holey-bytes/hblang/src/son.rs
2024-09-06 16:16:42 +02:00

2951 lines
96 KiB
Rust

#![allow(dead_code)]
use {
crate::{
ident::{self, Ident},
instrs,
lexer::{self, TokenKind},
log,
parser::{
self,
idfl::{self},
Expr, ExprRef, FileId, Pos,
},
HashMap,
},
core::fmt,
std::{
collections::BTreeMap,
mem,
ops::{self, Range},
rc::Rc,
},
};
macro_rules! node_loc {
($self:expr, $value:expr) => {
$self.ci.colors[$self.ci.nodes[$value].color as usize - 1].loc
};
}
type Nid = u32;
const NILL: u32 = u32::MAX;
mod reg {
pub const STACK_PTR: Reg = 254;
pub const ZERO: Reg = 0;
pub const RET: Reg = 1;
pub const RET_ADDR: Reg = 31;
pub type Reg = u8;
#[derive(Default)]
struct AllocMeta {
rc: u16,
depth: u16,
#[cfg(debug_assertions)]
allocated_at: Option<std::backtrace::Backtrace>,
}
struct Metas([AllocMeta; 256]);
impl Default for Metas {
fn default() -> Self {
Metas(std::array::from_fn(|_| AllocMeta::default()))
}
}
#[derive(Default)]
pub struct Alloc {
meta: Metas,
free: Vec<Reg>,
max_used: Reg,
}
impl Alloc {
pub fn init(&mut self) {
self.free.clear();
self.free.extend((32..=253).rev());
self.max_used = RET_ADDR;
}
pub fn allocate(&mut self, depth: u16) -> Reg {
let reg = self.free.pop().expect("TODO: we need to spill");
self.max_used = self.max_used.max(reg);
self.meta.0[reg as usize] = AllocMeta {
depth,
rc: 1,
#[cfg(debug_assertions)]
allocated_at: Some(std::backtrace::Backtrace::capture()),
};
reg
}
pub fn dup(&mut self, reg: Reg) {
self.meta.0[reg as usize].rc += 1;
}
pub fn free(&mut self, reg: Reg) {
if self.meta.0[reg as usize].rc == 1 {
self.free.push(reg);
self.meta.0[reg as usize] = Default::default();
} else {
self.meta.0[reg as usize].rc -= 1;
}
}
pub fn pushed_size(&self) -> usize {
((self.max_used as usize).saturating_sub(RET_ADDR as usize) + 1) * 8
}
pub fn mark_leaked(&mut self, reg: u8) {
self.meta.0[reg as usize].rc = u16::MAX;
}
}
}
mod ty {
use {
crate::{
lexer::TokenKind,
parser::{self, Expr},
son::ArrayLen,
},
std::{num::NonZeroU32, ops::Range},
};
pub type Builtin = u32;
pub type Struct = u32;
pub type Ptr = u32;
pub type Func = u32;
pub type Global = u32;
pub type Module = u32;
pub type Param = u32;
pub type Slice = u32;
#[derive(Clone, Copy)]
pub struct Tuple(pub u32);
impl Tuple {
const LEN_BITS: u32 = 5;
const LEN_MASK: usize = Self::MAX_LEN - 1;
const MAX_LEN: usize = 1 << Self::LEN_BITS;
pub fn new(pos: usize, len: usize) -> Option<Self> {
if len >= Self::MAX_LEN {
return None;
}
Some(Self((pos << Self::LEN_BITS | len) as u32))
}
pub fn view(self, slice: &[Id]) -> &[Id] {
&slice[self.0 as usize >> Self::LEN_BITS..][..self.len()]
}
pub fn range(self) -> Range<usize> {
let start = self.0 as usize >> Self::LEN_BITS;
start..start + self.len()
}
pub fn len(self) -> usize {
self.0 as usize & Self::LEN_MASK
}
pub fn is_empty(self) -> bool {
self.0 == 0
}
pub fn empty() -> Self {
Self(0)
}
pub fn repr(&self) -> u32 {
self.0
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct Id(NonZeroU32);
impl Default for Id {
fn default() -> Self {
Self(unsafe { NonZeroU32::new_unchecked(UNDECLARED) })
}
}
impl Id {
pub const fn from_bt(bt: u32) -> Self {
Self(unsafe { NonZeroU32::new_unchecked(bt) })
}
pub fn is_signed(self) -> bool {
(I8..=INT).contains(&self.repr())
}
pub fn is_unsigned(self) -> bool {
(U8..=UINT).contains(&self.repr())
}
pub fn is_integer(self) -> bool {
(U8..=INT).contains(&self.repr())
}
pub fn strip_pointer(self) -> Self {
match self.expand() {
Kind::Ptr(_) => Kind::Builtin(UINT).compress(),
_ => self,
}
}
pub fn is_pointer(self) -> bool {
matches!(Kind::from_ty(self), Kind::Ptr(_))
}
pub fn try_upcast(self, ob: Self) -> Option<Self> {
let (oa, ob) = (Self(self.0.min(ob.0)), Self(self.0.max(ob.0)));
let (a, b) = (oa.strip_pointer(), ob.strip_pointer());
Some(match () {
_ if oa == ob => oa,
_ if oa.is_pointer() && ob.is_pointer() => return None,
_ if a.is_signed() && b.is_signed() || a.is_unsigned() && b.is_unsigned() => ob,
_ if a.is_unsigned() && b.is_signed() && a.repr() - U8 < b.repr() - I8 => ob,
_ if oa.is_integer() && ob.is_pointer() => ob,
_ => return None,
})
}
pub fn expand(self) -> Kind {
Kind::from_ty(self)
}
pub const fn repr(self) -> u32 {
self.0.get()
}
}
impl From<u64> for Id {
fn from(id: u64) -> Self {
Self(unsafe { NonZeroU32::new_unchecked(id as _) })
}
}
impl From<u32> for Id {
fn from(id: u32) -> Self {
Kind::Builtin(id).compress()
}
}
const fn array_to_lower_case<const N: usize>(array: [u8; N]) -> [u8; N] {
let mut result = [0; N];
let mut i = 0;
while i < N {
result[i] = array[i].to_ascii_lowercase();
i += 1;
}
result
}
// const string to lower case
macro_rules! builtin_type {
($($name:ident;)*) => {
$(pub const $name: Builtin = ${index(0)} + 1;)*
mod __lc_names {
use super::*;
$(pub const $name: &[u8] = &array_to_lower_case(unsafe {
*(stringify!($name).as_ptr() as *const [u8; stringify!($name).len()]) });)*
}
pub fn from_str(name: &str) -> Option<Builtin> {
match name.as_bytes() {
$(__lc_names::$name => Some($name),)*
_ => None,
}
}
pub fn to_str(ty: Builtin) -> &'static str {
match ty {
$($name => unsafe { std::str::from_utf8_unchecked(__lc_names::$name) },)*
v => unreachable!("invalid type: {}", v),
}
}
};
}
builtin_type! {
UNDECLARED;
NEVER;
VOID;
TYPE;
BOOL;
U8;
U16;
U32;
UINT;
I8;
I16;
I32;
INT;
LEFT_UNREACHABLE;
RIGHT_UNREACHABLE;
}
macro_rules! type_kind {
($(#[$meta:meta])* $vis:vis enum $name:ident {$( $variant:ident, )*}) => {
$(#[$meta])*
$vis enum $name {
$($variant($variant),)*
}
impl $name {
const FLAG_BITS: u32 = (${count($variant)} as u32).next_power_of_two().ilog2();
const FLAG_OFFSET: u32 = std::mem::size_of::<Id>() as u32 * 8 - Self::FLAG_BITS;
const INDEX_MASK: u32 = (1 << (32 - Self::FLAG_BITS)) - 1;
$vis fn from_ty(ty: Id) -> Self {
let (flag, index) = (ty.repr() >> Self::FLAG_OFFSET, ty.repr() & Self::INDEX_MASK);
match flag {
$(${index(0)} => Self::$variant(index),)*
i => unreachable!("{i}"),
}
}
$vis const fn compress(self) -> Id {
let (index, flag) = match self {
$(Self::$variant(index) => (index, ${index(0)}),)*
};
Id(unsafe { NonZeroU32::new_unchecked((flag << Self::FLAG_OFFSET) | index) })
}
$vis const fn inner(self) -> u32 {
match self {
$(Self::$variant(index) => index,)*
}
}
}
};
}
type_kind! {
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Kind {
Builtin,
Struct,
Ptr,
Func,
Global,
Module,
Slice,
}
}
impl Default for Kind {
fn default() -> Self {
Self::Builtin(UNDECLARED)
}
}
pub struct Display<'a> {
tys: &'a super::Types,
files: &'a [parser::Ast],
ty: Id,
}
impl<'a> Display<'a> {
pub(super) fn new(tys: &'a super::Types, files: &'a [parser::Ast], ty: Id) -> Self {
Self { tys, files, ty }
}
fn rety(&self, ty: Id) -> Self {
Self::new(self.tys, self.files, ty)
}
}
impl<'a> std::fmt::Display for Display<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
use Kind as TK;
match TK::from_ty(self.ty) {
TK::Module(idx) => write!(f, "module{}", idx),
TK::Builtin(ty) => write!(f, "{}", to_str(ty)),
TK::Ptr(ty) => {
write!(f, "^{}", self.rety(self.tys.ptrs[ty as usize].base))
}
_ if let Some((key, _)) = self
.tys
.syms
.iter()
.find(|(sym, &ty)| sym.file < self.files.len() as u32 && ty == self.ty)
&& let Some(name) = self.files[key.file as usize].exprs().iter().find_map(
|expr| match expr {
Expr::BinOp {
left: &Expr::Ident { name, id, .. },
op: TokenKind::Decl,
..
} if id == key.ident => Some(name),
_ => None,
},
) =>
{
write!(f, "{name}")
}
TK::Struct(idx) => {
let record = &self.tys.structs[idx as usize];
write!(f, "{{")?;
for (i, &super::Field { ref name, ty }) in record.fields.iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
write!(f, "{name}: {}", self.rety(ty))?;
}
write!(f, "}}")
}
TK::Func(idx) => write!(f, "fn{idx}"),
TK::Global(idx) => write!(f, "global{idx}"),
TK::Slice(idx) => {
let array = self.tys.arrays[idx as usize];
match array.len {
ArrayLen::MAX => write!(f, "[{}]", self.rety(array.ty)),
len => write!(f, "[{}; {len}]", self.rety(array.ty)),
}
}
}
}
}
pub fn bin_ret(ty: Id, op: TokenKind) -> Id {
use TokenKind as T;
match op {
T::Lt | T::Gt | T::Le | T::Ge | T::Ne | T::Eq => BOOL.into(),
_ => ty,
}
}
}
struct Nodes {
values: Vec<PoolSlot>,
free: u32,
lookup: HashMap<(Kind, [Nid; MAX_INPUTS]), Nid>,
}
impl Default for Nodes {
fn default() -> Self {
Self { values: Default::default(), free: u32::MAX, lookup: Default::default() }
}
}
impl Nodes {
fn add(&mut self, value: Node) -> u32 {
if self.free == u32::MAX {
self.free = self.values.len() as _;
self.values.push(PoolSlot::Next(u32::MAX));
}
let free = self.free;
self.free = match mem::replace(&mut self.values[free as usize], PoolSlot::Value(value)) {
PoolSlot::Value(_) => unreachable!(),
PoolSlot::Next(free) => free,
};
free
}
fn remove_low(&mut self, id: u32) -> Node {
let value = match mem::replace(&mut self.values[id as usize], PoolSlot::Next(self.free)) {
PoolSlot::Value(value) => value,
PoolSlot::Next(_) => unreachable!(),
};
self.free = id;
value
}
fn clear(&mut self) {
self.values.clear();
self.lookup.clear();
self.free = u32::MAX;
}
fn new_node<const SIZE: usize>(
&mut self,
ty: impl Into<ty::Id>,
kind: Kind,
inps: [Nid; SIZE],
) -> Nid {
let mut inputs = [NILL; MAX_INPUTS];
inputs[..inps.len()].copy_from_slice(&inps);
if let Some(&id) = self.lookup.get(&(kind.clone(), inputs)) {
debug_assert_eq!(&self[id].kind, &kind);
debug_assert_eq!(self[id].inputs, inputs);
return id;
}
let id = self.add(Node {
inputs,
kind: kind.clone(),
color: 0,
depth: u32::MAX,
lock_rc: 0,
ty: ty.into(),
outputs: vec![],
});
let prev = self.lookup.insert((kind, inputs), id);
debug_assert_eq!(prev, None);
self.add_deps(id, &inps);
if let Some(opt) = self.peephole(id) {
debug_assert_ne!(opt, id);
self.lock(opt);
self.remove(id);
self.unlock(opt);
opt
} else {
id
}
}
fn lock(&mut self, target: Nid) {
if target == NILL {
return;
}
self[target].lock_rc += 1;
}
#[track_caller]
fn unlock(&mut self, target: Nid) {
if target == NILL {
return;
}
self[target].lock_rc -= 1;
}
fn remove(&mut self, target: Nid) -> bool {
if !self[target].is_dangling() {
return false;
}
for i in 0..self[target].inputs().len() {
let inp = self[target].inputs[i];
let index = self[inp].outputs.iter().position(|&p| p == target).unwrap();
self[inp].outputs.swap_remove(index);
self.remove(inp);
}
let res = self.lookup.remove(&(self[target].kind.clone(), self[target].inputs));
debug_assert_eq!(res, Some(target));
self.remove_low(target);
true
}
fn peephole(&mut self, target: Nid) -> Option<Nid> {
match self[target].kind {
Kind::Start => {}
Kind::End => {}
Kind::BinOp { op } => return self.peephole_binop(target, op),
Kind::Return => {}
Kind::Tuple { .. } => {}
Kind::ConstInt { .. } => {}
Kind::Call { .. } => {}
Kind::If => {}
Kind::Region => {}
Kind::Phi => {}
Kind::Loop => {}
}
None
}
fn peephole_binop(&mut self, target: Nid, op: TokenKind) -> Option<Nid> {
use TokenKind as T;
let [mut lhs, mut rhs, ..] = self[target].inputs;
if lhs == rhs {
match op {
T::Sub => {
return Some(self.new_node(self[target].ty, Kind::ConstInt { value: 0 }, []));
}
T::Add => {
let rhs = self.new_node(self[target].ty, Kind::ConstInt { value: 2 }, []);
return Some(
self.new_node(self[target].ty, Kind::BinOp { op: T::Mul }, [lhs, rhs]),
);
}
_ => {}
}
}
if let (&Kind::ConstInt { value: a }, &Kind::ConstInt { value: b }) =
(&self[lhs].kind, &self[rhs].kind)
{
return Some(self.new_node(
self[target].ty,
Kind::ConstInt { value: op.apply(a, b) },
[],
));
}
let mut changed = false;
if op.is_comutative() && self[lhs].kind < self[rhs].kind {
std::mem::swap(&mut lhs, &mut rhs);
changed = true;
}
if let Kind::ConstInt { value } = self[rhs].kind {
match (op, value) {
(T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs),
(T::Mul, 0) => return Some(rhs),
_ => {}
}
}
if op.is_comutative() && self[lhs].kind == (Kind::BinOp { op }) {
if let Kind::ConstInt { value: a } = self[self[lhs].inputs[1]].kind
&& let Kind::ConstInt { value: b } = self[rhs].kind
{
let new_rhs =
self.new_node(self[target].ty, Kind::ConstInt { value: op.apply(a, b) }, []);
return Some(self.new_node(self[target].ty, Kind::BinOp { op }, [
self[lhs].inputs[0],
new_rhs,
]));
}
if self.is_const(self[lhs].inputs[1]) {
let new_lhs =
self.new_node(self[target].ty, Kind::BinOp { op }, [self[lhs].inputs[0], rhs]);
return Some(self.new_node(self[target].ty, Kind::BinOp { op }, [
new_lhs,
self[lhs].inputs[1],
]));
}
}
if op == T::Add
&& self[lhs].kind == (Kind::BinOp { op: T::Mul })
&& self[lhs].inputs[0] == rhs
&& let Kind::ConstInt { value } = self[self[lhs].inputs[1]].kind
{
let new_rhs = self.new_node(self[target].ty, Kind::ConstInt { value: value + 1 }, []);
return Some(
self.new_node(self[target].ty, Kind::BinOp { op: T::Mul }, [rhs, new_rhs]),
);
}
if op == T::Sub && self[lhs].kind == (Kind::BinOp { op }) {
// (a - b) - c => a - (b + c)
let [a, b, ..] = self[lhs].inputs;
let c = rhs;
let new_rhs = self.new_node(self[target].ty, Kind::BinOp { op: T::Add }, [b, c]);
return Some(self.new_node(self[target].ty, Kind::BinOp { op }, [a, new_rhs]));
}
if changed {
return Some(self.new_node(self[target].ty, self[target].kind.clone(), [lhs, rhs]));
}
None
}
fn is_const(&self, id: Nid) -> bool {
matches!(self[id].kind, Kind::ConstInt { .. })
}
fn replace(&mut self, target: Nid, with: Nid) {
for i in 0..self[target].outputs.len() {
let out = self[target].outputs[i];
let index = self[out].inputs().iter().position(|&p| p == target).unwrap();
let rpl = self.modify_input(out, index, with);
self[with].outputs.push(rpl);
}
self.remove(target);
}
fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid {
let out = self.lookup.remove(&(self[target].kind.clone(), self[target].inputs));
debug_assert!(out == Some(target));
debug_assert_ne!(self[target].inputs[inp_index], with);
let prev = self[target].inputs[inp_index];
self[target].inputs[inp_index] = with;
if let Err(other) =
self.lookup.try_insert((self[target].kind.clone(), self[target].inputs), target)
{
let rpl = *other.entry.get();
self[target].inputs[inp_index] = prev;
self.replace(target, rpl);
return rpl;
}
let index = self[prev].outputs.iter().position(|&o| o == target).unwrap();
self[prev].outputs.swap_remove(index);
self[with].outputs.push(target);
target
}
fn add_deps(&mut self, id: Nid, deps: &[Nid]) {
for &d in deps {
debug_assert_ne!(d, id);
self[d].outputs.push(id);
}
}
#[track_caller]
fn unlock_remove(&mut self, id: Nid) -> bool {
if id == NILL {
return false;
}
self[id].lock_rc -= 1;
self.remove(id)
}
fn fmt(&self, f: &mut fmt::Formatter, node: Nid, rcs: &mut [usize]) -> fmt::Result {
let mut is_ready = || {
if rcs[node as usize] == 0 {
return false;
}
rcs[node as usize] = rcs[node as usize].saturating_sub(1);
rcs[node as usize] == 0
};
match self[node].kind {
Kind::BinOp { op } => {
write!(f, "(")?;
self.fmt(f, self[node].inputs[0], rcs)?;
write!(f, " {op} ")?;
self.fmt(f, self[node].inputs[1], rcs)?;
write!(f, ")")?;
}
Kind::Return => {
write!(f, "{}: return [{:?}] ", node, self[node].inputs[0])?;
if self[node].inputs[2] != NILL {
self.fmt(f, self[node].inputs[2], rcs)?;
}
writeln!(f)?;
self.fmt(f, self[node].inputs[1], rcs)?;
}
Kind::ConstInt { value } => write!(f, "{}", value)?,
Kind::End => {
if is_ready() {
writeln!(f, "{}: {:?}", node, self[node].kind)?;
}
}
Kind::Tuple { index } => {
if index != 0 && self[self[node].inputs[0]].kind == Kind::Start {
write!(f, "{:?}.{}", self[self[node].inputs[0]].kind, index)?;
} else if is_ready() {
writeln!(f, "{}: {:?}", node, self[node].kind)?;
for &o in &self[node].outputs {
if self.is_cfg(o) {
self.fmt(f, o, rcs)?;
}
}
}
}
Kind::Start => 'b: {
if !is_ready() {
break 'b;
}
writeln!(f, "{}: {:?}", node, self[node].kind)?;
for &o in &self[node].outputs {
self.fmt(f, o, rcs)?;
}
}
Kind::Call { func, ref args } => {
if is_ready() {
write!(f, "{}: call {}(", node, func)?;
for (i, &value) in args.iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
self.fmt(f, value, rcs)?;
}
writeln!(f, ")")?;
for &o in &self[node].outputs {
if self.is_cfg(o) {
self.fmt(f, o, rcs)?;
}
}
} else {
write!(f, "call{node}")?;
}
}
Kind::If => todo!(),
Kind::Region => todo!(),
Kind::Phi => todo!(),
Kind::Loop => todo!(),
}
Ok(())
}
fn is_cfg(&self, o: Nid) -> bool {
matches!(
self[o].kind,
Kind::Start
| Kind::End
| Kind::Return
| Kind::Tuple { .. }
| Kind::Call { .. }
| Kind::Region
| Kind::Loop
)
}
fn check_final_integrity(&self) {
let mut failed = false;
for (slot, i) in self.values.iter().zip(0u32..) {
match slot {
PoolSlot::Value(node) => {
debug_assert_eq!(node.lock_rc, 0, "{:?}", node.kind);
if !matches!(node.kind, Kind::Return | Kind::End) && node.outputs.is_empty() {
log::err!("outputs are empry {i} {:?}", node.kind);
failed = true;
}
for &o in &node.outputs {
let mut occurs = 0;
let other = match &self.values[o as usize] {
PoolSlot::Value(other) => other,
PoolSlot::Next(_) => {
log::err!(
"the edge points to dropped node: {i} {:?} {o}",
node.kind,
);
failed = true;
continue;
}
};
if let Kind::Call { ref args, .. } = other.kind {
occurs = args.iter().filter(|&&el| el == i).count();
}
occurs += self[o].inputs.iter().filter(|&&el| el == i).count();
if occurs == 0 {
log::err!(
"the edge is not bidirectional: {i} {:?} {o} {:?}",
node.kind,
other.kind
);
failed = true;
}
}
}
PoolSlot::Next(_) => {}
}
}
if failed {
panic!()
}
}
}
impl ops::Index<u32> for Nodes {
type Output = Node;
fn index(&self, index: u32) -> &Self::Output {
match &self.values[index as usize] {
PoolSlot::Value(value) => value,
PoolSlot::Next(_) => unreachable!(),
}
}
}
impl ops::IndexMut<u32> for Nodes {
fn index_mut(&mut self, index: u32) -> &mut Self::Output {
match &mut self.values[index as usize] {
PoolSlot::Value(value) => value,
PoolSlot::Next(_) => unreachable!(),
}
}
}
#[derive(Debug)]
enum PoolSlot {
Value(Node),
Next(u32),
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[repr(u8)]
pub enum Kind {
Start,
End,
If,
Region,
Loop,
Return,
ConstInt { value: i64 },
Phi,
Tuple { index: u32 },
BinOp { op: lexer::TokenKind },
Call { func: ty::Func, args: Vec<Nid> },
}
impl Kind {
fn disc(&self) -> u8 {
unsafe { *(self as *const _ as *const u8) }
}
}
const MAX_INPUTS: usize = 3;
#[derive(Debug)]
struct Node {
inputs: [Nid; MAX_INPUTS],
kind: Kind,
color: u32,
depth: u32,
lock_rc: u32,
ty: ty::Id,
outputs: Vec<Nid>,
}
impl Node {
fn is_dangling(&self) -> bool {
self.outputs.len() + self.lock_rc as usize == 0
}
fn inputs(&self) -> &[Nid] {
let len = self.inputs.iter().position(|&n| n == NILL).unwrap_or(MAX_INPUTS);
&self.inputs[..len]
}
fn inputs_mut(&mut self) -> &mut [Nid] {
let len = self.inputs.iter().position(|&n| n == NILL).unwrap_or(MAX_INPUTS);
&mut self.inputs[..len]
}
}
impl fmt::Display for Nodes {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.fmt(
f,
0,
&mut self
.values
.iter()
.map(|s| match s {
PoolSlot::Value(Node { kind: Kind::Start, .. }) => 1,
PoolSlot::Value(Node { kind: Kind::End, ref outputs, .. }) => outputs.len(),
PoolSlot::Value(val) => val.inputs().len(),
PoolSlot::Next(_) => 0,
})
.collect::<Vec<_>>(),
)
}
}
type Offset = u32;
type Size = u32;
type ArrayLen = u32;
struct Loop {
node: Nid,
continue_: Nid,
continue_scope: Vec<Variable>,
break_: Nid,
break_scope: Vec<Variable>,
scope: Vec<Variable>,
}
#[derive(Clone, Copy)]
struct Variable {
id: Ident,
value: Nid,
}
struct ColorMeta {
rc: u32,
depth: u32,
loc: Loc,
}
#[derive(Default)]
struct ItemCtx {
file: FileId,
id: ty::Id,
ret: Option<ty::Id>,
task_base: usize,
nodes: Nodes,
start: Nid,
end: Nid,
ctrl: Nid,
loop_depth: u32,
colors: Vec<ColorMeta>,
call_count: usize,
filled: Vec<Nid>,
delayed_frees: Vec<u32>,
loops: Vec<Loop>,
vars: Vec<Variable>,
regs: reg::Alloc,
ret_relocs: Vec<Reloc>,
relocs: Vec<TypedReloc>,
code: Vec<u8>,
}
impl ItemCtx {
fn next_color(&mut self) -> u32 {
self.colors.push(ColorMeta { rc: 0, depth: self.loop_depth, loc: Default::default() });
self.colors.len() as _ // leave out 0 (sentinel)
}
fn set_next_color(&mut self, node: Nid) {
let color = self.next_color();
self.set_color(node, color);
}
fn set_color(&mut self, node: Nid, color: u32) {
if self.nodes[node].color != 0 {
debug_assert_ne!(self.nodes[node].color, color);
self.colors[self.nodes[node].color as usize - 1].rc -= 1;
}
self.nodes[node].color = color;
self.colors[color as usize - 1].rc += 1;
}
fn recolor(&mut self, node: Nid, from: u32, to: u32) {
if from == to {
return;
}
if self.nodes[node].color != from {
return;
}
self.set_color(node, to);
for i in 0..self.nodes[node].inputs().len() {
self.recolor(self.nodes[node].inputs[i], from, to);
}
}
fn check_color_integrity(&self) {
let node_count = self
.nodes
.values
.iter()
.filter(|v| {
matches!(
v,
PoolSlot::Value(Node {
kind: Kind::BinOp { .. }
| Kind::Call { .. }
| Kind::Phi
| Kind::ConstInt { .. },
..
})
) || matches!(
v,
PoolSlot::Value(Node { kind: Kind::Tuple { index: 1.. }, inputs: [0, ..], .. })
)
})
.count();
let color_count = self.colors.iter().map(|c| c.rc).sum::<u32>();
debug_assert_eq!(node_count, color_count as usize);
}
fn emit(&mut self, instr: (usize, [u8; instrs::MAX_SIZE])) {
emit(&mut self.code, instr);
}
fn free_loc(&mut self, loc: impl Into<Option<Loc>>) {
if let Some(loc) = loc.into() {
self.regs.free(loc.reg);
}
}
}
fn emit(out: &mut Vec<u8>, (len, instr): (usize, [u8; instrs::MAX_SIZE])) {
out.extend_from_slice(&instr[..len]);
}
fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) {
let value = value.to_ne_bytes();
doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]);
}
#[derive(PartialEq, Eq, Hash)]
struct SymKey {
file: u32,
ident: u32,
}
impl SymKey {
pub fn pointer_to(ty: ty::Id) -> Self {
Self { file: u32::MAX, ident: ty.repr() }
}
}
#[derive(Clone, Copy)]
struct Sig {
args: ty::Tuple,
ret: ty::Id,
}
struct Func {
file: FileId,
expr: ExprRef,
sig: Option<Sig>,
offset: Offset,
// TODO: change to indices into common vec
relocs: Vec<TypedReloc>,
code: Vec<u8>,
}
impl Default for Func {
fn default() -> Self {
Self {
file: u32::MAX,
expr: Default::default(),
sig: None,
offset: u32::MAX,
relocs: Default::default(),
code: Default::default(),
}
}
}
struct TypedReloc {
target: ty::Id,
reloc: Reloc,
}
struct Global {
file: FileId,
name: Ident,
ty: ty::Id,
offset: Offset,
data: Vec<u8>,
}
impl Default for Global {
fn default() -> Self {
Self {
ty: Default::default(),
offset: u32::MAX,
data: Default::default(),
file: 0,
name: 0,
}
}
}
// TODO: make into bit struct (width: u2, sub_offset: u3, offset: u27)
#[derive(Clone, Copy, Debug)]
struct Reloc {
offset: Offset,
sub_offset: u8,
width: u8,
}
impl Reloc {
fn new(offset: usize, sub_offset: u8, width: u8) -> Self {
Self { offset: offset as u32, sub_offset, width }
}
fn apply_jump(mut self, code: &mut [u8], to: u32, from: u32) -> i64 {
self.offset += from;
let offset = to as i64 - self.offset as i64;
self.write_offset(code, offset);
offset
}
fn write_offset(&self, code: &mut [u8], offset: i64) {
let bytes = offset.to_ne_bytes();
let slice = &mut code[self.offset as usize + self.sub_offset as usize..];
slice[..self.width as usize].copy_from_slice(&bytes[..self.width as usize]);
}
}
struct Field {
name: Rc<str>,
ty: ty::Id,
}
struct Struct {
fields: Rc<[Field]>,
}
struct Ptr {
base: ty::Id,
}
struct ParamAlloc(Range<u8>);
impl ParamAlloc {
pub fn next(&mut self) -> u8 {
self.0.next().expect("too many paramteters")
}
fn next_wide(&mut self) -> u8 {
(self.next(), self.next()).0
}
}
#[derive(Clone, Copy)]
struct Array {
ty: ty::Id,
len: ArrayLen,
}
#[derive(Default)]
struct Types {
syms: HashMap<SymKey, ty::Id>,
funcs: Vec<Func>,
args: Vec<ty::Id>,
globals: Vec<Global>,
structs: Vec<Struct>,
ptrs: Vec<Ptr>,
arrays: Vec<Array>,
}
impl Types {
fn parama(&self, ret: impl Into<ty::Id>) -> ParamAlloc {
ParamAlloc(2 + (9..=16).contains(&self.size_of(ret.into())) as u8..12)
}
fn offset_of(&self, idx: ty::Struct, field: &str) -> Option<(Offset, ty::Id)> {
let record = &self.structs[idx as usize];
let until = record.fields.iter().position(|f| f.name.as_ref() == field)?;
let mut offset = 0;
for &Field { ty, .. } in &record.fields[..until] {
offset = Self::align_up(offset, self.align_of(ty));
offset += self.size_of(ty);
}
Some((offset, record.fields[until].ty))
}
fn make_ptr(&mut self, base: ty::Id) -> ty::Id {
ty::Kind::Ptr(self.make_ptr_low(base)).compress()
}
fn make_ptr_low(&mut self, base: ty::Id) -> ty::Ptr {
let id = SymKey::pointer_to(base);
self.syms
.entry(id)
.or_insert_with(|| {
self.ptrs.push(Ptr { base });
ty::Kind::Ptr(self.ptrs.len() as u32 - 1).compress()
})
.expand()
.inner()
}
fn make_array(&mut self, ty: ty::Id, len: ArrayLen) -> ty::Id {
ty::Kind::Slice(self.make_array_low(ty, len)).compress()
}
fn make_array_low(&mut self, ty: ty::Id, len: ArrayLen) -> ty::Slice {
let id = SymKey {
file: match len {
ArrayLen::MAX => ArrayLen::MAX - 1,
len => ArrayLen::MAX - len - 2,
},
ident: ty.repr(),
};
self.syms
.entry(id)
.or_insert_with(|| {
self.arrays.push(Array { ty, len });
ty::Kind::Slice(self.arrays.len() as u32 - 1).compress()
})
.expand()
.inner()
}
fn align_up(value: Size, align: Size) -> Size {
(value + align - 1) & !(align - 1)
}
fn size_of(&self, ty: ty::Id) -> Size {
match ty.expand() {
ty::Kind::Ptr(_) => 8,
ty::Kind::Builtin(ty::VOID) => 0,
ty::Kind::Builtin(ty::NEVER) => unreachable!(),
ty::Kind::Builtin(ty::INT | ty::UINT) => 8,
ty::Kind::Builtin(ty::I32 | ty::U32 | ty::TYPE) => 4,
ty::Kind::Builtin(ty::I16 | ty::U16) => 2,
ty::Kind::Builtin(ty::I8 | ty::U8 | ty::BOOL) => 1,
ty::Kind::Slice(arr) => {
let arr = &self.arrays[arr as usize];
match arr.len {
0 => 0,
ArrayLen::MAX => 16,
len => self.size_of(arr.ty) * len,
}
}
ty::Kind::Struct(stru) => {
let mut offset = 0u32;
let record = &self.structs[stru as usize];
for &Field { ty, .. } in record.fields.iter() {
let align = self.align_of(ty);
offset = Self::align_up(offset, align);
offset += self.size_of(ty);
}
offset
}
ty => unimplemented!("size_of: {:?}", ty),
}
}
fn align_of(&self, ty: ty::Id) -> Size {
match ty.expand() {
ty::Kind::Struct(stru) => self.structs[stru as usize]
.fields
.iter()
.map(|&Field { ty, .. }| self.align_of(ty))
.max()
.unwrap(),
ty::Kind::Slice(arr) => {
let arr = &self.arrays[arr as usize];
match arr.len {
ArrayLen::MAX => 8,
_ => self.align_of(arr.ty),
}
}
_ => self.size_of(ty).max(1),
}
}
}
mod task {
use super::Offset;
pub fn unpack(offset: Offset) -> Result<Offset, usize> {
if offset >> 31 != 0 {
Err((offset & !(1 << 31)) as usize)
} else {
Ok(offset)
}
}
pub fn id(index: usize) -> Offset {
1 << 31 | index as u32
}
}
struct FTask {
file: FileId,
id: ty::Func,
}
#[derive(Default, Debug)]
struct Ctx {
ty: Option<ty::Id>,
}
impl Ctx {
pub fn with_ty(self, ty: impl Into<ty::Id>) -> Self {
Self { ty: Some(ty.into()) }
}
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
struct Loc {
reg: reg::Reg,
}
#[derive(Default, Debug, Clone, Copy)]
struct GenCtx {
loc: Option<Loc>,
}
impl GenCtx {
pub fn with_loc(self, loc: impl Into<Loc>) -> Self {
Self { loc: Some(loc.into()) }
}
}
#[derive(Default)]
struct Pool {
cis: Vec<ItemCtx>,
}
#[derive(Default)]
pub struct Codegen {
pub files: Vec<parser::Ast>,
tasks: Vec<Option<FTask>>,
tys: Types,
ci: ItemCtx,
pool: Pool,
}
impl Codegen {
pub fn generate(&mut self) {
self.find_or_declare(0, 0, None, "main");
self.make_func_reachable(0);
self.complete_call_graph_low();
}
fn assemble(&mut self, to: &mut Vec<u8>) {
emit(to, instrs::jal(reg::RET_ADDR, reg::ZERO, 0));
emit(to, instrs::tx());
self.dump_reachable(0, to);
Reloc::new(0, 3, 4).apply_jump(to, self.tys.funcs[0].offset, 0);
}
fn dump_reachable(&mut self, from: ty::Func, to: &mut Vec<u8>) {
let mut frontier = vec![ty::Kind::Func(from).compress()];
while let Some(itm) = frontier.pop() {
match itm.expand() {
ty::Kind::Func(func) => {
let fuc = &mut self.tys.funcs[func as usize];
if task::unpack(fuc.offset).is_ok() {
continue;
}
fuc.offset = to.len() as _;
to.extend(&fuc.code);
frontier.extend(fuc.relocs.iter().map(|r| r.target));
}
ty::Kind::Global(glob) => {
let glb = &mut self.tys.globals[glob as usize];
if task::unpack(glb.offset).is_ok() {
continue;
}
glb.offset = to.len() as _;
to.extend(&glb.data);
}
_ => unreachable!(),
}
}
for fuc in &self.tys.funcs {
if task::unpack(fuc.offset).is_err() {
continue;
}
for rel in &fuc.relocs {
let offset = match rel.target.expand() {
ty::Kind::Func(fun) => self.tys.funcs[fun as usize].offset,
ty::Kind::Global(glo) => self.tys.globals[glo as usize].offset,
_ => unreachable!(),
};
rel.reloc.apply_jump(to, offset, fuc.offset);
}
}
}
pub fn disasm(
&mut self,
mut sluce: &[u8],
output: &mut impl std::io::Write,
) -> std::io::Result<()> {
use crate::DisasmItem;
let functions = self
.tys
.funcs
.iter()
.filter(|f| task::unpack(f.offset).is_ok())
.map(|f| {
let file = &self.files[f.file as usize];
let Expr::BinOp { left: &Expr::Ident { name, .. }, .. } = f.expr.get(file).unwrap()
else {
unreachable!()
};
(f.offset, (name, f.code.len() as u32, DisasmItem::Func))
})
.chain(self.tys.globals.iter().filter(|g| task::unpack(g.offset).is_ok()).map(|g| {
let file = &self.files[g.file as usize];
(g.offset, (file.ident_str(g.name), self.tys.size_of(g.ty), DisasmItem::Global))
}))
.collect::<BTreeMap<_, _>>();
crate::disasm(&mut sluce, &functions, output, |_| {})
}
fn make_func_reachable(&mut self, func: ty::Func) {
let fuc = &mut self.tys.funcs[func as usize];
if fuc.offset == u32::MAX {
fuc.offset = task::id(self.tasks.len() as _);
self.tasks.push(Some(FTask { file: fuc.file, id: func }));
}
}
fn expr(&mut self, expr: &Expr) -> Option<Nid> {
self.expr_ctx(expr, Ctx::default())
}
fn build_struct(&mut self, fields: &[(&str, Expr)]) -> ty::Struct {
let fields = fields
.iter()
.map(|&(name, ty)| Field { name: name.into(), ty: self.ty(&ty) })
.collect();
self.tys.structs.push(Struct { fields });
self.tys.structs.len() as u32 - 1
}
fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Nid> {
let msg = "i know nothing about this name gal which is vired \
because we parsed succesfully";
match *expr {
Expr::Comment { .. } => Some(NILL),
Expr::Ident { pos, id, .. } => {
let index = self
.ci
.vars
.iter()
.position(|v| v.id == id)
.unwrap_or_else(|| self.report(pos, msg));
if self.ci.vars[index].value == NILL {
let loob = self.ci.loops.last_mut().unwrap();
let inps = [loob.node, loob.scope[index].value, loob.scope[index].value];
self.ci.nodes.unlock(inps[1]);
let ty = self.ci.nodes[inps[1]].ty;
// TODO: dont apply peepholes here
let phy = self.ci.nodes.new_node(ty, Kind::Phi, inps);
self.ci.nodes[phy].lock_rc += 2;
self.ci.vars[index].value = phy;
loob.scope[index].value = phy;
}
Some(self.ci.vars[index].value)
}
Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right } => {
let value = self.expr(right)?;
self.ci.nodes.lock(value);
self.ci.vars.push(Variable { id, value });
Some(NILL)
}
Expr::BinOp { left: &Expr::Ident { id, pos, .. }, op: TokenKind::Assign, right } => {
let value = self.expr(right)?;
self.ci.nodes.lock(value);
let Some(var) = self.ci.vars.iter_mut().find(|v| v.id == id) else {
self.report(pos, msg);
};
let prev = std::mem::replace(&mut var.value, value);
self.ci.nodes.unlock_remove(prev);
Some(NILL)
}
Expr::BinOp { left, op, right } => {
let lhs = self.expr_ctx(left, ctx)?;
self.ci.nodes.lock(lhs);
let rhs = self.expr_ctx(right, Ctx::default().with_ty(self.tof(lhs)));
self.ci.nodes.unlock(lhs);
let rhs = rhs?;
let ty = self.assert_ty(left.pos(), self.tof(rhs), self.tof(lhs), false);
let id =
self.ci.nodes.new_node(ty::bin_ret(ty, op), Kind::BinOp { op }, [lhs, rhs]);
Some(id)
}
Expr::If { cond, then, else_, .. } => {
let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?;
let if_node = self.ci.nodes.new_node(ty::VOID, Kind::If, [self.ci.ctrl, cond]);
'b: {
let branch = match self.tof(if_node).expand().inner() {
ty::LEFT_UNREACHABLE => else_,
ty::RIGHT_UNREACHABLE => Some(then),
_ => break 'b,
};
self.ci.nodes.lock(self.ci.ctrl);
self.ci.nodes.remove(if_node);
self.ci.nodes.unlock(self.ci.ctrl);
if let Some(branch) = branch {
return self.expr(branch);
} else {
return Some(NILL);
}
}
let else_scope = self.ci.vars.clone();
for &el in &self.ci.vars {
self.ci.nodes.lock(el.value);
}
self.ci.ctrl =
self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [if_node]);
let lcntrl = self.expr(then).map_or(NILL, |_| self.ci.ctrl);
let then_scope = std::mem::replace(&mut self.ci.vars, else_scope);
self.ci.ctrl =
self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 1 }, [if_node]);
let rcntrl = if let Some(else_) = else_ {
self.expr(else_).map_or(NILL, |_| self.ci.ctrl)
} else {
self.ci.ctrl
};
if lcntrl == NILL && rcntrl == NILL {
for then_var in then_scope {
self.ci.nodes.unlock_remove(then_var.value);
}
return None;
} else if lcntrl == NILL {
for then_var in then_scope {
self.ci.nodes.unlock_remove(then_var.value);
}
return Some(NILL);
} else if rcntrl == NILL {
for else_var in &self.ci.vars {
self.ci.nodes.unlock_remove(else_var.value);
}
self.ci.vars = then_scope;
return Some(NILL);
}
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Region, [lcntrl, rcntrl]);
for (else_var, then_var) in self.ci.vars.iter_mut().zip(then_scope) {
if else_var.value == then_var.value {
self.ci.nodes.unlock_remove(then_var.value);
continue;
}
self.ci.nodes.unlock(then_var.value);
let ty = self.ci.nodes[else_var.value].ty;
debug_assert_eq!(
ty, self.ci.nodes[then_var.value].ty,
"TODO: typecheck properly"
);
let inps = [self.ci.ctrl, then_var.value, else_var.value];
self.ci.nodes.unlock(else_var.value);
else_var.value = self.ci.nodes.new_node(ty, Kind::Phi, inps);
self.ci.nodes.lock(else_var.value);
}
Some(NILL)
}
Expr::Loop { body, .. } => {
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Loop, [self.ci.ctrl; 2]);
self.ci.loops.push(Loop {
node: self.ci.ctrl,
continue_: NILL,
continue_scope: vec![],
break_: NILL,
break_scope: vec![],
scope: self.ci.vars.clone(),
});
for var in &mut self.ci.vars {
var.value = NILL;
}
self.expr(body);
let Loop { node, continue_, continue_scope: _, break_, break_scope: _, scope } =
self.ci.loops.pop().unwrap();
assert!(continue_ == NILL, "TODO: handle continue");
self.ci.nodes.modify_input(node, 1, self.ci.ctrl);
self.ci.ctrl = break_;
if break_ == NILL {
return None;
}
for (loop_var, scope_var) in self.ci.vars.iter_mut().zip(scope) {
if loop_var.value == NILL {
loop_var.value = scope_var.value;
continue;
}
debug_assert_eq!(self.ci.nodes[scope_var.value].kind, Kind::Phi);
if scope_var.value == loop_var.value {
let orig = self.ci.nodes[scope_var.value].inputs[1];
self.ci.nodes.lock(orig);
self.ci.nodes.unlock(scope_var.value);
self.ci.nodes.unlock_remove(scope_var.value);
loop_var.value = orig;
continue;
}
self.ci.nodes.unlock(scope_var.value);
self.ci.nodes.unlock(loop_var.value);
loop_var.value = self.ci.nodes.modify_input(scope_var.value, 2, loop_var.value);
self.ci.nodes.lock(loop_var.value);
}
Some(NILL)
}
Expr::Break { .. } => {
let loob = self.ci.loops.last_mut().unwrap();
debug_assert_eq!(loob.break_, NILL, "TODO: multile breaks");
loob.break_ = self.ci.ctrl;
self.ci.ctrl = NILL;
None
}
Expr::Call { func: &Expr::Ident { pos, id, name, .. }, args, .. } => {
self.ci.call_count += 1;
let func = self.find_or_declare(pos, self.ci.file, Some(id), name);
let ty::Kind::Func(func) = func else {
self.report(
pos,
format_args!(
"compiler cant (yet) call '{}'",
self.ty_display(func.compress())
),
);
};
let fuc = &self.tys.funcs[func as usize];
let sig = fuc.sig.expect("TODO: generic functions");
let ast = self.files[fuc.file as usize].clone();
let Expr::BinOp { right: &Expr::Closure { args: cargs, .. }, .. } =
fuc.expr.get(&ast).unwrap()
else {
unreachable!()
};
if args.len() != cargs.len() {
let s = if cargs.len() == 1 { "" } else { "s" };
self.report(
pos,
format_args!(
"expected {} function argumenr{s}, got {}",
cargs.len(),
args.len()
),
);
}
let mut inps = vec![];
for ((arg, _carg), tyx) in args.iter().zip(cargs).zip(sig.args.range()) {
let ty = self.tys.args[tyx];
if self.tys.size_of(ty) == 0 {
continue;
}
let value = self.expr_ctx(arg, Ctx::default().with_ty(ty))?;
_ = self.assert_ty(arg.pos(), self.tof(value), ty, true);
inps.push(value);
}
self.ci.ctrl =
self.ci
.nodes
.new_node(sig.ret, Kind::Call { func, args: inps.clone() }, [self.ci.ctrl]);
self.ci.nodes.add_deps(self.ci.ctrl, &inps);
Some(self.ci.ctrl)
}
Expr::Return { pos, val } => {
let (ty, value) = if let Some(val) = val {
let value = self.expr_ctx(val, Ctx { ty: self.ci.ret })?;
(self.tof(value), value)
} else {
(ty::VOID.into(), NILL)
};
if value == NILL {
let inps = [self.ci.ctrl, self.ci.end];
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Return, inps);
} else {
let inps = [self.ci.ctrl, self.ci.end, value];
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Return, inps);
}
let expected = *self.ci.ret.get_or_insert(ty);
_ = self.assert_ty(pos, ty, expected, true);
None
}
Expr::Block { stmts, .. } => {
let base = self.ci.vars.len();
let mut ret = Some(NILL);
for stmt in stmts {
ret = ret.and(self.expr(stmt));
if let Some(id) = ret {
_ = self.assert_ty(stmt.pos(), self.tof(id), ty::VOID.into(), true);
} else {
break;
}
}
self.ci.nodes.lock(self.ci.ctrl);
for var in self.ci.vars.drain(base..) {
self.ci.nodes.unlock_remove(var.value);
}
self.ci.nodes.unlock(self.ci.ctrl);
ret
}
Expr::Number { value, .. } => Some(self.ci.nodes.new_node(
ctx.ty.unwrap_or(ty::INT.into()),
Kind::ConstInt { value },
[],
)),
ref e => self.report_unhandled_ast(e, "bruh"),
}
}
#[inline(always)]
fn tof(&self, id: Nid) -> ty::Id {
if id == NILL {
return ty::VOID.into();
}
self.ci.nodes[id].ty
}
//#[must_use]
fn complete_call_graph(&mut self) {
self.complete_call_graph_low();
}
fn complete_call_graph_low(&mut self) {
while self.ci.task_base < self.tasks.len()
&& let Some(task_slot) = self.tasks.pop()
{
let Some(task) = task_slot else { continue };
self.handle_task(task);
}
}
fn handle_task(&mut self, FTask { file, id }: FTask) {
let func = &mut self.tys.funcs[id as usize];
func.offset = u32::MAX - 1;
debug_assert!(func.file == file);
let sig = func.sig.unwrap();
let ast = self.files[file as usize].clone();
let expr = func.expr.get(&ast).unwrap();
let repl = ItemCtx {
file,
id: ty::Kind::Func(id).compress(),
ret: Some(sig.ret),
..self.pool.cis.pop().unwrap_or_default()
};
let prev_ci = std::mem::replace(&mut self.ci, repl);
self.ci.start = self.ci.nodes.new_node(ty::VOID, Kind::Start, []);
self.ci.end = self.ci.nodes.new_node(ty::VOID, Kind::End, []);
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [self.ci.start]);
let Expr::BinOp {
left: Expr::Ident { .. },
op: TokenKind::Decl,
right: &Expr::Closure { body, args, .. },
} = expr
else {
unreachable!("{expr}")
};
let mut sig_args = sig.args.range();
for (arg, index) in args.iter().zip(1u32..) {
let ty = self.tys.args[sig_args.next().unwrap()];
let value = self.ci.nodes.new_node(ty, Kind::Tuple { index }, [self.ci.start]);
self.ci.nodes.lock(value);
let sym = parser::find_symbol(&ast.symbols, arg.id);
assert!(sym.flags & idfl::COMPTIME == 0, "TODO");
self.ci.vars.push(Variable { id: arg.id, value });
}
let mut orig_vars = self.ci.vars.clone();
if self.expr(body).is_some() {
self.report(body.pos(), "expected all paths in the fucntion to return");
}
for (i, var) in self.ci.vars.drain(..).enumerate() {
let ty = self.ci.nodes[var.value].ty;
if self.ci.nodes.unlock_remove(var.value) {
// mark as unused
orig_vars[i].id = u32::MAX;
orig_vars[i].value = ty.repr();
}
}
#[cfg(debug_assertions)]
{
self.ci.nodes.check_final_integrity();
}
log::trc!("{}", self.ci.nodes);
'_open_function: {
self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0));
self.ci.emit(instrs::st(reg::RET_ADDR, reg::STACK_PTR, 0, 0));
}
self.ci.regs.init();
'_color_args: {
for var in &orig_vars {
if var.id != u32::MAX {
self.ci.set_next_color(var.value);
}
}
}
self.color_control(self.ci.nodes[self.ci.start].outputs[0]);
#[cfg(debug_assertions)]
{
self.ci.check_color_integrity();
}
self.ci.vars = orig_vars;
self.emit_control(self.ci.nodes[self.ci.start].outputs[0]);
self.ci.vars.clear();
if let Some(last_ret) = self.ci.ret_relocs.last()
&& last_ret.offset as usize == self.ci.code.len() - 5
{
self.ci.code.truncate(self.ci.code.len() - 5);
self.ci.ret_relocs.pop();
}
let end = self.ci.code.len();
for ret_rel in self.ci.ret_relocs.drain(..) {
ret_rel.apply_jump(&mut self.ci.code, end as _, 0);
}
'_close_function: {
let pushed = self.ci.regs.pushed_size() as i64;
let stack = 0;
write_reloc(&mut self.ci.code, 3, -(pushed + stack), 8);
write_reloc(&mut self.ci.code, 3 + 8 + 3, stack, 8);
write_reloc(&mut self.ci.code, 3 + 8 + 3 + 8, pushed, 2);
self.ci.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _));
self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _));
self.ci.emit(instrs::jala(reg::ZERO, reg::RET_ADDR, 0));
}
self.tys.funcs[id as usize].code.append(&mut self.ci.code);
self.tys.funcs[id as usize].relocs.append(&mut self.ci.relocs);
self.ci.nodes.clear();
self.ci.colors.clear();
self.ci.filled.clear();
self.pool.cis.push(std::mem::replace(&mut self.ci, prev_ci));
}
fn color_control(&mut self, mut ctrl: Nid) -> Option<Nid> {
for _ in 0..30 {
match self.ci.nodes[ctrl].kind.clone() {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::Return => {
if let Some(&ret) = self.ci.nodes[ctrl].inputs().get(2) {
_ = self.color_expr_consume(ret);
node_loc!(self, ret) = match self.tys.size_of(self.ci.ret.expect("TODO")) {
0 => Loc::default(),
1..=8 => Loc { reg: 1 },
s => todo!("{s}"),
};
self.ci.regs.mark_leaked(1);
}
return None;
}
Kind::ConstInt { .. } => unreachable!(),
Kind::Tuple { .. } => {
ctrl = self.ci.nodes[ctrl].outputs[0];
}
Kind::BinOp { .. } => unreachable!(),
Kind::Call { args, .. } => {
for &arg in args.iter() {
_ = self.color_expr_consume(arg);
self.ci.set_next_color(arg);
}
self.ci.set_next_color(ctrl);
ctrl = *self.ci.nodes[ctrl]
.outputs
.iter()
.find(|&&o| self.ci.nodes.is_cfg(o))
.unwrap();
}
Kind::If => {
_ = self.color_expr_consume(self.ci.nodes[ctrl].inputs[1]);
let left_unreachable = self.color_control(self.ci.nodes[ctrl].outputs[0]);
let right_unreachable = self.color_control(self.ci.nodes[ctrl].outputs[1]);
let dest = left_unreachable.or(right_unreachable)?;
if self.ci.nodes[dest].kind == Kind::Loop {
return Some(dest);
}
debug_assert_eq!(self.ci.nodes[dest].kind, Kind::Region);
for i in 0..self.ci.nodes[dest].outputs.len() {
let o = self.ci.nodes[dest].outputs[i];
if self.ci.nodes[o].kind == Kind::Phi {
self.color_phy(o);
self.ci.nodes[o].depth = self.ci.loop_depth;
}
}
ctrl = *self.ci.nodes[dest]
.outputs
.iter()
.find(|&&o| self.ci.nodes[o].kind != Kind::Phi)
.unwrap();
}
Kind::Region => return Some(ctrl),
Kind::Phi => todo!(),
Kind::Loop => {
if self.ci.nodes[ctrl].lock_rc != 0 {
return Some(ctrl);
}
for i in 0..self.ci.nodes[ctrl].outputs.len() {
let maybe_phy = self.ci.nodes[ctrl].outputs[i];
let Node { kind: Kind::Phi, inputs: [_, left, ..], .. } =
self.ci.nodes[maybe_phy]
else {
continue;
};
_ = self.color_expr_consume(left);
self.ci.nodes[maybe_phy].depth = self.ci.loop_depth;
self.ci.set_next_color(maybe_phy);
}
self.ci.nodes[ctrl].lock_rc = self.ci.code.len() as _;
self.ci.loop_depth += 1;
self.color_control(
*self.ci.nodes[ctrl]
.outputs
.iter()
.find(|&&o| self.ci.nodes[o].kind != Kind::Phi)
.unwrap(),
);
for i in 0..self.ci.nodes[ctrl].outputs.len() {
self.color_phy(self.ci.nodes[ctrl].outputs[i]);
}
self.ci.loop_depth -= 1;
self.ci.nodes[ctrl].lock_rc = 0;
return None;
}
}
}
unreachable!()
}
fn color_phy(&mut self, maybe_phy: Nid) {
let Node { kind: Kind::Phi, inputs: [_, left, right], .. } = self.ci.nodes[maybe_phy]
else {
return;
};
let lcolor = self.color_expr_consume(left);
let rcolor = self.color_expr_consume(right);
if self.ci.nodes[maybe_phy].color != 0 {
//if let Some(c) = lcolor {
// self.ci.recolor(left, c, self.ci.nodes[maybe_phy].color);
//}
//if let Some(c) = rcolor {
// self.ci.recolor(right, c, self.ci.nodes[maybe_phy].color);
//}
} else {
let color = match (lcolor, rcolor) {
(None, None) => self.ci.next_color(),
(None, Some(c)) | (Some(c), None) => c,
(Some(lc), Some(rc)) => {
self.ci.recolor(right, rc, lc);
lc
}
};
self.ci.set_color(maybe_phy, color);
}
}
#[must_use = "dont forget to drop the location"]
fn color_expr_consume(&mut self, expr: Nid) -> Option<u32> {
if self.ci.nodes[expr].lock_rc == 0 && self.ci.nodes[expr].kind != Kind::Phi {
self.ci.nodes[expr].depth = self.ci.loop_depth;
self.color_expr(expr);
}
self.use_colored_expr(expr)
}
fn color_expr(&mut self, expr: Nid) {
match self.ci.nodes[expr].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::Return => unreachable!(),
Kind::ConstInt { .. } => self.ci.set_next_color(expr),
Kind::Tuple { index } => {
debug_assert!(index != 0);
}
Kind::BinOp { .. } => {
let [left, right, ..] = self.ci.nodes[expr].inputs;
let lcolor = self.color_expr_consume(left);
let rcolor = self.color_expr_consume(right);
let color = lcolor.or(rcolor).unwrap_or_else(|| self.ci.next_color());
self.ci.set_color(expr, color);
}
Kind::Call { .. } => {}
Kind::If => todo!(),
Kind::Region => todo!(),
Kind::Phi => {}
Kind::Loop => todo!(),
}
}
#[must_use]
fn use_colored_expr(&mut self, expr: Nid) -> Option<u32> {
self.ci.nodes[expr].lock_rc += 1;
debug_assert_ne!(self.ci.nodes[expr].color, 0, "{:?}", self.ci.nodes[expr].kind);
(self.ci.nodes[expr].lock_rc as usize >= self.ci.nodes[expr].outputs.len()
&& self.ci.nodes[expr].depth == self.ci.loop_depth)
.then_some(self.ci.nodes[expr].color)
}
fn emit_control(&mut self, mut ctrl: Nid) -> Option<Nid> {
for _ in 0..30 {
match self.ci.nodes[ctrl].kind.clone() {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::Return => {
if let Some(&ret) = self.ci.nodes[ctrl].inputs().get(2) {
self.emit_expr_consume(ret);
}
self.ci.ret_relocs.push(Reloc::new(self.ci.code.len(), 1, 4));
self.ci.emit(instrs::jmp(0));
return None;
}
Kind::ConstInt { .. } => unreachable!(),
Kind::Tuple { .. } => {
ctrl = self.ci.nodes[ctrl].outputs[0];
}
Kind::BinOp { .. } => unreachable!(),
Kind::Call { func, args } => {
let ret = self.tof(ctrl);
let mut parama = self.tys.parama(ret);
for &arg in args.iter() {
node_loc!(self, arg) = match self.tys.size_of(self.tof(arg)) {
0 => continue,
1..=8 => Loc { reg: parama.next() },
s => todo!("{s}"),
};
self.ci.regs.mark_leaked(node_loc!(self, arg).reg);
self.emit_expr_consume(arg);
}
let reloc = Reloc::new(self.ci.code.len(), 3, 4);
self.ci
.relocs
.push(TypedReloc { target: ty::Kind::Func(func).compress(), reloc });
self.ci.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0));
self.make_func_reachable(func);
self.ci.call_count -= 1;
'b: {
let ret_loc = match self.tys.size_of(ret) {
0 => break 'b,
1..=8 => Loc { reg: 1 },
s => todo!("{s}"),
};
if self.ci.nodes[ctrl].outputs.len() == 1 {
break 'b;
}
if self.ci.call_count == 0 {
node_loc!(self, ctrl) = ret_loc;
} else {
self.emit_pass_low(ret_loc, ctrl);
}
}
ctrl = *self.ci.nodes[ctrl]
.outputs
.iter()
.find(|&&o| self.ci.nodes.is_cfg(o))
.unwrap();
}
Kind::If => {
let cond = self.ci.nodes[ctrl].inputs[1];
let jump_offset: i64;
match self.ci.nodes[cond].kind {
Kind::BinOp { op: op @ (TokenKind::Le | TokenKind::Eq) } => {
let [left, right, ..] = self.ci.nodes[cond].inputs;
self.emit_expr_consume(left);
self.emit_expr_consume(right);
let op = match op {
TokenKind::Le if self.ci.nodes[left].ty.is_signed() => instrs::jgts,
TokenKind::Le => instrs::jgtu,
TokenKind::Eq => instrs::jne,
op => unreachable!("{op}"),
};
jump_offset = self.ci.code.len() as _;
self.ci.emit(op(
node_loc!(self, left).reg,
node_loc!(self, right).reg,
0,
));
}
_ => {
self.emit_expr_consume(cond);
jump_offset = self.ci.code.len() as _;
self.ci.emit(instrs::jeq(node_loc!(self, cond).reg, reg::ZERO, 0));
}
}
let filled_base = self.ci.filled.len();
let left_unreachable = self.emit_control(self.ci.nodes[ctrl].outputs[0]);
for fld in self.ci.filled.drain(filled_base..) {
self.ci.nodes[fld].depth = 0;
}
let mut skip_then_offset = self.ci.code.len() as i64;
if let Some(region) = left_unreachable {
for i in 0..self.ci.nodes[region].outputs.len() {
let o = self.ci.nodes[region].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[1];
self.emit_expr_consume(out);
self.emit_pass(out, o);
}
skip_then_offset = self.ci.code.len() as i64;
self.ci.emit(instrs::jmp(0));
}
let right_base = self.ci.code.len();
let filled_base = self.ci.filled.len();
let right_unreachable = self.emit_control(self.ci.nodes[ctrl].outputs[1]);
for fld in self.ci.filled.drain(filled_base..) {
self.ci.nodes[fld].depth = 0;
}
if let Some(region) = left_unreachable {
for i in 0..self.ci.nodes[region].outputs.len() {
let o = self.ci.nodes[region].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[2];
self.emit_expr_consume(out);
self.emit_pass(out, o);
}
let right_end = self.ci.code.len();
if right_base == right_end {
self.ci.code.truncate(skip_then_offset as _);
} else {
write_reloc(
&mut self.ci.code,
skip_then_offset as usize + 1,
right_end as i64 - skip_then_offset,
4,
);
skip_then_offset += instrs::jmp(69).0 as i64;
}
}
write_reloc(
&mut self.ci.code,
jump_offset as usize + 3,
skip_then_offset - jump_offset,
2,
);
let dest = left_unreachable.or(right_unreachable)?;
if self.ci.nodes[dest].kind == Kind::Loop {
return Some(dest);
}
debug_assert_eq!(self.ci.nodes[dest].kind, Kind::Region);
ctrl = *self.ci.nodes[dest]
.outputs
.iter()
.find(|&&o| self.ci.nodes[o].kind != Kind::Phi)
.unwrap();
}
Kind::Region => return Some(ctrl),
Kind::Phi => todo!(),
Kind::Loop => {
if self.ci.nodes[ctrl].lock_rc != 0 {
return Some(ctrl);
}
for i in 0..self.ci.nodes[ctrl].outputs.len() {
let o = self.ci.nodes[ctrl].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[1];
self.emit_expr_consume(out);
self.emit_pass(out, o);
}
self.ci.nodes[ctrl].lock_rc = self.ci.code.len() as _;
self.ci.loop_depth += 1;
let end = self.emit_control(
*self.ci.nodes[ctrl]
.outputs
.iter()
.find(|&&o| self.ci.nodes[o].kind != Kind::Phi)
.unwrap(),
);
debug_assert_eq!(end, Some(ctrl));
for i in 0..self.ci.nodes[ctrl].outputs.len() {
let o = self.ci.nodes[ctrl].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[2];
// TODO: this can be improved if we juggle ownership of the Phi inputs
self.emit_expr(out);
}
for i in 0..self.ci.nodes[ctrl].outputs.len() {
let o = self.ci.nodes[ctrl].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[2];
self.use_expr(out);
self.emit_pass(out, o);
}
self.ci.emit(instrs::jmp(
self.ci.nodes[ctrl].lock_rc as i32 - self.ci.code.len() as i32,
));
self.ci.loop_depth -= 1;
for free in self.ci.delayed_frees.extract_if(|&mut color| {
self.ci.colors[color as usize].depth == self.ci.loop_depth
}) {
let color = &self.ci.colors[free as usize];
debug_assert_ne!(color.loc, Loc::default());
self.ci.regs.free(color.loc.reg);
}
return None;
}
}
}
unreachable!()
}
fn emit_expr_consume(&mut self, expr: Nid) {
self.emit_expr(expr);
self.use_expr(expr);
}
fn emit_expr(&mut self, expr: Nid) {
if self.ci.nodes[expr].depth == u32::MAX {
return;
}
self.ci.nodes[expr].depth = u32::MAX;
self.ci.filled.push(expr);
match self.ci.nodes[expr].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::Return => unreachable!(),
Kind::ConstInt { value } => {
_ = self.lazy_init(expr);
let instr = instrs::li64(node_loc!(self, expr).reg, value as _);
self.ci.emit(instr);
}
Kind::Tuple { index } => {
debug_assert!(index != 0);
_ = self.lazy_init(expr);
let mut params = self.tys.parama(self.ci.ret.unwrap());
for (i, var) in self.ci.vars.iter().enumerate() {
if var.id == u32::MAX {
match self.tys.size_of(ty::Id::from_bt(var.value)) {
0 => {}
1..=8 => _ = params.next(),
s => todo!("{s}"),
}
continue;
}
match self.tys.size_of(self.ci.nodes[var.value].ty) {
0 => {}
1..=8 => {
let reg = params.next();
if i == index as usize - 1 {
emit(&mut self.ci.code, instrs::cp(node_loc!(self, expr).reg, reg));
}
}
s => todo!("{s}"),
}
}
}
Kind::BinOp { op } => {
_ = self.lazy_init(expr);
let ty = self.tof(expr);
let [left, right, ..] = self.ci.nodes[expr].inputs;
self.emit_expr_consume(left);
if let Kind::ConstInt { value } = self.ci.nodes[right].kind
&& (node_loc!(self, right) == Loc::default()
|| self.ci.nodes[right].depth != u32::MAX)
&& let Some(op) = Self::imm_math_op(op, ty.is_signed(), self.tys.size_of(ty))
{
let instr =
op(node_loc!(self, expr).reg, node_loc!(self, left).reg, value as _);
self.ci.emit(instr);
} else {
self.emit_expr_consume(right);
let op = Self::math_op(op, ty.is_signed(), self.tys.size_of(ty))
.expect("TODO: what now?");
let instr = op(
node_loc!(self, expr).reg,
node_loc!(self, left).reg,
node_loc!(self, right).reg,
);
self.ci.emit(instr);
}
}
Kind::Call { .. } => {}
Kind::If => todo!(),
Kind::Region => todo!(),
Kind::Phi => {}
Kind::Loop => todo!(),
}
}
fn use_expr(&mut self, expr: Nid) {
let node = &mut self.ci.nodes[expr];
node.lock_rc = node.lock_rc.saturating_sub(1);
if node.lock_rc != 0 {
return;
}
let color = &mut self.ci.colors[node.color as usize - 1];
color.rc -= 1;
if color.rc == 0 {
if color.depth != self.ci.loop_depth {
self.ci.delayed_frees.push(node.color);
} else {
debug_assert_ne!(color.loc, Loc::default(), "{:?}", node);
self.ci.regs.free(color.loc.reg);
}
}
}
#[allow(clippy::type_complexity)]
fn imm_math_op(
op: TokenKind,
signed: bool,
size: u32,
) -> Option<fn(u8, u8, u64) -> (usize, [u8; instrs::MAX_SIZE])> {
use {instrs::*, TokenKind as T};
macro_rules! def_op {
($name:ident |$a:ident, $b:ident, $c:ident| $($tt:tt)*) => {
macro_rules! $name {
($$($$op:ident),*) => {
[$$(
|$a, $b, $c: u64| $$op($($tt)*),
)*]
}
}
};
}
def_op!(basic_op | a, b, c | a, b, c as _);
def_op!(sub_op | a, b, c | a, b, c.wrapping_neg() as _);
let ops = match op {
T::Add => basic_op!(addi8, addi16, addi32, addi64),
T::Sub => sub_op!(addi8, addi16, addi32, addi64),
T::Mul => basic_op!(muli8, muli16, muli32, muli64),
T::Band => return Some(andi),
T::Bor => return Some(ori),
T::Xor => return Some(xori),
T::Shr if signed => basic_op!(srui8, srui16, srui32, srui64),
T::Shr => basic_op!(srui8, srui16, srui32, srui64),
T::Shl => basic_op!(slui8, slui16, slui32, slui64),
_ => return None,
};
Some(ops[size.ilog2() as usize])
}
#[allow(clippy::type_complexity)]
fn math_op(
op: TokenKind,
signed: bool,
size: u32,
) -> Option<fn(u8, u8, u8) -> (usize, [u8; instrs::MAX_SIZE])> {
use {instrs::*, TokenKind as T};
macro_rules! div { ($($op:ident),*) => {[$(|a, b, c| $op(a, reg::ZERO, b, c)),*]}; }
macro_rules! rem { ($($op:ident),*) => {[$(|a, b, c| $op(reg::ZERO, a, b, c)),*]}; }
let ops = match op {
T::Add => [add8, add16, add32, add64],
T::Sub => [sub8, sub16, sub32, sub64],
T::Mul => [mul8, mul16, mul32, mul64],
T::Div if signed => div!(dirs8, dirs16, dirs32, dirs64),
T::Div => div!(diru8, diru16, diru32, diru64),
T::Mod if signed => rem!(dirs8, dirs16, dirs32, dirs64),
T::Mod => rem!(diru8, diru16, diru32, diru64),
T::Band => return Some(and),
T::Bor => return Some(or),
T::Xor => return Some(xor),
T::Shl => [slu8, slu16, slu32, slu64],
T::Shr if signed => [srs8, srs16, srs32, srs64],
T::Shr => [sru8, sru16, sru32, sru64],
_ => return None,
};
Some(ops[size.ilog2() as usize])
}
// TODO: sometimes its better to do this in bulk
fn ty(&mut self, expr: &Expr) -> ty::Id {
match *expr {
Expr::Ident { id, .. } if ident::is_null(id) => id.into(),
ref e => self.report_unhandled_ast(e, "type"),
}
}
fn find_or_declare(
&mut self,
pos: Pos,
file: FileId,
name: Option<Ident>,
lit_name: &str,
) -> ty::Kind {
log::trc!("find_or_declare: {lit_name} {file}");
let f = self.files[file as usize].clone();
let Some((expr, ident)) = f.find_decl(name.ok_or(lit_name)) else {
match name.ok_or(lit_name) {
Ok(name) => {
let name = self.cfile().ident_str(name);
self.report(pos, format_args!("undefined indentifier: {name}"))
}
Err("main") => self.report(
pos,
format_args!(
"missing main function in '{}', compiler can't \
emmit libraries since such concept is not defined",
f.path
),
),
Err(name) => self.report(pos, format_args!("undefined indentifier: {name}")),
}
};
if let Some(existing) = self.tys.syms.get(&SymKey { file, ident }) {
if let ty::Kind::Func(id) = existing.expand()
&& let func = &mut self.tys.funcs[id as usize]
&& let Err(idx) = task::unpack(func.offset)
&& idx < self.tasks.len()
{
func.offset = task::id(self.tasks.len());
let task = self.tasks[idx].take();
self.tasks.push(task);
}
return existing.expand();
}
let prev_file = std::mem::replace(&mut self.ci.file, file);
let sym = match expr {
Expr::BinOp {
left: &Expr::Ident { .. },
op: TokenKind::Decl,
right: &Expr::Closure { pos, args, ret, .. },
} => {
let func = Func {
file,
sig: '_b: {
let arg_base = self.tys.args.len();
for arg in args {
let sym = parser::find_symbol(&f.symbols, arg.id);
assert!(sym.flags & idfl::COMPTIME == 0, "TODO");
let ty = self.ty(&arg.ty);
self.tys.args.push(ty);
}
let args = self.pack_args(pos, arg_base);
let ret = self.ty(ret);
Some(Sig { args, ret })
},
expr: {
let refr = ExprRef::new(expr);
debug_assert!(refr.get(&f).is_some());
refr
},
..Default::default()
};
let id = self.tys.funcs.len() as _;
self.tys.funcs.push(func);
ty::Kind::Func(id)
}
Expr::BinOp {
left: &Expr::Ident { .. },
op: TokenKind::Decl,
right: Expr::Struct { fields, .. },
} => ty::Kind::Struct(self.build_struct(fields)),
Expr::BinOp { .. } => {
todo!()
}
e => unimplemented!("{e:#?}"),
};
self.ci.file = prev_file;
self.tys.syms.insert(SymKey { ident, file }, sym.compress());
sym
}
fn ty_display(&self, ty: ty::Id) -> ty::Display {
ty::Display::new(&self.tys, &self.files, ty)
}
#[must_use]
#[track_caller]
fn assert_ty(&self, pos: Pos, ty: ty::Id, expected: ty::Id, preserve_expected: bool) -> ty::Id {
if let Some(res) = ty.try_upcast(expected)
&& (!preserve_expected || res == expected)
{
res
} else {
let ty = self.ty_display(ty);
let expected = self.ty_display(expected);
self.report(pos, format_args!("expected {expected}, got {ty}"));
}
}
fn report_log(&self, pos: Pos, msg: impl std::fmt::Display) {
let str = &self.cfile().file;
let (line, mut col) = lexer::line_col(str.as_bytes(), pos);
println!("{}:{}:{}: {}", self.cfile().path, line, col, msg);
let line = &str[str[..pos as usize].rfind('\n').map_or(0, |i| i + 1)
..str[pos as usize..].find('\n').unwrap_or(str.len()) + pos as usize];
col += line.matches('\t').count() * 3;
println!("{}", line.replace("\t", " "));
println!("{}^", " ".repeat(col - 1))
}
#[track_caller]
fn report(&self, pos: Pos, msg: impl std::fmt::Display) -> ! {
self.report_log(pos, msg);
unreachable!();
}
#[track_caller]
fn report_unhandled_ast(&self, ast: &Expr, hint: &str) -> ! {
self.report(
ast.pos(),
format_args!(
"compiler does not (yet) know how to handle ({hint}):\n\
{ast:}\n\
info for weak people:\n\
{ast:#?}"
),
)
}
fn cfile(&self) -> &parser::Ast {
&self.files[self.ci.file as usize]
}
fn pack_args(&mut self, pos: Pos, arg_base: usize) -> ty::Tuple {
let needle = &self.tys.args[arg_base..];
if needle.is_empty() {
return ty::Tuple::empty();
}
let len = needle.len();
// FIXME: maybe later when this becomes a bottleneck we use more
// efficient search (SIMD?, indexing?)
let sp = self.tys.args.windows(needle.len()).position(|val| val == needle).unwrap();
self.tys.args.truncate((sp + needle.len()).max(arg_base));
ty::Tuple::new(sp, len)
.unwrap_or_else(|| self.report(pos, "amount of arguments not supported"))
}
fn emit_pass(&mut self, src: Nid, dst: Nid) {
if self.ci.nodes[src].color == self.ci.nodes[dst].color {
return;
}
self.emit_pass_low(node_loc!(self, src), dst);
}
fn emit_pass_low(&mut self, src: Loc, dst: Nid) {
let loc = &mut node_loc!(self, dst);
if src != *loc {
if *loc == Loc::default() {
let reg = self.ci.regs.allocate(0);
*loc = Loc { reg };
}
let inst = instrs::cp(loc.reg, src.reg);
self.ci.emit(inst);
}
}
#[must_use]
fn lazy_init(&mut self, expr: Nid) -> bool {
let loc = &mut node_loc!(self, expr);
if *loc == Loc::default() {
let reg = self.ci.regs.allocate(0);
*loc = Loc { reg };
return true;
}
false
}
}
#[derive(Default)]
pub struct LoggedMem {
pub mem: hbvm::mem::HostMemory,
}
impl hbvm::mem::Memory for LoggedMem {
unsafe fn load(
&mut self,
addr: hbvm::mem::Address,
target: *mut u8,
count: usize,
) -> Result<(), hbvm::mem::LoadError> {
log::trc!(
"load: {:x} {:?}",
addr.get(),
core::slice::from_raw_parts(addr.get() as *const u8, count)
.iter()
.rev()
.map(|&b| format!("{b:02x}"))
.collect::<String>()
);
self.mem.load(addr, target, count)
}
unsafe fn store(
&mut self,
addr: hbvm::mem::Address,
source: *const u8,
count: usize,
) -> Result<(), hbvm::mem::StoreError> {
log::trc!(
"store: {:x} {:?}",
addr.get(),
core::slice::from_raw_parts(source, count)
.iter()
.rev()
.map(|&b| format!("{b:02x}"))
.collect::<String>()
);
self.mem.store(addr, source, count)
}
unsafe fn prog_read<T: Copy>(&mut self, addr: hbvm::mem::Address) -> T {
log::trc!(
"read-typed: {:x} {} {:?}",
addr.get(),
std::any::type_name::<T>(),
if core::mem::size_of::<T>() == 1
&& let Some(nm) =
instrs::NAMES.get(std::ptr::read(addr.get() as *const u8) as usize)
{
nm.to_string()
} else {
core::slice::from_raw_parts(addr.get() as *const u8, core::mem::size_of::<T>())
.iter()
.map(|&b| format!("{:02x}", b))
.collect::<String>()
}
);
self.mem.prog_read(addr)
}
}
#[cfg(test)]
mod tests {
use {
crate::{
parser::{self, FileId},
son::LoggedMem,
},
std::io,
};
const README: &str = include_str!("../README.md");
fn generate(ident: &'static str, input: &'static str, output: &mut String) {
fn find_block(mut input: &'static str, test_name: &'static str) -> &'static str {
const CASE_PREFIX: &str = "#### ";
const CASE_SUFFIX: &str = "\n```hb";
loop {
let Some(pos) = input.find(CASE_PREFIX) else {
unreachable!("test {test_name} not found");
};
input = unsafe { input.get_unchecked(pos + CASE_PREFIX.len()..) };
if !input.starts_with(test_name) {
continue;
}
input = unsafe { input.get_unchecked(test_name.len()..) };
if !input.starts_with(CASE_SUFFIX) {
continue;
}
input = unsafe { input.get_unchecked(CASE_SUFFIX.len()..) };
let end = input.find("```").unwrap_or(input.len());
break unsafe { input.get_unchecked(..end) };
}
}
let input = find_block(input, ident);
let mut module_map = Vec::new();
let mut last_start = 0;
let mut last_module_name = "test";
for (i, m) in input.match_indices("// in module: ") {
parser::test::format(ident, input[last_start..i].trim());
module_map.push((last_module_name, &input[last_start..i]));
let (module_name, _) = input[i + m.len()..].split_once('\n').unwrap();
last_module_name = module_name;
last_start = i + m.len() + module_name.len() + 1;
}
parser::test::format(ident, input[last_start..].trim());
module_map.push((last_module_name, input[last_start..].trim()));
let loader = |path: &str, _: &str| {
module_map
.iter()
.position(|&(name, _)| name == path)
.map(|i| i as FileId)
.ok_or(io::Error::from(io::ErrorKind::NotFound))
};
let mut codegen = super::Codegen {
files: module_map
.iter()
.map(|&(path, content)| parser::Ast::new(path, content.to_owned(), &loader))
.collect(),
..Default::default()
};
codegen.generate();
let mut out = Vec::new();
codegen.assemble(&mut out);
let mut buf = Vec::<u8>::new();
let err = codegen.disasm(&out, &mut buf);
output.push_str(String::from_utf8(buf).unwrap().as_str());
if let Err(e) = err {
writeln!(output, "!!! asm is invalid: {e}").unwrap();
return;
}
let mut stack = [0_u64; 128];
let mut vm = unsafe {
hbvm::Vm::<_, { 1024 * 10 }>::new(
LoggedMem::default(),
hbvm::mem::Address::new(out.as_ptr() as u64),
)
};
vm.write_reg(super::reg::STACK_PTR, unsafe { stack.as_mut_ptr().add(stack.len()) } as u64);
use std::fmt::Write;
let stat = loop {
match vm.run() {
Ok(hbvm::VmRunOk::End) => break Ok(()),
Ok(hbvm::VmRunOk::Ecall) => match vm.read_reg(2).0 {
1 => writeln!(output, "ev: Ecall").unwrap(), // compatibility with a test
69 => {
let [size, align] = [vm.read_reg(3).0 as usize, vm.read_reg(4).0 as usize];
let layout = std::alloc::Layout::from_size_align(size, align).unwrap();
let ptr = unsafe { std::alloc::alloc(layout) };
vm.write_reg(1, ptr as u64);
}
96 => {
let [ptr, size, align] = [
vm.read_reg(3).0 as usize,
vm.read_reg(4).0 as usize,
vm.read_reg(5).0 as usize,
];
let layout = std::alloc::Layout::from_size_align(size, align).unwrap();
unsafe { std::alloc::dealloc(ptr as *mut u8, layout) };
}
3 => vm.write_reg(1, 42),
unknown => unreachable!("unknown ecall: {unknown:?}"),
},
Ok(hbvm::VmRunOk::Timer) => {
writeln!(output, "timed out").unwrap();
break Ok(());
}
Ok(ev) => writeln!(output, "ev: {:?}", ev).unwrap(),
Err(e) => break Err(e),
}
};
writeln!(output, "code size: {}", out.len()).unwrap();
writeln!(output, "ret: {:?}", vm.read_reg(1).0).unwrap();
writeln!(output, "status: {:?}", stat).unwrap();
}
crate::run_tests! { generate:
arithmetic => README;
variables => README;
functions => README;
comments => README;
if_statements => README;
loops => README;
fb_driver => README;
//pointers => README;
//structs => README;
//different_types => README;
//struct_operators => README;
//directives => README;
//global_variables => README;
//generic_types => README;
//generic_functions => README;
//c_strings => README;
//struct_patterns => README;
//arrays => README;
//struct_return_from_module_function => README;
////comptime_pointers => README;
//sort_something_viredly => README;
hex_octal_binary_literals => README;
//comptime_min_reg_leak => README;
////structs_in_registers => README;
//comptime_function_from_another_file => README;
//inline => README;
//inline_test => README;
const_folding_with_arg => README;
// FIXME: contains redundant copies
branch_assignments => README;
}
}