holey-bytes/hblang
2024-09-04 18:48:25 +02:00
..
src updating tests and fixing bug 2024-09-04 18:48:25 +02:00
tests updating tests and fixing bug 2024-09-04 18:48:25 +02:00
text-prj fixed nasty wrong scope bug 2024-07-20 18:52:24 +02:00
build.rs adding more type checking 2024-09-04 16:54:34 +02:00
Cargo.toml removing deendence on macros with a simple build script 2024-05-15 14:36:38 +02:00
command-help.txt added example for struct patters 2024-07-08 11:00:35 +02:00
README.md updating tests and fixing bug 2024-09-04 18:48:25 +02:00

HERE SHALL THE DOCUMENTATION RESIDE

Enforced Political Views

  • worse is better
  • less is more
  • embrace unsafe {}
  • adhere macro_rules!
  • pessimization == death (put in std::pin::Pin and left with hungry crabs)
  • importing external dependencies == death (fn(dependencies) -> ExecutionStrategy)
  • above sell not be disputed, discussed, or questioned

What hblang is

Holey-Bytes-Language (hblang for short) (*.hb) is the only true language targeting hbvm byte code. hblang is low level, manually managed, and procedural. Its rumored to be better then writing hbasm and you should probably use it for complex applications.

What hblang isnt't

hblang knows what it isn't, because it knows what it is, hblang computes this by sub...

Examples

Examples are also used in tests. To add an example that runs during testing add:

#### <name>
```hb
<example>
```

and also:

<name> => README;

to the run_tests macro at the bottom of the src/codegen.rs.

Tour Examples

Following examples incrementally introduce language features and syntax.

main_fn

main := fn(): int {
	return 1;
}

arithmetic

main := fn(): int {
	return 10 - 20 / 2 + 4 * (2 + 2) - 4 * 4 + 1 << 0
}

functions

main := fn(): int {
	return add_one(10) + add_two(20)
}

add_two := fn(x: int): int {
	return x + 2
}

add_one := fn(x: int): int {
	return x + 1
}

comments

// commant is an item
main := fn(): int {
	// comment is a statement

	foo(/* comment is an exprression /* if you are crazy */ */)
	return 0
}

foo := fn(comment: void): void return /* comment evaluates to void */

// comments might be formatted in the future

if_statements

main := fn(): int {
	return fib(10)
}

fib := fn(x: int): int {
	if x <= 2 {
		return 1
	} else {
		return fib(x - 1) + fib(x - 2)
	}
}

variables

main := fn(): int {
	ඞ := 1
	b := 2
	ඞ += 1
	return ඞ - b
}

loops

main := fn(): int {
	return fib(10)
}

fib := fn(n: int): int {
	a := 0
	b := 1
	loop {
		if n == 0 break
		c := a + b
		a = b
		b = c
		n -= 1

		stack_reclamation_edge_case := 0

		continue
	}
	return a
}

pointers

main := fn(): int {
	a := 1
	b := &a
	modify(b)
	drop(a)
	stack_reclamation_edge_case := 0
	return *b - 2
}

modify := fn(a: ^int): void {
	*a = 2
	return
}

drop := fn(a: int): void {
	return
}

structs

Ty := struct {
	a: int,
	b: int,
}

Ty2 := struct {
	ty: Ty,
	c: int,
}

main := fn(): int {
	finst := Ty2.{ty: Ty.{a: 4, b: 1}, c: 3}
	inst := odher_pass(finst)
	if inst.c == 3 {
		return pass(&inst.ty)
	}
	return 0
}

pass := fn(t: ^Ty): int {
	.{a, b} := *t
	return a - b
}

odher_pass := fn(t: Ty2): Ty2 {
	return t
}

struct_operators

Point := struct {
	x: int,
	y: int,
}

Rect := struct {
	a: Point,
	b: Point,
}

main := fn(): int {
	a := Point.(1, 2)
	b := Point.(3, 4)

	d := Rect.(a + b, b - a)
	d2 := Rect.(Point.(0, 0) - b, a)
	d2 += d

	c := d2.a + d2.b
	return c.x + c.y
}

global_variables

global_var := 10

complex_global_var := fib(global_var) - 5

fib := fn(n: int): int {
	if 2 > n {
		return n
	}
	return fib(n - 1) + fib(n - 2)
}

main := fn(): int {
	return complex_global_var
}

note: values of global variables are evaluated at compile time

directives

foo := @use("foo.hb")

main := fn(): int {
	byte := @as(u8, 10)
	same_type_as_byte := @as(@TypeOf(byte), 30)
	wide_uint := @as(u32, 40)
	truncated_uint := @as(u8, @intcast(wide_uint))
	size_of_Type_in_bytes := @sizeof(foo.Type)
	align_of_Type_in_bytes := @alignof(foo.Type)
	hardcoded_pointer := @as(^u8, @bitcast(10))
	ecall_that_returns_int := @eca(int, 1, foo.Type.(10, 20), 5, 6)
	return @inline(foo.foo)
}

// in module: foo.hb

Type := struct {
	brah: int,
	blah: int,
}

foo := fn(): int return 0
  • @use(<string>): imports a module based of string, the string is passed to a loader that can be customized, default loader uses following syntax:
    • ((rel:|)(<path>)|git:<git-addr>:<path>): rel: and '' prefixes both mean module is located at path relavive to the current file, git: takes a git url without https:// passed as git-addr, path then refers to file within the repository
  • @TypeOf(<expr>): results into literal type of whatever the type of <expr> is, <expr> is not included in final binary
  • @as(<ty>, <expr>): hint to the compiler that @TypeOf(<expr>) == <ty>
  • @intcast(<expr>): needs to be used when conversion of @TypeOf(<expr>) would loose precision (widening of integers is implicit)
  • @sizeof(<ty>), @alignof(<ty>): I think explaining this would insult your intelligence
  • @bitcast(<expr>): tell compiler to assume @TypeOf(<expr>) is whatever is inferred, so long as size and alignment did not change
  • @eca(<ty>, ...<expr>): invoke eca instruction, where <ty> is the type this will return and <expr>... are arguments passed to the call
  • @inline(<func>, ...<args>): equivalent to <func>(...<args>) but function is guaranteed to inline, compiler will otherwise never inline

c_strings

str_len := fn(str: ^u8): int {
	len := 0
	loop if *str == 0 break else {
		len += 1
		str += 1
	}
	return len
}

main := fn(): int {
	// when string ends with '\0' its a C string and thus type is '^u8'
	some_str := "abඞ\n\r\t\{35}\{36373839}\0"
	len := str_len(some_str)
	some_other_str := "fff\0"
	lep := str_len(some_other_str)
	return lep + len
}

struct_patterns

.{fib, fib_iter, Fiber} := @use("fibs.hb")

main := fn(): int {
	.{a, b} := Fiber.{a: 10, b: 10}
	return fib(a) - fib_iter(b)
}

// in module: fibs.hb

Fiber := struct {a: u8, b: u8}

fib := fn(n: int): int if n < 2 {
	return n
} else {
	return fib(n - 1) + fib(n - 2)
}

fib_iter := fn(n: int): int {
	a := 0
	b := 1
	loop if n == 0 break else {
		c := a + b
		a = b
		b = c
		n -= 1
	}
	return a
}

arrays

main := fn(): int {
	arr := [int].(1, 2, 4)
	return pass(&arr)
}

pass := fn(arr: ^[int; 3]): int {
	return arr[0] + arr[1] + arr[arr[1]]
}

inline

main := fn(): int {
	return @inline(foo, 1, 2, 3) - 6
}

foo := fn(a: int, b: int, c: int): int {
	return a + b + c
}

Incomplete Examples

comptime_pointers

main := fn(): int {
	$integer := 7
	modify(&integer)
	return integer
}

modify := fn($num: ^int): void {
	$: *num = 0
}

generic_types

MALLOC_SYS_CALL := 69
FREE_SYS_CALL := 96

malloc := fn(size: uint, align: uint): ^void return @eca(^void, MALLOC_SYS_CALL, size, align)
free := fn(ptr: ^void, size: uint, align: uint): void return @eca(void, FREE_SYS_CALL, ptr, size, align)

Vec := fn($Elem: type): type {
	return struct {
		data: ^Elem,
		len: uint,
		cap: uint,
	}
}

new := fn($Elem: type): Vec(Elem) return Vec(Elem).{data: @bitcast(0), len: 0, cap: 0}

deinit := fn($Elem: type, vec: ^Vec(Elem)): void {
	free(@bitcast(vec.data), vec.cap * @sizeof(Elem), @alignof(Elem));
	*vec = new(Elem)
	return
}

push := fn($Elem: type, vec: ^Vec(Elem), value: Elem): ^Elem {
	if vec.len == vec.cap {
		if vec.cap == 0 {
			vec.cap = 1
		} else {
			vec.cap *= 2
		}

		new_alloc := @as(^Elem, @bitcast(malloc(vec.cap * @sizeof(Elem), @alignof(Elem))))
		if new_alloc == 0 return 0

		src_cursor := vec.data
		dst_cursor := new_alloc
		end := vec.data + vec.len

		loop if src_cursor == end break else {
			*dst_cursor = *src_cursor
			src_cursor += 1
			dst_cursor += 1
		}

		if vec.len != 0 {
			free(@bitcast(vec.data), vec.len * @sizeof(Elem), @alignof(Elem))
		}
		vec.data = new_alloc
	}

	slot := vec.data + vec.len;
	*slot = value
	vec.len += 1
	return slot
}

main := fn(): int {
	vec := new(int)
	push(int, &vec, 69)
	res := *vec.data
	deinit(int, &vec)
	return res
}

generic_functions

add := fn($T: type, a: T, b: T): T return a + b

main := fn(): int {
	return add(u32, 2, 2) - add(int, 1, 3)
}

fb_driver

arm_fb_ptr := fn(): int return 100
x86_fb_ptr := fn(): int return 100

check_platform := fn(): int {
	return x86_fb_ptr()
}

set_pixel := fn(x: int, y: int, width: int): int {
	pix_offset := y * width + x
	return 0
}

main := fn(): int {
	fb_ptr := check_platform()
	width := 100
	height := 30
	x := 0
	y := 0

	loop {
		if x <= height + 1 {
			set_pixel(x, y, width)
			x += 1
		} else {
			set_pixel(x, y, width)
			x = 0
			y += 1
		}
		if y == width {
			break
		}
	}
	return 0
}

Purely Testing Examples

comptime_min_reg_leak

a := @use("math.hb").min(100, 50)

main := fn(): int {
	return a
}

// in module: math.hb

SIZEOF_INT := 32
SHIFT := SIZEOF_INT - 1
min := fn(a: int, b: int): int {
	c := a - b
	return b + (c & c >> SHIFT)
}

different_types

Color := struct {
	r: u8,
	g: u8,
	b: u8,
	a: u8,
}

Point := struct {
	x: u32,
	y: u32,
}

Pixel := struct {
	color: Color,
	point: Point,
}

main := fn(): int {
	pixel := Pixel.{
		color: Color.{
			r: 255,
			g: 0,
			b: 0,
			a: 255,
		},
		point: Point.{
			x: 0,
			y: 2,
		},
	}

	soupan := 1
	if *(&pixel.point.x + soupan) != 2 {
		return 0
	}

	if *(&pixel.point.y - 1) != 0 {
		return 64
	}

	return pixel.point.x + pixel.point.y + pixel.color.r
		+ pixel.color.g + pixel.color.b + pixel.color.a
}

struct_return_from_module_function

bar := @use("bar.hb")

main := fn(): int {
	return 7 - bar.foo().x - bar.foo().y - bar.foo().z
}

// in module: bar.hb


foo := fn(): Foo {
	return .{x: 3, y: 2, z: 2}
}

Foo := struct {x: int, y: u32, z: u32}

sort_something_viredly

main := fn(): int {
	foo := sqrt
	return 0
}

sqrt := fn(x: int): int {
	temp := 0
	g := 0
	b := 32768
	bshift := 15
	loop if b == 0 break else {
		bshift -= 1
		temp = b + (g << 1)
		temp <<= bshift
		if x >= temp {
			g += b
			x -= temp
		}
		b >>= 1
	}
	return g
}

hex_octal_binary_literals

main := fn(): int {
	hex := 0xFF
	decimal := 255
	octal := 0o377
	binary := 0b11111111

	if hex == decimal & octal == decimal & binary == decimal {
		return 0
	}
	return 1
}

structs_in_registers

ColorBGRA := struct {b: u8, g: u8, r: u8, a: u8}
MAGENTA := ColorBGRA.{b: 205, g: 0, r: 205, a: 255}

main := fn(): int {
	color := MAGENTA
	return color.r
}

comptime_function_from_another_file

stn := @use("stn.hb")

CONST_A := 100
CONST_B := 50
a := stn.math.min(CONST_A, CONST_B)

main := fn(): int {
	return a
}

// in module: stn.hb
math := @use("math.hb")

// in module: math.hb
SIZEOF_INT := 32
SHIFT := SIZEOF_INT - 1
min := fn(a: int, b: int): int {
	c := a - b
	return b + (c & c >> SHIFT)
}

Just Testing Optimizations

const_folding_with_arg

main := fn(arg: int): int {
	// reduces to 0
	return arg + 0 - arg * 1 + arg + 1 + arg + 2 + arg + 3 - arg * 3 - 6
}

inline_test

Point := struct {x: int, y: int}
Buffer := struct {}
Transform := Point
ColorBGRA := Point

line := fn(buffer: Buffer, p0: Point, p1: Point, color: ColorBGRA, thickness: int): void {
	if true {
		if p0.x > p1.x {
			@inline(line_low, buffer, p1, p0, color)
		} else {
			@inline(line_low, buffer, p0, p1, color)
		}
	} else {
		if p0.y > p1.y {
			@inline(line_high, buffer, p1, p0, color)
		} else {
			@inline(line_high, buffer, p0, p1, color)
		}
	}
	return
}

line_low := fn(buffer: Buffer, p0: Point, p1: Point, color: ColorBGRA): void {
	return
}

line_high := fn(buffer: Buffer, p0: Point, p1: Point, color: ColorBGRA): void {
	return
}

screenidx := @use("screen.hb").screenidx

rect_line := fn(buffer: Buffer, pos: Point, tr: Transform, color: ColorBGRA, thickness: int): void {
	t := 0
	y := 0
	x := 0
	loop if t == thickness break else {
		y = pos.y
		x = pos.x
		loop if y == pos.y + tr.x break else {
			a := 1 + @inline(screenidx, 10)
			a = 1 + @inline(screenidx, 2)
			y += 1
		}
		t += 1
	}
	return
}

random := @use("random.hb")

example := fn(): void {
	loop {
		random_x := @inline(random.integer, 0, 1024)
		random_y := random.integer(0, 768)
		a := @inline(screenidx, random_x)
		break
	}
	return
}

main := fn(): int {
	line(.(), .(0, 0), .(0, 0), .(0, 0), 10)
	rect_line(.(), .(0, 0), .(0, 0), .(0, 0), 10)
	example()
	return 0
}

// in module: screen.hb

screenidx := fn(orange: int): int {
	return orange
}

// in module: random.hb

integer := fn(min: int, max: int): int {
	rng := @eca(int, 3, 4)

	if min != 0 | max != 0 {
		return rng % (max - min + 1) + min
	}
	return rng
}

some_generic_code

some_func := fn($Elem: type): void {
	return
}

main := fn(): void {
	some_func(u8)
	return
}