add => { let rhs = self.new_node(self[target].ty, Kind::ConstInt { value: 2 }, []); return Some( self.new_node(self[target].ty, Kind::BinOp { op: T::Mul }, [lhs, rhs]), ); } _ => {} } } if let (&Kind::ConstInt { value: a }, &Kind::ConstInt { value: b }) = (&self[lhs].kind, &self[rhs].kind) { return Some(self.new_node( self[target].ty, Kind::ConstInt { value: op.apply(a, b) }, [], )); } let mut changed = false; if op.is_comutative() && self[lhs].kind < self[rhs].kind { std::mem::swap(&mut lhs, &mut rhs); changed = true; } if let Kind::ConstInt { value } = self[rhs].kind { match (op, value) { (T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs), (T::Mul, 0) => return Some(rhs), _ => {} } } if op.is_comutative() && self[lhs].kind == (Kind::BinOp { op }) { if let Kind::ConstInt { value: a } = self[self[lhs].inputs[1]].kind && let Kind::ConstInt { value: b } = self[rhs].kind { let new_rhs = self.new_node(self[target].ty, Kind::ConstInt { value: op.apply(a, b) }, []); return Some(self.new_node(self[target].ty, Kind::BinOp { op }, [ self[lhs].inputs[0], new_rhs, ])); } if self.is_const(self[lhs].inputs[1]) { let new_lhs = self.new_node(self[target].ty, Kind::BinOp { op }, [self[lhs].inputs[0], rhs]); return Some(self.new_node(self[target].ty, Kind::BinOp { op }, [ new_lhs, self[lhs].inputs[1], ])); } } if op == T::Add && self[lhs].kind == (Kind::BinOp { op: T::Mul }) && self[lhs].inputs[0] == rhs && let Kind::ConstInt { value } = self[self[lhs].inputs[1]].kind { let new_rhs = self.new_node(self[target].ty, Kind::ConstInt { value: value + 1 }, []); return Some( self.new_node(self[target].ty, Kind::BinOp { op: T::Mul }, [rhs, new_rhs]), ); } if op == T::Sub && self[lhs].kind == (Kind::BinOp { op }) { // (a - b) - c => a - (b + c) let [a, b, ..] = self[lhs].inputs; let c = rhs; let new_rhs = self.new_node(self[target].ty, Kind::BinOp { op: T::Add }, [b, c]); return Some(self.new_node(self[target].ty, Kind::BinOp { op }, [a, new_rhs])); } if changed { return Some(self.new_node(self[target].ty, self[target].kind.clone(), [lhs, rhs])); } None } fn is_const(&self, id: Nid) -> bool { matches!(self[id].kind, Kind::ConstInt { .. }) } fn replace(&mut self, target: Nid, with: Nid) { for i in 0..self[target].outputs.len() { let out = self[target].outputs[i]; let index = self[out].inputs().iter().position(|&p| p == target).unwrap(); let rpl = self.modify_input(out, index, with); self[with].outputs.push(rpl); } self.remove(target); } fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid { let out = self.lookup.remove(&(self[target].kind.clone(), self[target].inputs, self[target].ty)); debug_assert!(out == Some(target)); debug_assert_ne!(self[target].inputs[inp_index], with); let prev = self[target].inputs[inp_index]; self[target].inputs[inp_index] = with; if let Err(other) = self .lookup .try_insert((self[target].kind.clone(), self[target].inputs, self[target].ty), target) { let rpl = *other.entry.get(); self[target].inputs[inp_index] = prev; self.replace(target, rpl); return rpl; } let index = self[prev].outputs.iter().position(|&o| o == target).unwrap(); self[prev].outputs.swap_remove(index); self[with].outputs.push(target); target } fn add_deps(&mut self, id: Nid, deps: &[Nid]) { for &d in deps { debug_assert_ne!(d, id); self[d].outputs.push(id); } } #[track_caller] fn unlock_remove(&mut self, id: Nid) -> bool { self[id].lock_rc -= 1; self.remove(id) } fn iter(&self) -> impl DoubleEndedIterator { self.values.iter().enumerate().filter_map(|(i, s)| match s { PoolSlot::Value(v) => Some((i as _, v)), PoolSlot::Next(_) => None, }) } fn fmt(&self, f: &mut fmt::Formatter, node: Nid, rcs: &mut [usize]) -> fmt::Result { let mut is_ready = || { if rcs[node as usize] == 0 { return false; } rcs[node as usize] = rcs[node as usize].saturating_sub(1); rcs[node as usize] == 0 }; match self[node].kind { Kind::BinOp { op } => { write!(f, "(")?; self.fmt(f, self[node].inputs[0], rcs)?; write!(f, " {op} ")?; self.fmt(f, self[node].inputs[1], rcs)?; write!(f, ")")?; } Kind::Return => { write!(f, "{}: return [{:?}] ", node, self[node].inputs[0])?; if self[node].inputs[2] != 0 { self.fmt(f, self[node].inputs[2], rcs)?; } writeln!(f)?; self.fmt(f, self[node].inputs[1], rcs)?; } Kind::ConstInt { value } => write!(f, "{}", value)?, Kind::End => { if is_ready() { writeln!(f, "{}: {:?}", node, self[node].kind)?; } } Kind::Tuple { index } => { if index != 0 && self[self[node].inputs[0]].kind == Kind::Start { write!(f, "{:?}.{}", self[self[node].inputs[0]].kind, index)?; } else if is_ready() { writeln!(f, "{}: {:?}", node, self[node].kind)?; for &o in &self[node].outputs { if self.is_cfg(o) { self.fmt(f, o, rcs)?; } } } } Kind::Start => 'b: { if !is_ready() { break 'b; } writeln!(f, "{}: {:?}", node, self[node].kind)?; for &o in &self[node].outputs { self.fmt(f, o, rcs)?; } } Kind::Call { func, ref args } => { if is_ready() { write!(f, "{}: call {}(", node, func)?; for (i, &value) in args.iter().enumerate() { if i != 0 { write!(f, ", ")?; } self.fmt(f, value, rcs)?; } writeln!(f, ")")?; for &o in &self[node].outputs { if self.is_cfg(o) { self.fmt(f, o, rcs)?; } } } else { write!(f, "call{node}")?; } } Kind::If => todo!(), Kind::Region => todo!(), Kind::Phi => todo!(), Kind::Loop => todo!(), } Ok(()) } fn graphviz_low(&self, out: &mut String) -> std::fmt::Result { use std::fmt::Write; for (i, node) in self.iter() { let color = if self.is_cfg(i) { "yellow" } else { "white" }; writeln!(out, "node{i}[label=\"{}\" color={color}]", node.kind)?; for &o in &node.outputs { let color = if self.is_cfg(i) && self.is_cfg(o) { "red" } else { "black" }; writeln!(out, "node{o} -> node{i}[color={color}]",)?; } } Ok(()) } fn graphviz(&self) { let out = &mut String::new(); _ = self.graphviz_low(out); log::inf!("{out}"); } fn is_cfg(&self, o: Nid) -> bool { matches!( self[o].kind, Kind::Start | Kind::End | Kind::Return | Kind::Tuple { .. } | Kind::Call { .. } | Kind::If | Kind::Region | Kind::Loop ) } fn check_final_integrity(&self) { let mut failed = false; for (i, node) in self.iter() { debug_assert_eq!(node.lock_rc, 0, "{:?}", node.kind); if !matches!(node.kind, Kind::Return | Kind::End) && node.outputs.is_empty() { log::err!("outputs are empry {i} {:?}", node.kind); failed = true; } for &o in &node.outputs { let mut occurs = 0; let other = match &self.values[o as usize] { PoolSlot::Value(other) => other, PoolSlot::Next(_) => { log::err!("the edge points to dropped node: {i} {:?} {o}", node.kind,); failed = true; continue; } }; if let Kind::Call { ref args, .. } = other.kind { occurs = args.iter().filter(|&&el| el == i).count(); } occurs += self[o].inputs.iter().filter(|&&el| el == i).count(); if occurs == 0 { log::err!( "the edge is not bidirectional: {i} {:?} {o} {:?}", node.kind, other.kind ); failed = true; } } } if failed { panic!() } } fn check_scope_integrity(&self, scope: &[Variable]) { for v in scope { debug_assert!(self[v.value].lock_rc > 0); } } fn climb(&mut self, from: Nid, mut for_each: impl FnMut(Nid, &Node) -> bool) -> bool { fn climb_impl( nodes: &mut Nodes, from: Nid, for_each: &mut impl FnMut(Nid, &Node) -> bool, ) -> bool { { nodes[from].inputs }.iter().any(|&n| { n != Nid::MAX && nodes.visited.set(n as usize) && !nodes.is_cfg(n) && (for_each(n, &nodes[n]) || climb_impl(nodes, n, for_each)) }) } self.visited.clear(self.values.len()); climb_impl(self, from, &mut for_each) } } impl ops::Index for Nodes { type Output = Node; fn index(&self, index: u32) -> &Self::Output { match &self.values[index as usize] { PoolSlot::Value(value) => value, PoolSlot::Next(_) => unreachable!("{index}"), } } } impl ops::IndexMut for Nodes { fn index_mut(&mut self, index: u32) -> &mut Self::Output { match &mut self.values[index as usize] { PoolSlot::Value(value) => value, PoolSlot::Next(_) => unreachable!("{index}"), } } } #[derive(Debug)] enum PoolSlot { Value(Node), Next(u32), } #[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)] #[repr(u8)] pub enum Kind { Start, End, If, Region, Loop, Return, ConstInt { value: i64 }, Phi, Tuple { index: u32 }, BinOp { op: lexer::TokenKind }, Call { func: ty::Func, args: Vec }, } impl Kind { fn disc(&self) -> u8 { unsafe { *(self as *const _ as *const u8) } } } impl fmt::Display for Kind { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Kind::ConstInt { value } => write!(f, "#{value}"), Kind::Tuple { index } => write!(f, "tupl[{index}]"), Kind::BinOp { op } => write!(f, "{op}"), Kind::Call { func, .. } => write!(f, "call {func}"), slf => write!(f, "{slf:?}"), } } } const MAX_INPUTS: usize = 3; #[derive(Debug)] struct Node { inputs: [Nid; MAX_INPUTS], kind: Kind, color: u32, depth: u32, lock_rc: u32, ty: ty::Id, outputs: Vec, } impl Node { fn is_dangling(&self) -> bool { self.outputs.len() + self.lock_rc as usize == 0 } fn inputs(&self) -> &[Nid] { let len = self.inputs.iter().position(|&n| n == Nid::MAX).unwrap_or(MAX_INPUTS); &self.inputs[..len] } } impl fmt::Display for Nodes { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.fmt( f, 0, &mut self .values .iter() .map(|s| match s { PoolSlot::Value(Node { kind: Kind::Start, .. }) => 1, PoolSlot::Value(Node { kind: Kind::End, ref outputs, .. }) => outputs.len(), PoolSlot::Value(val) => val.inputs().len(), PoolSlot::Next(_) => 0, }) .collect::>(), ) } } type Offset = u32; type Size = u32; type ArrayLen = u32; struct Loop { node: Nid, continue_: Nid, continue_scope: Vec, break_: Nid, break_scope: Vec, scope: Vec, } #[derive(Clone, Copy)] struct Variable { id: Ident, value: Nid, } struct ColorMeta { rc: u32, depth: u32, call_count: u32, loc: Loc, } #[derive(Default)] struct ItemCtx { file: FileId, id: ty::Id, ret: Option, task_base: usize, nodes: Nodes, start: Nid, end: Nid, ctrl: Nid, loop_depth: u32, colors: Vec, call_count: u32, filled: Vec, delayed_frees: Vec, loops: Vec, vars: Vec, regs: reg::Alloc, ret_relocs: Vec, relocs: Vec, code: Vec, } impl ItemCtx { fn next_color(&mut self) -> u32 { self.colors.push(ColorMeta { rc: 0, call_count: self.call_count, depth: self.loop_depth, loc: Default::default(), }); self.colors.len() as _ // leave out 0 (sentinel) } fn set_next_color(&mut self, node: Nid) { let color = self.next_color(); self.set_color(node, color); } fn set_color(&mut self, node: Nid, color: u32) { if self.nodes[node].color != 0 { debug_assert_ne!(self.nodes[node].color, color); self.colors[self.nodes[node].color as usize - 1].rc -= 1; } self.nodes[node].color = color; self.colors[color as usize - 1].rc += 1; } fn recolor(&mut self, node: Nid, from: u32, to: u32) { if from == to { return; } if self.nodes[node].color != from { return; } self.set_color(node, to); for i in 0..self.nodes[node].inputs().len() { self.recolor(self.nodes[node].inputs[i], from, to); } } fn check_color_integrity(&self) { let node_count = self .nodes .values .iter() .filter(|v| { matches!( v, PoolSlot::Value(Node { kind: Kind::BinOp { .. } | Kind::Call { .. } | Kind::Phi | Kind::ConstInt { .. }, .. }) ) || matches!( v, PoolSlot::Value(Node { kind: Kind::Tuple { index: 1.. }, inputs: [0, ..], .. }) ) }) .count(); let color_count = self.colors.iter().map(|c| c.rc).sum::(); debug_assert_eq!(node_count, color_count as usize); } fn emit(&mut self, instr: (usize, [u8; instrs::MAX_SIZE])) { emit(&mut self.code, instr); } fn free_loc(&mut self, loc: impl Into>) { if let Some(loc) = loc.into() { self.regs.free(loc.reg); } } } fn emit(out: &mut Vec, (len, instr): (usize, [u8; instrs::MAX_SIZE])) { out.extend_from_slice(&instr[..len]); } fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) { let value = value.to_ne_bytes(); doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]); } #[derive(PartialEq, Eq, Hash)] struct SymKey { file: u32, ident: u32, } impl SymKey { pub fn pointer_to(ty: ty::Id) -> Self { Self { file: u32::MAX, ident: ty.repr() } } } #[derive(Clone, Copy)] struct Sig { args: ty::Tuple, ret: ty::Id, } struct Func { file: FileId, expr: ExprRef, sig: Option, offset: Offset, // TODO: change to indices into common vec relocs: Vec, code: Vec, } impl Default for Func { fn default() -> Self { Self { file: u32::MAX, expr: Default::default(), sig: None, offset: u32::MAX, relocs: Default::default(), code: Default::default(), } } } struct TypedReloc { target: ty::Id, reloc: Reloc, } struct Global { file: FileId, name: Ident, ty: ty::Id, offset: Offset, data: Vec, } impl Default for Global { fn default() -> Self { Self { ty: Default::default(), offset: u32::MAX, data: Default::default(), file: 0, name: 0, } } } // TODO: make into bit struct (width: u2, sub_offset: u3, offset: u27) #[derive(Clone, Copy, Debug)] struct Reloc { offset: Offset, sub_offset: u8, width: u8, } impl Reloc { fn new(offset: usize, sub_offset: u8, width: u8) -> Self { Self { offset: offset as u32, sub_offset, width } } fn apply_jump(mut self, code: &mut [u8], to: u32, from: u32) -> i64 { self.offset += from; let offset = to as i64 - self.offset as i64; self.write_offset(code, offset); offset } fn write_offset(&self, code: &mut [u8], offset: i64) { let bytes = offset.to_ne_bytes(); let slice = &mut code[self.offset as usize + self.sub_offset as usize..]; slice[..self.width as usize].copy_from_slice(&bytes[..self.width as usize]); } } struct Field { name: Rc, ty: ty::Id, } struct Struct { fields: Rc<[Field]>, } struct Ptr { base: ty::Id, } struct ParamAlloc(Range); impl ParamAlloc { pub fn next(&mut self) -> u8 { self.0.next().expect("too many paramteters") } fn next_wide(&mut self) -> u8 { (self.next(), self.next()).0 } } #[derive(Clone, Copy)] struct Array { ty: ty::Id, len: ArrayLen, } #[derive(Default)] struct Types { syms: HashMap, funcs: Vec, args: Vec, globals: Vec, structs: Vec, ptrs: Vec, arrays: Vec, } impl Types { fn parama(&self, ret: impl Into) -> ParamAlloc { ParamAlloc(2 + (9..=16).contains(&self.size_of(ret.into())) as u8..12) } fn offset_of(&self, idx: ty::Struct, field: &str) -> Option<(Offset, ty::Id)> { let record = &self.structs[idx as usize]; let until = record.fields.iter().position(|f| f.name.as_ref() == field)?; let mut offset = 0; for &Field { ty, .. } in &record.fields[..until] { offset = Self::align_up(offset, self.align_of(ty)); offset += self.size_of(ty); } Some((offset, record.fields[until].ty)) } fn make_ptr(&mut self, base: ty::Id) -> ty::Id { ty::Kind::Ptr(self.make_ptr_low(base)).compress() } fn make_ptr_low(&mut self, base: ty::Id) -> ty::Ptr { let id = SymKey::pointer_to(base); self.syms .entry(id) .or_insert_with(|| { self.ptrs.push(Ptr { base }); ty::Kind::Ptr(self.ptrs.len() as u32 - 1).compress() }) .expand() .inner() } fn make_array(&mut self, ty: ty::Id, len: ArrayLen) -> ty::Id { ty::Kind::Slice(self.make_array_low(ty, len)).compress() } fn make_array_low(&mut self, ty: ty::Id, len: ArrayLen) -> ty::Slice { let id = SymKey { file: match len { ArrayLen::MAX => ArrayLen::MAX - 1, len => ArrayLen::MAX - len - 2, }, ident: ty.repr(), }; self.syms .entry(id) .or_insert_with(|| { self.arrays.push(Array { ty, len }); ty::Kind::Slice(self.arrays.len() as u32 - 1).compress() }) .expand() .inner() } fn align_up(value: Size, align: Size) -> Size { (value + align - 1) & !(align - 1) } fn size_of(&self, ty: ty::Id) -> Size { match ty.expand() { ty::Kind::Ptr(_) => 8, ty::Kind::Builtin(ty::VOID) => 0, ty::Kind::Builtin(ty::NEVER) => unreachable!(), ty::Kind::Builtin(ty::INT | ty::UINT) => 8, ty::Kind::Builtin(ty::I32 | ty::U32 | ty::TYPE) => 4, ty::Kind::Builtin(ty::I16 | ty::U16) => 2, ty::Kind::Builtin(ty::I8 | ty::U8 | ty::BOOL) => 1, ty::Kind::Slice(arr) => { let arr = &self.arrays[arr as usize]; match arr.len { 0 => 0, ArrayLen::MAX => 16, len => self.size_of(arr.ty) * len, } } ty::Kind::Struct(stru) => { let mut offset = 0u32; let record = &self.structs[stru as usize]; for &Field { ty, .. } in record.fields.iter() { let align = self.align_of(ty); offset = Self::align_up(offset, align); offset += self.size_of(ty); } offset } ty => unimplemented!("size_of: {:?}", ty), } } fn align_of(&self, ty: ty::Id) -> Size { match ty.expand() { ty::Kind::Struct(stru) => self.structs[stru as usize] .fields .iter() .map(|&Field { ty, .. }| self.align_of(ty)) .max() .unwrap(), ty::Kind::Slice(arr) => { let arr = &self.arrays[arr as usize]; match arr.len { ArrayLen::MAX => 8, _ => self.align_of(arr.ty), } } _ => self.size_of(ty).max(1), } } } mod task { use super::Offset; pub fn unpack(offset: Offset) -> Result { if offset >> 31 != 0 { Err((offset & !(1 << 31)) as usize) } else { Ok(offset) } } pub fn id(index: usize) -> Offset { 1 << 31 | index as u32 } } struct FTask { file: FileId, id: ty::Func, } #[derive(Default, Debug)] struct Ctx { ty: Option, } impl Ctx { pub fn with_ty(self, ty: impl Into) -> Self { Self { ty: Some(ty.into()) } } } #[derive(Clone, Copy, Debug, Default, PartialEq, Eq)] struct Loc { reg: reg::Reg, } #[derive(Default, Debug, Clone, Copy)] struct GenCtx { loc: Option, } impl GenCtx { pub fn with_loc(self, loc: impl Into) -> Self { Self { loc: Some(loc.into()) } } } #[derive(Default)] struct Pool { cis: Vec, } #[derive(Default)] pub struct Codegen { pub files: Vec, tasks: Vec>, tys: Types, ci: ItemCtx, pool: Pool, errors: RefCell, } impl Codegen { pub fn generate(&mut self) { self.find_or_declare(0, 0, None, "main"); self.make_func_reachable(0); self.complete_call_graph_low(); } fn assemble(&mut self, to: &mut Vec) { emit(to, instrs::jal(reg::RET_ADDR, reg::ZERO, 0)); emit(to, instrs::tx()); self.dump_reachable(0, to); Reloc::new(0, 3, 4).apply_jump(to, self.tys.funcs[0].offset, 0); } fn dump_reachable(&mut self, from: ty::Func, to: &mut Vec) { let mut frontier = vec![ty::Kind::Func(from).compress()]; while let Some(itm) = frontier.pop() { match itm.expand() { ty::Kind::Func(func) => { let fuc = &mut self.tys.funcs[func as usize]; if task::unpack(fuc.offset).is_ok() { continue; } fuc.offset = to.len() as _; to.extend(&fuc.code); frontier.extend(fuc.relocs.iter().map(|r| r.target)); } ty::Kind::Global(glob) => { let glb = &mut self.tys.globals[glob as usize]; if task::unpack(glb.offset).is_ok() { continue; } glb.offset = to.len() as _; to.extend(&glb.data); } _ => unreachable!(), } } for fuc in &self.tys.funcs { if task::unpack(fuc.offset).is_err() { continue; } for rel in &fuc.relocs { let offset = match rel.target.expand() { ty::Kind::Func(fun) => self.tys.funcs[fun as usize].offset, ty::Kind::Global(glo) => self.tys.globals[glo as usize].offset, _ => unreachable!(), }; rel.reloc.apply_jump(to, offset, fuc.offset); } } } pub fn disasm( &mut self, mut sluce: &[u8], output: &mut impl std::io::Write, ) -> std::io::Result<()> { use crate::DisasmItem; let functions = self .tys .funcs .iter() .filter(|f| task::unpack(f.offset).is_ok()) .map(|f| { let file = &self.files[f.file as usize]; let Expr::BinOp { left: &Expr::Ident { name, .. }, .. } = f.expr.get(file).unwrap() else { unreachable!() }; (f.offset, (name, f.code.len() as u32, DisasmItem::Func)) }) .chain(self.tys.globals.iter().filter(|g| task::unpack(g.offset).is_ok()).map(|g| { let file = &self.files[g.file as usize]; (g.offset, (file.ident_str(g.name), self.tys.size_of(g.ty), DisasmItem::Global)) })) .collect::>(); crate::disasm(&mut sluce, &functions, output, |_| {}) } fn make_func_reachable(&mut self, func: ty::Func) { let fuc = &mut self.tys.funcs[func as usize]; if fuc.offset == u32::MAX { fuc.offset = task::id(self.tasks.len() as _); self.tasks.push(Some(FTask { file: fuc.file, id: func })); } } fn expr(&mut self, expr: &Expr) -> Option { self.expr_ctx(expr, Ctx::default()) } fn build_struct(&mut self, fields: &[(&str, Expr)]) -> ty::Struct { let fields = fields .iter() .map(|&(name, ty)| Field { name: name.into(), ty: self.ty(&ty) }) .collect(); self.tys.structs.push(Struct { fields }); self.tys.structs.len() as u32 - 1 } fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option { let msg = "i know nothing about this name gal which is vired \ because we parsed succesfully"; match *expr { Expr::Comment { .. } => Some(0), Expr::Ident { pos, id, .. } => { let Some(index) = self.ci.vars.iter().position(|v| v.id == id) else { self.report(pos, msg); return Some(self.ci.end); }; if self.ci.vars[index].value == 0 { self.ci.nodes.unlock(self.ci.vars[index].value); let loob = self.ci.loops.last_mut().unwrap(); let inps = [loob.node, loob.scope[index].value, loob.scope[index].value]; self.ci.nodes.unlock(inps[1]); let ty = self.ci.nodes[inps[1]].ty; // TODO: dont apply peepholes here let phy = self.ci.nodes.new_node(ty, Kind::Phi, inps); self.ci.nodes[phy].lock_rc += 2; self.ci.vars[index].value = phy; loob.scope[index].value = phy; } self.ci.nodes.check_scope_integrity(&self.ci.vars); Some(self.ci.vars[index].value) } Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right } => { let value = self.expr(right)?; self.ci.nodes.lock(value); self.ci.vars.push(Variable { id, value }); Some(0) } Expr::BinOp { left: &Expr::Ident { id, pos, .. }, op: TokenKind::Assign, right } => { let value = self.expr(right)?; self.ci.nodes.lock(value); let Some(var) = self.ci.vars.iter_mut().find(|v| v.id == id) else { self.report(pos, msg); return Some(self.ci.end); }; let prev = std::mem::replace(&mut var.value, value); self.ci.nodes.unlock_remove(prev); Some(0) } Expr::BinOp { left, op, right } => { let lhs = self.expr_ctx(left, ctx)?; self.ci.nodes.lock(lhs); let rhs = self.expr_ctx(right, Ctx::default().with_ty(self.tof(lhs))); self.ci.nodes.unlock(lhs); let rhs = rhs?; let ty = self.assert_ty( left.pos(), self.tof(rhs), self.tof(lhs), false, "right operand", ); let id = self.ci.nodes.new_node(ty::bin_ret(ty, op), Kind::BinOp { op }, [lhs, rhs]); Some(id) } Expr::If { cond, then, else_, .. } => { let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?; let if_node = self.ci.nodes.new_node(ty::VOID, Kind::If, [self.ci.ctrl, cond]); 'b: { let branch = match self.tof(if_node).expand().inner() { ty::LEFT_UNREACHABLE => else_, ty::RIGHT_UNREACHABLE => Some(then), _ => break 'b, }; self.ci.nodes.lock(self.ci.ctrl); self.ci.nodes.remove(if_node); self.ci.nodes.unlock(self.ci.ctrl); if let Some(branch) = branch { return self.expr(branch); } else { return Some(0); } } let else_scope = self.ci.vars.clone(); for &el in &self.ci.vars { self.ci.nodes.lock(el.value); } self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [if_node]); let lcntrl = self.expr(then).map_or(Nid::MAX, |_| self.ci.ctrl); let then_scope = std::mem::replace(&mut self.ci.vars, else_scope); self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 1 }, [if_node]); let rcntrl = if let Some(else_) = else_ { self.expr(else_).map_or(Nid::MAX, |_| self.ci.ctrl) } else { self.ci.ctrl }; if lcntrl == Nid::MAX && rcntrl == Nid::MAX { for then_var in then_scope { self.ci.nodes.unlock_remove(then_var.value); } self.ci.nodes.check_scope_integrity(&self.ci.vars); return None; } else if lcntrl == Nid::MAX { for then_var in then_scope { self.ci.nodes.unlock_remove(then_var.value); } self.ci.nodes.check_scope_integrity(&self.ci.vars); return Some(0); } else if rcntrl == Nid::MAX { for else_var in &self.ci.vars { self.ci.nodes.unlock_remove(else_var.value); } self.ci.vars = then_scope; self.ci.nodes.check_scope_integrity(&self.ci.vars); self.ci.ctrl = lcntrl; return Some(0); } self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Region, [lcntrl, rcntrl]); for (else_var, then_var) in self.ci.vars.iter_mut().zip(then_scope) { if else_var.value == then_var.value { self.ci.nodes.unlock_remove(then_var.value); continue; } self.ci.nodes.unlock(then_var.value); let ty = self.ci.nodes[else_var.value].ty; debug_assert_eq!( ty, self.ci.nodes[then_var.value].ty, "TODO: typecheck properly" ); let inps = [self.ci.ctrl, then_var.value, else_var.value]; self.ci.nodes.unlock(else_var.value); else_var.value = self.ci.nodes.new_node(ty, Kind::Phi, inps); self.ci.nodes.lock(else_var.value); } self.ci.nodes.check_scope_integrity(&self.ci.vars); Some(0) } Expr::Loop { body, .. } => { self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Loop, [self.ci.ctrl; 2]); self.ci.loops.push(Loop { node: self.ci.ctrl, continue_: Nid::MAX, continue_scope: vec![], break_: Nid::MAX, break_scope: vec![], scope: self.ci.vars.clone(), }); for var in &mut self.ci.vars { var.value = 0; } self.ci.nodes[0].lock_rc += self.ci.vars.len() as u32; self.expr(body); let Loop { node, continue_, mut continue_scope, break_, mut break_scope, scope } = self.ci.loops.pop().unwrap(); if continue_ != Nid::MAX { self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Region, [self.ci.ctrl, continue_]); std::mem::swap(&mut self.ci.vars, &mut continue_scope); for (else_var, then_var) in self.ci.vars.iter_mut().zip(continue_scope) { if else_var.value == then_var.value { self.ci.nodes.unlock_remove(then_var.value); continue; } self.ci.nodes.unlock(then_var.value); let ty = self.ci.nodes[else_var.value].ty; debug_assert_eq!( ty, self.ci.nodes[then_var.value].ty, "TODO: typecheck properly" ); let inps = [self.ci.ctrl, then_var.value, else_var.value]; self.ci.nodes.unlock(else_var.value); else_var.value = self.ci.nodes.new_node(ty, Kind::Phi, inps); self.ci.nodes.lock(else_var.value); } self.ci.nodes.check_scope_integrity(&self.ci.vars); } self.ci.nodes.modify_input(node, 1, self.ci.ctrl); self.ci.ctrl = break_; if break_ == Nid::MAX { return None; } self.ci.nodes.lock(self.ci.ctrl); std::mem::swap(&mut self.ci.vars, &mut break_scope); self.ci.nodes.check_scope_integrity(&self.ci.vars); self.ci.nodes.check_scope_integrity(&break_scope); self.ci.nodes.check_scope_integrity(&scope); for ((dest_var, scope_var), loop_var) in self.ci.vars.iter_mut().zip(scope).zip(break_scope) { if loop_var.value == 0 { self.ci.nodes.unlock(loop_var.value); debug_assert!(loop_var.value == dest_var.value); self.ci.nodes.unlock(dest_var.value); dest_var.value = scope_var.value; continue; } debug_assert_eq!(self.ci.nodes[scope_var.value].kind, Kind::Phi); if scope_var.value == loop_var.value { let orig = self.ci.nodes[scope_var.value].inputs[1]; self.ci.nodes.lock(orig); self.ci.nodes.unlock(loop_var.value); self.ci.nodes.unlock_remove(scope_var.value); self.ci.nodes.unlock_remove(dest_var.value); dest_var.value = orig; continue; } self.ci.nodes.unlock(loop_var.value); let phy = self.ci.nodes.modify_input(scope_var.value, 2, loop_var.value); self.ci.nodes.unlock_remove(dest_var.value); dest_var.value = phy; } self.ci.nodes.unlock(self.ci.ctrl); Some(0) } Expr::Break { pos } => { let Some(loob) = self.ci.loops.last_mut() else { self.report(pos, "break outside a loop"); return None; }; if loob.break_ == Nid::MAX { loob.break_ = self.ci.ctrl; loob.break_scope = self.ci.vars[..loob.scope.len()].to_owned(); for v in &loob.break_scope { self.ci.nodes.lock(v.value) } } else { loob.break_ = self.ci.nodes.new_node(ty::VOID, Kind::Region, [self.ci.ctrl, loob.break_]); for (else_var, then_var) in loob.break_scope.iter_mut().zip(&self.ci.vars) { if else_var.value == then_var.value { continue; } let ty = self.ci.nodes[else_var.value].ty; debug_assert_eq!( ty, self.ci.nodes[then_var.value].ty, "TODO: typecheck properly" ); let inps = [loob.break_, then_var.value, else_var.value]; self.ci.nodes.unlock(else_var.value); else_var.value = self.ci.nodes.new_node(ty, Kind::Phi, inps); self.ci.nodes.lock(else_var.value); } self.ci.nodes.check_scope_integrity(&self.ci.vars); self.ci.nodes.check_scope_integrity(&loob.break_scope); } self.ci.ctrl = self.ci.end; None } Expr::Continue { pos } => { todo!(); let Some(loob) = self.ci.loops.last_mut() else { self.report(pos, "break outside a loop"); return None; }; if loob.continue_ == Nid::MAX { loob.continue_ = self.ci.ctrl; loob.continue_scope = self.ci.vars[..loob.scope.len()].to_owned(); for v in &loob.continue_scope { self.ci.nodes.lock(v.value) } } else { loob.continue_ = self .ci .nodes .new_node(ty::VOID, Kind::Region, [self.ci.ctrl, loob.continue_]); for (else_var, then_var) in loob.continue_scope.iter_mut().zip(&self.ci.vars) { if else_var.value == then_var.value { continue; } let ty = self.ci.nodes[else_var.value].ty; debug_assert_eq!( ty, self.ci.nodes[then_var.value].ty, "TODO: typecheck properly" ); let inps = [loob.continue_, then_var.value, else_var.value]; self.ci.nodes.unlock(else_var.value); else_var.value = self.ci.nodes.new_node(ty, Kind::Phi, inps); self.ci.nodes.lock(else_var.value); } self.ci.nodes.check_scope_integrity(&self.ci.vars); } self.ci.ctrl = self.ci.end; None } Expr::Call { func: &Expr::Ident { pos, id, name, .. }, args, .. } => { self.ci.call_count += 1; let func = self.find_or_declare(pos, self.ci.file, Some(id), name); let ty::Kind::Func(func) = func else { self.report( pos, format_args!( "compiler cant (yet) call '{}'", self.ty_display(func.compress()) ), ); return Some(self.ci.end); }; let fuc = &self.tys.funcs[func as usize]; let sig = fuc.sig.expect("TODO: generic functions"); let ast = self.files[fuc.file as usize].clone(); let Expr::BinOp { right: &Expr::Closure { args: cargs, .. }, .. } = fuc.expr.get(&ast).unwrap() else { unreachable!() }; self.assert_report( args.len() == cargs.len(), pos, format_args!( "expected {} function argumenr{}, got {}", cargs.len(), if cargs.len() == 1 { "" } else { "s" }, args.len() ), ); let mut inps = vec![]; for ((arg, carg), tyx) in args.iter().zip(cargs).zip(sig.args.range()) { let ty = self.tys.args[tyx]; if self.tys.size_of(ty) == 0 { continue; } let value = self.expr_ctx(arg, Ctx::default().with_ty(ty))?; _ = self.assert_ty( arg.pos(), self.tof(value), ty, true, format_args!("argument {}", carg.name), ); inps.push(value); } self.ci.ctrl = self.ci .nodes .new_node(sig.ret, Kind::Call { func, args: inps.clone() }, [self.ci.ctrl]); self.ci.nodes.add_deps(self.ci.ctrl, &inps); Some(self.ci.ctrl) } Expr::Return { pos, val } => { let value = if let Some(val) = val { self.expr_ctx(val, Ctx { ty: self.ci.ret })? } else { 0 }; _ = self.ci.nodes[self.ci.ctrl]; _ = self.ci.nodes[self.ci.end]; _ = self.ci.nodes[value]; let inps = [self.ci.ctrl, self.ci.end, value]; let out = &mut String::new(); self.report_log_to(pos, "returning here", out); self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Return, inps); let expected = *self.ci.ret.get_or_insert(self.tof(value)); _ = self.assert_ty(pos, self.tof(value), expected, true, "return value"); None } Expr::Block { stmts, .. } => { let base = self.ci.vars.len(); let mut ret = Some(0); for stmt in stmts { ret = ret.and(self.expr(stmt)); if let Some(id) = ret { _ = self.assert_ty( stmt.pos(), self.tof(id), ty::VOID.into(), true, "statement", ); } else { break; } } self.ci.nodes.lock(self.ci.ctrl); for var in self.ci.vars.drain(base..) { self.ci.nodes.unlock_remove(var.value); } self.ci.nodes.unlock(self.ci.ctrl); ret } Expr::Number { value, .. } => Some(self.ci.nodes.new_node( ctx.ty.filter(|ty| ty.is_integer() || ty.is_pointer()).unwrap_or(ty::INT.into()), Kind::ConstInt { value }, [], )), ref e => { self.report_unhandled_ast(e, "bruh"); Some(self.ci.end) } } } #[inline(always)] fn tof(&self, id: Nid) -> ty::Id { self.ci.nodes[id].ty } fn complete_call_graph(&mut self) { self.complete_call_graph_low(); } fn complete_call_graph_low(&mut self) { while self.ci.task_base < self.tasks.len() && let Some(task_slot) = self.tasks.pop() { let Some(task) = task_slot else { continue }; self.handle_task(task); } } fn handle_task(&mut self, FTask { file, id }: FTask) { let func = &mut self.tys.funcs[id as usize]; func.offset = u32::MAX - 1; debug_assert!(func.file == file); let sig = func.sig.unwrap(); let ast = self.files[file as usize].clone(); let expr = func.expr.get(&ast).unwrap(); let repl = ItemCtx { file, id: ty::Kind::Func(id).compress(), ret: Some(sig.ret), ..self.pool.cis.pop().unwrap_or_default() }; let prev_ci = std::mem::replace(&mut self.ci, repl); self.ci.start = self.ci.nodes.new_node(ty::VOID, Kind::Start, []); self.ci.end = self.ci.nodes.new_node(ty::NEVER, Kind::End, []); self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [self.ci.start]); let Expr::BinOp { left: Expr::Ident { .. }, op: TokenKind::Decl, right: &Expr::Closure { body, args, .. }, } = expr else { unreachable!("{expr}") }; let mut sig_args = sig.args.range(); for (arg, index) in args.iter().zip(1u32..) { let ty = self.tys.args[sig_args.next().unwrap()]; let value = self.ci.nodes.new_node(ty, Kind::Tuple { index }, [self.ci.start]); self.ci.nodes.lock(value); let sym = parser::find_symbol(&ast.symbols, arg.id); assert!(sym.flags & idfl::COMPTIME == 0, "TODO"); self.ci.vars.push(Variable { id: arg.id, value }); } let mut orig_vars = self.ci.vars.clone(); if self.expr(body).is_some() { self.report(body.pos(), "expected all paths in the fucntion to return"); } for (i, var) in self.ci.vars.drain(..).enumerate() { let ty = self.ci.nodes[var.value].ty; if self.ci.nodes.unlock_remove(var.value) { // mark as unused orig_vars[i].id = u32::MAX; orig_vars[i].value = ty.repr(); } } if self.errors.borrow().is_empty() { self.ci.nodes.graphviz(); #[cfg(debug_assertions)] { self.ci.nodes.check_final_integrity(); } log::trc!("{}", self.ci.nodes); '_open_function: { self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0)); self.ci.emit(instrs::st(reg::RET_ADDR, reg::STACK_PTR, 0, 0)); } self.ci.regs.init(); let call_count = self.ci.call_count; '_color_args: { for var in &orig_vars { if var.id != u32::MAX { self.ci.set_next_color(var.value); } } } self.color_control(self.ci.nodes[self.ci.start].outputs[0]); #[cfg(debug_assertions)] { self.ci.check_color_integrity(); } self.ci.vars = orig_vars; self.ci.call_count = call_count; self.emit_control(self.ci.nodes[self.ci.start].outputs[0]); self.ci.vars.clear(); if let Some(last_ret) = self.ci.ret_relocs.last() && last_ret.offset as usize == self.ci.code.len() - 5 { self.ci.code.truncate(self.ci.code.len() - 5); self.ci.ret_relocs.pop(); } let end = self.ci.code.len(); for ret_rel in self.ci.ret_relocs.drain(..) { ret_rel.apply_jump(&mut self.ci.code, end as _, 0); } '_close_function: { let pushed = self.ci.regs.pushed_size() as i64; let stack = 0; write_reloc(&mut self.ci.code, 3, -(pushed + stack), 8); write_reloc(&mut self.ci.code, 3 + 8 + 3, stack, 8); write_reloc(&mut self.ci.code, 3 + 8 + 3 + 8, pushed, 2); self.ci.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _)); self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _)); self.ci.emit(instrs::jala(reg::ZERO, reg::RET_ADDR, 0)); } } self.tys.funcs[id as usize].code.append(&mut self.ci.code); self.tys.funcs[id as usize].relocs.append(&mut self.ci.relocs); self.ci.nodes.clear(); self.ci.colors.clear(); self.ci.filled.clear(); self.pool.cis.push(std::mem::replace(&mut self.ci, prev_ci)); } fn color_control(&mut self, mut ctrl: Nid) -> Option { for _ in 0..30 { match self.ci.nodes[ctrl].kind.clone() { Kind::Start => unreachable!(), Kind::End => unreachable!(), Kind::Return => { let ret = self.ci.nodes[ctrl].inputs[2]; if ret != 0 { _ = self.color_expr_consume(ret); if node_color!(self, ret).call_count == self.ci.call_count { node_loc!(self, ret) = match self.tys.size_of(self.ci.ret.expect("TODO")) { 0 => Loc::default(), 1..=8 => Loc { reg: 1 }, s => todo!("{s}"), }; } self.ci.regs.mark_leaked(1); } return None; } Kind::ConstInt { .. } => unreachable!(), Kind::Tuple { .. } => { ctrl = self.ci.nodes[ctrl].outputs[0]; } Kind::BinOp { .. } => unreachable!(), Kind::Call { args, .. } => { for &arg in args.iter() { _ = self.color_expr_consume(arg); self.ci.set_next_color(arg); } self.ci.call_count -= 1; self.ci.set_next_color(ctrl); ctrl = *self.ci.nodes[ctrl] .outputs .iter() .find(|&&o| self.ci.nodes.is_cfg(o)) .unwrap(); } Kind::If => { _ = self.color_expr_consume(self.ci.nodes[ctrl].inputs[1]); let left_unreachable = self.color_control(self.ci.nodes[ctrl].outputs[0]); let right_unreachable = self.color_control(self.ci.nodes[ctrl].outputs[1]); let dest = match (left_unreachable, right_unreachable) { (None, None) => return None, (None, Some(n)) | (Some(n), None) => n, (Some(l), Some(r)) if l == r => l, (Some(left), Some(right)) => { todo!() } }; if self.ci.nodes[dest].kind == Kind::Loop { return Some(dest); } debug_assert!(left_unreachable.is_none() || right_unreachable.is_none()); debug_assert_eq!(self.ci.nodes[dest].kind, Kind::Region); for i in 0..self.ci.nodes[dest].outputs.len() { let o = self.ci.nodes[dest].outputs[i]; if self.ci.nodes[o].kind == Kind::Phi { self.color_phy(o); self.ci.nodes[o].depth = self.ci.loop_depth; } } ctrl = *self.ci.nodes[dest] .outputs .iter() .find(|&&o| self.ci.nodes[o].kind != Kind::Phi) .unwrap(); } Kind::Region => return Some(ctrl), Kind::Phi => todo!(), Kind::Loop => { if self.ci.nodes[ctrl].lock_rc != 0 { return Some(ctrl); } for i in 0..self.ci.nodes[ctrl].outputs.len() { let maybe_phy = self.ci.nodes[ctrl].outputs[i]; let Node { kind: Kind::Phi, inputs: [_, left, ..], .. } = self.ci.nodes[maybe_phy] else { continue; }; _ = self.color_expr_consume(left); self.ci.nodes[maybe_phy].depth = self.ci.loop_depth; self.ci.set_next_color(maybe_phy); } self.ci.nodes[ctrl].lock_rc = self.ci.code.len() as _; self.ci.loop_depth += 1; self.color_control( *self.ci.nodes[ctrl] .outputs .iter() .find(|&&o| self.ci.nodes[o].kind != Kind::Phi) .unwrap(), ); for i in 0..self.ci.nodes[ctrl].outputs.len() { self.color_phy(self.ci.nodes[ctrl].outputs[i]); } self.ci.loop_depth -= 1; self.ci.nodes[ctrl].lock_rc = 0; return None; } } } unreachable!() } fn color_phy(&mut self, maybe_phy: Nid) { let Node { kind: Kind::Phi, inputs: [region, left, right], .. } = self.ci.nodes[maybe_phy] else { return; }; let lcolor = self.color_expr_consume(left); let rcolor = self.color_expr_consume(right); if self.ci.nodes[maybe_phy].color != 0 { // loop phy if let Some(c) = rcolor && !self.ci.nodes.climb(right, |i, n| { matches!(n.kind, Kind::Phi) && n.inputs[0] == region && i != maybe_phy }) { self.ci.recolor(right, c, self.ci.nodes[maybe_phy].color); } } else { let color = match (lcolor, rcolor) { (None, None) => self.ci.next_color(), (None, Some(c)) | (Some(c), None) => c, (Some(lc), Some(rc)) => { self.ci.recolor(right, rc, lc); lc } }; self.ci.set_color(maybe_phy, color); } } #[must_use = "dont forget to drop the location"] fn color_expr_consume(&mut self, expr: Nid) -> Option { if self.ci.nodes[expr].lock_rc == 0 && self.ci.nodes[expr].kind != Kind::Phi { self.ci.nodes[expr].depth = self.ci.loop_depth; self.color_expr(expr); } self.use_colored_expr(expr) } fn color_expr(&mut self, expr: Nid) { match self.ci.nodes[expr].kind { Kind::Start => unreachable!(), Kind::End => unreachable!(), Kind::Return => unreachable!(), Kind::ConstInt { .. } => self.ci.set_next_color(expr), Kind::Tuple { index } => { debug_assert!(index != 0); } Kind::BinOp { .. } => { let [left, right, ..] = self.ci.nodes[expr].inputs; let lcolor = self.color_expr_consume(left); let rcolor = self.color_expr_consume(right); let color = lcolor.or(rcolor).unwrap_or_else(|| self.ci.next_color()); self.ci.set_color(expr, color); } Kind::Call { .. } => {} Kind::If => todo!(), Kind::Region => todo!(), Kind::Phi => {} Kind::Loop => todo!(), } } #[must_use] fn use_colored_expr(&mut self, expr: Nid) -> Option { self.ci.nodes[expr].lock_rc += 1; debug_assert_ne!(self.ci.nodes[expr].color, 0, "{:?}", self.ci.nodes[expr].kind); (self.ci.nodes[expr].lock_rc as usize >= self.ci.nodes[expr].outputs.len() && self.ci.nodes[expr].depth == self.ci.loop_depth) .then_some(self.ci.nodes[expr].color) } fn emit_control(&mut self, mut ctrl: Nid) -> Option { for _ in 0..30 { match self.ci.nodes[ctrl].kind.clone() { Kind::Start => unreachable!(), Kind::End => unreachable!(), Kind::Return => { let ret = self.ci.nodes[ctrl].inputs[2]; if ret != 0 { // NOTE: this is safer less efficient way, maybe it will be needed // self.emit_expr_consume(ret); // if node_color!(self, ret).call_count != self.ci.call_count { // let src = node_loc!(self, ret); // let loc = match self.tys.size_of(self.ci.ret.expect("TODO")) { // 0 => Loc::default(), // 1..=8 => Loc { reg: 1 }, // s => todo!("{s}"), // }; // if src != loc { // let inst = instrs::cp(loc.reg, src.reg); // self.ci.emit(inst); // } // } node_loc!(self, ret) = match self.tys.size_of(self.ci.ret.expect("TODO")) { 0 => Loc::default(), 1..=8 => Loc { reg: 1 }, s => todo!("{s}"), }; self.emit_expr_consume(ret); } self.ci.ret_relocs.push(Reloc::new(self.ci.code.len(), 1, 4)); self.ci.emit(instrs::jmp(0)); return None; } Kind::ConstInt { .. } => unreachable!(), Kind::Tuple { .. } => { ctrl = self.ci.nodes[ctrl].outputs[0]; } Kind::BinOp { .. } => unreachable!(), Kind::Call { func, args } => { let ret = self.tof(ctrl); let mut parama = self.tys.parama(ret); for &arg in args.iter() { node_loc!(self, arg) = match self.tys.size_of(self.tof(arg)) { 0 => continue, 1..=8 => Loc { reg: parama.next() }, s => todo!("{s}"), }; self.ci.regs.mark_leaked(node_loc!(self, arg).reg); self.emit_expr_consume(arg); self.ci.nodes[arg].depth = 0; } let reloc = Reloc::new(self.ci.code.len(), 3, 4); self.ci .relocs .push(TypedReloc { target: ty::Kind::Func(func).compress(), reloc }); self.ci.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0)); self.make_func_reachable(func); self.ci.call_count -= 1; 'b: { let ret_loc = match self.tys.size_of(ret) { 0 => break 'b, 1..=8 => Loc { reg: 1 }, s => todo!("{s}"), }; if self.ci.nodes[ctrl].outputs.len() == 1 { break 'b; } if self.ci.call_count == 0 { node_loc!(self, ctrl) = ret_loc; } else { self.emit_pass_low(ret_loc, ctrl); } } ctrl = *self.ci.nodes[ctrl] .outputs .iter() .find(|&&o| self.ci.nodes.is_cfg(o)) .unwrap(); } Kind::If => { let cond = self.ci.nodes[ctrl].inputs[1]; let jump_offset: i64; let mut swapped = false; 'resolve_cond: { 'optimize_cond: { let Kind::BinOp { op } = self.ci.nodes[cond].kind else { break 'optimize_cond; }; let [left, right, ..] = self.ci.nodes[cond].inputs; swapped = matches!(op, TokenKind::Lt | TokenKind::Gt); let signed = self.ci.nodes[left].ty.is_signed(); let op = match op { TokenKind::Le if signed => instrs::jgts, TokenKind::Le => instrs::jgtu, TokenKind::Lt if signed => instrs::jlts, TokenKind::Lt => instrs::jltu, TokenKind::Eq => instrs::jne, TokenKind::Ne => instrs::jeq, _ => break 'optimize_cond, }; self.emit_expr_consume(left); self.emit_expr_consume(right); jump_offset = self.ci.code.len() as _; self.ci.emit(op( node_loc!(self, left).reg, node_loc!(self, right).reg, 0, )); break 'resolve_cond; } self.emit_expr_consume(cond); jump_offset = self.ci.code.len() as _; self.ci.emit(instrs::jeq(node_loc!(self, cond).reg, reg::ZERO, 0)); } let [loff, roff] = [swapped as usize, !swapped as usize]; let filled_base = self.ci.filled.len(); let left_unreachable = self.emit_control(self.ci.nodes[ctrl].outputs[loff]); for fld in self.ci.filled.drain(filled_base..) { self.ci.nodes[fld].depth = 0; } let mut skip_then_offset = self.ci.code.len() as i64; if let Some(region) = left_unreachable { for i in 0..self.ci.nodes[region].outputs.len() { let o = self.ci.nodes[region].outputs[i]; if self.ci.nodes[o].kind != Kind::Phi { continue; } let out = self.ci.nodes[o].inputs[1 + loff]; self.emit_expr_consume(out); self.emit_pass(out, o); } skip_then_offset = self.ci.code.len() as i64; self.ci.emit(instrs::jmp(0)); } let right_base = self.ci.code.len(); let filled_base = self.ci.filled.len(); let right_unreachable = self.emit_control(self.ci.nodes[ctrl].outputs[roff]); for fld in self.ci.filled.drain(filled_base..) { self.ci.nodes[fld].depth = 0; } if let Some(region) = left_unreachable { for i in 0..self.ci.nodes[region].outputs.len() { let o = self.ci.nodes[region].outputs[i]; if self.ci.nodes[o].kind != Kind::Phi { continue; } let out = self.ci.nodes[o].inputs[1 + roff]; self.emit_expr_consume(out); self.emit_pass(out, o); } let right_end = self.ci.code.len(); if right_base == right_end { self.ci.code.truncate(skip_then_offset as _); } else { write_reloc( &mut self.ci.code, skip_then_offset as usize + 1, right_end as i64 - skip_then_offset, 4, ); skip_then_offset += instrs::jmp(69).0 as i64; } } write_reloc( &mut self.ci.code, jump_offset as usize + 3, skip_then_offset - jump_offset, 2, ); let dest = left_unreachable.or(right_unreachable)?; if self.ci.nodes[dest].kind == Kind::Loop { return Some(dest); } debug_assert_eq!(self.ci.nodes[dest].kind, Kind::Region); ctrl = *self.ci.nodes[dest] .outputs .iter() .find(|&&o| self.ci.nodes[o].kind != Kind::Phi) .unwrap(); } Kind::Region => return Some(ctrl), Kind::Phi => todo!(), Kind::Loop => { if self.ci.nodes[ctrl].lock_rc != 0 { return Some(ctrl); } for i in 0..self.ci.nodes[ctrl].outputs.len() { let o = self.ci.nodes[ctrl].outputs[i]; if self.ci.nodes[o].kind != Kind::Phi { continue; } let out = self.ci.nodes[o].inputs[1]; self.emit_expr_consume(out); self.emit_pass(out, o); } self.ci.nodes[ctrl].lock_rc = self.ci.code.len() as _; self.ci.loop_depth += 1; let end = self.emit_control( *self.ci.nodes[ctrl] .outputs .iter() .find(|&&o| self.ci.nodes[o].kind != Kind::Phi) .unwrap(), ); debug_assert_eq!(end, Some(ctrl)); for i in 0..self.ci.nodes[ctrl].outputs.len() { let o = self.ci.nodes[ctrl].outputs[i]; if self.ci.nodes[o].kind != Kind::Phi { continue; } let out = self.ci.nodes[o].inputs[2]; // TODO: this can be improved if we juggle ownership of the Phi inputs self.emit_expr(out); } for i in 0..self.ci.nodes[ctrl].outputs.len() { let o = self.ci.nodes[ctrl].outputs[i]; if self.ci.nodes[o].kind != Kind::Phi { continue; } let out = self.ci.nodes[o].inputs[2]; self.use_expr(out); self.emit_pass(out, o); } self.ci.emit(instrs::jmp( self.ci.nodes[ctrl].lock_rc as i32 - self.ci.code.len() as i32, )); self.ci.loop_depth -= 1; for free in self.ci.delayed_frees.extract_if(|&mut color| { self.ci.colors[color as usize].depth == self.ci.loop_depth }) { let color = &self.ci.colors[free as usize]; debug_assert_ne!(color.loc, Loc::default()); self.ci.regs.free(color.loc.reg); } return None; } } } unreachable!() } fn emit_expr_consume(&mut self, expr: Nid) { self.emit_expr(expr); self.use_expr(expr); } fn emit_expr(&mut self, expr: Nid) { if self.ci.nodes[expr].depth == u32::MAX { return; } self.ci.nodes[expr].depth = u32::MAX; self.ci.filled.push(expr); match self.ci.nodes[expr].kind { Kind::Start => unreachable!(), Kind::End => unreachable!(), Kind::Return => unreachable!(), Kind::ConstInt { value } => { _ = self.lazy_init(expr); let instr = instrs::li64(node_loc!(self, expr).reg, value as _); self.ci.emit(instr); } Kind::Tuple { index } => { debug_assert!(index != 0); _ = self.lazy_init(expr); let mut params = self.tys.parama(self.ci.ret.unwrap()); for (i, var) in self.ci.vars.iter().enumerate() { if var.id == u32::MAX { match self.tys.size_of(ty::Id::from_bt(var.value)) { 0 => {} 1..=8 => _ = params.next(), s => todo!("{s}"), } continue; } match self.tys.size_of(self.ci.nodes[var.value].ty) { 0 => {} 1..=8 => { let reg = params.next(); if i == index as usize - 1 { emit(&mut self.ci.code, instrs::cp(node_loc!(self, expr).reg, reg)); } } s => todo!("{s}"), } } } Kind::BinOp { op } => { _ = self.lazy_init(expr); let ty = self.tof(expr); let [left, right, ..] = self.ci.nodes[expr].inputs; self.emit_expr_consume(left); if let Kind::ConstInt { value } = self.ci.nodes[right].kind && (node_loc!(self, right) == Loc::default() || self.ci.nodes[right].depth != u32::MAX) && let Some(op) = Self::imm_math_op(op, ty.is_signed(), self.tys.size_of(ty)) { let instr = op(node_loc!(self, expr).reg, node_loc!(self, left).reg, value as _); self.ci.emit(instr); } else { self.emit_expr_consume(right); let op = Self::math_op(op, ty.is_signed(), self.tys.size_of(ty)) .expect("TODO: what now?"); let instr = op( node_loc!(self, expr).reg, node_loc!(self, left).reg, node_loc!(self, right).reg, ); self.ci.emit(instr); } } Kind::Call { .. } => {} Kind::If => todo!(), Kind::Region => todo!(), Kind::Phi => {} Kind::Loop => todo!(), } } fn use_expr(&mut self, expr: Nid) { let node = &mut self.ci.nodes[expr]; node.lock_rc = node.lock_rc.saturating_sub(1); if node.lock_rc != 0 { return; } let color = &mut self.ci.colors[node.color as usize - 1]; color.rc -= 1; if color.rc == 0 { if color.depth != self.ci.loop_depth { self.ci.delayed_frees.push(node.color); } else { debug_assert_ne!(color.loc, Loc::default(), "{:?}", node); self.ci.regs.free(color.loc.reg); } } } #[allow(clippy::type_complexity)] fn imm_math_op( op: TokenKind, signed: bool, size: u32, ) -> Option (usize, [u8; instrs::MAX_SIZE])> { use {instrs::*, TokenKind as T}; macro_rules! def_op { ($name:ident |$a:ident, $b:ident, $c:ident| $($tt:tt)*) => { macro_rules! $name { ($$($$op:ident),*) => { [$$( |$a, $b, $c: u64| $$op($($tt)*), )*] } } }; } def_op!(basic_op | a, b, c | a, b, c as _); def_op!(sub_op | a, b, c | a, b, c.wrapping_neg() as _); let ops = match op { T::Add => basic_op!(addi8, addi16, addi32, addi64), T::Sub => sub_op!(addi8, addi16, addi32, addi64), T::Mul => basic_op!(muli8, muli16, muli32, muli64), T::Band => return Some(andi), T::Bor => return Some(ori), T::Xor => return Some(xori), T::Shr if signed => basic_op!(srui8, srui16, srui32, srui64), T::Shr => basic_op!(srui8, srui16, srui32, srui64), T::Shl => basic_op!(slui8, slui16, slui32, slui64), _ => return None, }; Some(ops[size.ilog2() as usize]) } #[allow(clippy::type_complexity)] fn math_op( op: TokenKind, signed: bool, size: u32, ) -> Option (usize, [u8; instrs::MAX_SIZE])> { use {instrs::*, TokenKind as T}; macro_rules! div { ($($op:ident),*) => {[$(|a, b, c| $op(a, reg::ZERO, b, c)),*]}; } macro_rules! rem { ($($op:ident),*) => {[$(|a, b, c| $op(reg::ZERO, a, b, c)),*]}; } let ops = match op { T::Add => [add8, add16, add32, add64], T::Sub => [sub8, sub16, sub32, sub64], T::Mul => [mul8, mul16, mul32, mul64], T::Div if signed => div!(dirs8, dirs16, dirs32, dirs64), T::Div => div!(diru8, diru16, diru32, diru64), T::Mod if signed => rem!(dirs8, dirs16, dirs32, dirs64), T::Mod => rem!(diru8, diru16, diru32, diru64), T::Band => return Some(and), T::Bor => return Some(or), T::Xor => return Some(xor), T::Shl => [slu8, slu16, slu32, slu64], T::Shr if signed => [srs8, srs16, srs32, srs64], T::Shr => [sru8, sru16, sru32, sru64], _ => return None, }; Some(ops[size.ilog2() as usize]) } // TODO: sometimes its better to do this in bulk fn ty(&mut self, expr: &Expr) -> ty::Id { match *expr { Expr::Ident { id, .. } if ident::is_null(id) => id.into(), ref e => { self.report_unhandled_ast(e, "type"); ty::NEVER.into() } } } fn find_or_declare( &mut self, pos: Pos, file: FileId, name: Option, lit_name: &str, ) -> ty::Kind { log::trc!("find_or_declare: {lit_name} {file}"); let f = self.files[file as usize].clone(); let Some((expr, ident)) = f.find_decl(name.ok_or(lit_name)) else { match name.ok_or(lit_name) { Ok(name) => { let name = self.cfile().ident_str(name); self.report(pos, format_args!("undefined indentifier: {name}")) } Err("main") => self.report( pos, format_args!( "missing main function in '{}', compiler can't \ emmit libraries since such concept is not defined", f.path ), ), Err(name) => self.report(pos, format_args!("undefined indentifier: {name}")), } return ty::Kind::Builtin(ty::NEVER); }; if let Some(existing) = self.tys.syms.get(&SymKey { file, ident }) { if let ty::Kind::Func(id) = existing.expand() && let func = &mut self.tys.funcs[id as usize] && let Err(idx) = task::unpack(func.offset) && idx < self.tasks.len() { func.offset = task::id(self.tasks.len()); let task = self.tasks[idx].take(); self.tasks.push(task); } return existing.expand(); } let prev_file = std::mem::replace(&mut self.ci.file, file); let sym = match expr { Expr::BinOp { left: &Expr::Ident { .. }, op: TokenKind::Decl, right: &Expr::Closure { pos, args, ret, .. }, } => { let func = Func { file, sig: '_b: { let arg_base = self.tys.args.len(); for arg in args { let sym = parser::find_symbol(&f.symbols, arg.id); assert!(sym.flags & idfl::COMPTIME == 0, "TODO"); let ty = self.ty(&arg.ty); self.tys.args.push(ty); } let Some(args) = self.pack_args(arg_base) else { self.fatal_report( pos, "you cant be serious, using more the 31 arguments in a function", ); }; let ret = self.ty(ret); Some(Sig { args, ret }) }, expr: { let refr = ExprRef::new(expr); debug_assert!(refr.get(&f).is_some()); refr }, ..Default::default() }; let id = self.tys.funcs.len() as _; self.tys.funcs.push(func); ty::Kind::Func(id) } Expr::BinOp { left: &Expr::Ident { .. }, op: TokenKind::Decl, right: Expr::Struct { fields, .. }, } => ty::Kind::Struct(self.build_struct(fields)), Expr::BinOp { .. } => { todo!() } e => unimplemented!("{e:#?}"), }; self.ci.file = prev_file; self.tys.syms.insert(SymKey { ident, file }, sym.compress()); sym } fn ty_display(&self, ty: ty::Id) -> ty::Display { ty::Display::new(&self.tys, &self.files, ty) } #[must_use] #[track_caller] fn assert_ty( &self, pos: Pos, ty: ty::Id, expected: ty::Id, preserve_expected: bool, hint: impl fmt::Display, ) -> ty::Id { if let Some(res) = ty.try_upcast(expected) && (!preserve_expected || res == expected) { res } else { let ty = self.ty_display(ty); let expected = self.ty_display(expected); self.report(pos, format_args!("expected {hint} to be of type {expected}, got {ty}")); ty::NEVER.into() } } fn report_log(&self, pos: Pos, msg: impl std::fmt::Display) { let mut buf = self.errors.borrow_mut(); self.report_log_to(pos, msg, &mut *buf); } fn report_log_to(&self, pos: Pos, msg: impl std::fmt::Display, out: &mut impl std::fmt::Write) { let str = &self.cfile().file; let (line, mut col) = lexer::line_col(str.as_bytes(), pos); _ = writeln!(out, "{}:{}:{}: {}", self.cfile().path, line, col, msg); let line = &str[str[..pos as usize].rfind('\n').map_or(0, |i| i + 1) ..str[pos as usize..].find('\n').unwrap_or(str.len()) + pos as usize]; col += line.matches('\t').count() * 3; _ = writeln!(out, "{}", line.replace("\t", " ")); _ = writeln!(out, "{}^", " ".repeat(col - 1)); } #[track_caller] fn assert_report(&self, cond: bool, pos: Pos, msg: impl std::fmt::Display) { if !cond { self.report(pos, msg); } } #[track_caller] fn report(&self, pos: Pos, msg: impl std::fmt::Display) { self.report_log(pos, msg); } #[track_caller] fn report_unhandled_ast(&self, ast: &Expr, hint: &str) { self.report( ast.pos(), format_args!( "compiler does not (yet) know how to handle ({hint}):\n\ {ast:}\n\ info for weak people:\n\ {ast:#?}" ), ); } fn cfile(&self) -> &parser::Ast { &self.files[self.ci.file as usize] } fn pack_args(&mut self, arg_base: usize) -> Option { let needle = &self.tys.args[arg_base..]; if needle.is_empty() { return Some(ty::Tuple::empty()); } let len = needle.len(); // FIXME: maybe later when this becomes a bottleneck we use more // efficient search (SIMD?, indexing?) let sp = self.tys.args.windows(needle.len()).position(|val| val == needle).unwrap(); self.tys.args.truncate((sp + needle.len()).max(arg_base)); ty::Tuple::new(sp, len) } fn emit_pass(&mut self, src: Nid, dst: Nid) { if self.ci.nodes[src].color == self.ci.nodes[dst].color { return; } self.emit_pass_low(node_loc!(self, src), dst); } fn emit_pass_low(&mut self, src: Loc, dst: Nid) { let loc = &mut node_loc!(self, dst); if src != *loc { if *loc == Loc::default() { let reg = self.ci.regs.allocate(0); *loc = Loc { reg }; } let inst = instrs::cp(loc.reg, src.reg); self.ci.emit(inst); } } #[must_use] fn lazy_init(&mut self, expr: Nid) -> bool { let loc = &mut node_loc!(self, expr); if *loc == Loc::default() { let reg = self.ci.regs.allocate(0); *loc = Loc { reg }; return true; } false } fn fatal_report(&self, pos: Pos, msg: impl Display) -> ! { self.report(pos, msg); eprintln!("{}", self.errors.borrow()); std::process::exit(1); } } #[derive(Default)] pub struct LoggedMem { pub mem: hbvm::mem::HostMemory, } impl hbvm::mem::Memory for LoggedMem { unsafe fn load( &mut self, addr: hbvm::mem::Address, target: *mut u8, count: usize, ) -> Result<(), hbvm::mem::LoadError> { log::trc!( "load: {:x} {:?}", addr.get(), core::slice::from_raw_parts(addr.get() as *const u8, count) .iter() .rev() .map(|&b| format!("{b:02x}")) .collect::() ); self.mem.load(addr, target, count) } unsafe fn store( &mut self, addr: hbvm::mem::Address, source: *const u8, count: usize, ) -> Result<(), hbvm::mem::StoreError> { log::trc!( "store: {:x} {:?}", addr.get(), core::slice::from_raw_parts(source, count) .iter() .rev() .map(|&b| format!("{b:02x}")) .collect::() ); self.mem.store(addr, source, count) } unsafe fn prog_read(&mut self, addr: hbvm::mem::Address) -> T { log::trc!( "read-typed: {:x} {} {:?}", addr.get(), std::any::type_name::(), if core::mem::size_of::() == 1 && let Some(nm) = instrs::NAMES.get(std::ptr::read(addr.get() as *const u8) as usize) { nm.to_string() } else { core::slice::from_raw_parts(addr.get() as *const u8, core::mem::size_of::()) .iter() .map(|&b| format!("{:02x}", b)) .collect::() } ); self.mem.prog_read(addr) } } #[cfg(test)] mod tests { use { crate::{ parser::{self, FileId}, son::LoggedMem, }, std::io, }; const README: &str = include_str!("../README.md"); fn generate(ident: &'static str, input: &'static str, output: &mut String) { fn find_block(mut input: &'static str, test_name: &'static str) -> &'static str { const CASE_PREFIX: &str = "#### "; const CASE_SUFFIX: &str = "\n```hb"; loop { let Some(pos) = input.find(CASE_PREFIX) else { unreachable!("test {test_name} not found"); }; input = unsafe { input.get_unchecked(pos + CASE_PREFIX.len()..) }; if !input.starts_with(test_name) { continue; } input = unsafe { input.get_unchecked(test_name.len()..) }; if !input.starts_with(CASE_SUFFIX) { continue; } input = unsafe { input.get_unchecked(CASE_SUFFIX.len()..) }; let end = input.find("```").unwrap_or(input.len()); break unsafe { input.get_unchecked(..end) }; } } let input = find_block(input, ident); let mut module_map = Vec::new(); let mut last_start = 0; let mut last_module_name = "test"; for (i, m) in input.match_indices("// in module: ") { parser::test::format(ident, input[last_start..i].trim()); module_map.push((last_module_name, &input[last_start..i])); let (module_name, _) = input[i + m.len()..].split_once('\n').unwrap(); last_module_name = module_name; last_start = i + m.len() + module_name.len() + 1; } parser::test::format(ident, input[last_start..].trim()); module_map.push((last_module_name, input[last_start..].trim())); let loader = |path: &str, _: &str| { module_map .iter() .position(|&(name, _)| name == path) .map(|i| i as FileId) .ok_or(io::Error::from(io::ErrorKind::NotFound)) }; let mut codegen = super::Codegen { files: module_map .iter() .map(|&(path, content)| parser::Ast::new(path, content.to_owned(), &loader)) .collect(), ..Default::default() }; codegen.generate(); { let errors = codegen.errors.borrow(); if !errors.is_empty() { output.push_str(&errors); return; } } let mut out = Vec::new(); codegen.assemble(&mut out); let mut buf = Vec::::new(); let err = codegen.disasm(&out, &mut buf); output.push_str(String::from_utf8(buf).unwrap().as_str()); if let Err(e) = err { writeln!(output, "!!! asm is invalid: {e}").unwrap(); return; } let mut stack = [0_u64; 128]; let mut vm = unsafe { hbvm::Vm::<_, { 1024 * 10 }>::new( LoggedMem::default(), hbvm::mem::Address::new(out.as_ptr() as u64), ) }; vm.write_reg(super::reg::STACK_PTR, unsafe { stack.as_mut_ptr().add(stack.len()) } as u64); use std::fmt::Write; let stat = loop { match vm.run() { Ok(hbvm::VmRunOk::End) => break Ok(()), Ok(hbvm::VmRunOk::Ecall) => match vm.read_reg(2).0 { 1 => writeln!(output, "ev: Ecall").unwrap(), // compatibility with a test 69 => { let [size, align] = [vm.read_reg(3).0 as usize, vm.read_reg(4).0 as usize]; let layout = std::alloc::Layout::from_size_align(size, align).unwrap(); let ptr = unsafe { std::alloc::alloc(layout) }; vm.write_reg(1, ptr as u64); } 96 => { let [ptr, size, align] = [ vm.read_reg(3).0 as usize, vm.read_reg(4).0 as usize, vm.read_reg(5).0 as usize, ]; let layout = std::alloc::Layout::from_size_align(size, align).unwrap(); unsafe { std::alloc::dealloc(ptr as *mut u8, layout) }; } 3 => vm.write_reg(1, 42), unknown => unreachable!("unknown ecall: {unknown:?}"), }, Ok(hbvm::VmRunOk::Timer) => { writeln!(output, "timed out").unwrap(); break Ok(()); } Ok(ev) => writeln!(output, "ev: {:?}", ev).unwrap(), Err(e) => break Err(e), } }; writeln!(output, "code size: {}", out.len()).unwrap(); writeln!(output, "ret: {:?}", vm.read_reg(1).0).unwrap(); writeln!(output, "status: {:?}", stat).unwrap(); } crate::run_tests! { generate: arithmetic => README; variables => README; functions => README; comments => README; if_statements => README; loops => README; fb_driver => README; //pointers => README; //structs => README; //different_types => README; //struct_operators => README; //directives => README; //global_variables => README; //generic_types => README; //generic_functions => README; //c_strings => README; //struct_patterns => README; //arrays => README; //struct_return_from_module_function => README; ////comptime_pointers => README; //sort_something_viredly => README; hex_octal_binary_literals => README; //comptime_min_reg_leak => README; ////structs_in_registers => README; //comptime_function_from_another_file => README; //inline => README; //inline_test => README; const_folding_with_arg => README; // FIXME: contains redundant copies branch_assignments => README; exhaustive_loop_testing => README; } }