holey-bytes/lang/src/lib.rs
2024-11-24 16:43:45 +01:00

1577 lines
45 KiB
Rust

#![feature(
iter_array_chunks,
assert_matches,
let_chains,
if_let_guard,
macro_metavar_expr,
anonymous_lifetime_in_impl_trait,
core_intrinsics,
never_type,
unwrap_infallible,
slice_partition_dedup,
portable_simd,
iter_collect_into,
ptr_metadata,
slice_ptr_get,
slice_take,
map_try_insert,
extract_if,
ptr_internals,
iter_intersperse,
str_from_raw_parts,
ptr_sub_ptr,
slice_from_ptr_range,
iter_next_chunk,
pointer_is_aligned_to,
maybe_uninit_fill
)]
#![feature(array_chunks)]
#![warn(clippy::dbg_macro)]
#![expect(internal_features)]
#![no_std]
#[cfg(feature = "std")]
pub use fs::*;
pub use utils::Ent;
use {
self::{
parser::{CommentOr, Expr, ExprRef, Pos},
ty::{ArrayLen, Builtin, Module},
utils::EntVec,
},
alloc::{string::String, vec::Vec},
core::{cell::Cell, ops::Range},
hashbrown::hash_map,
};
#[macro_use]
extern crate alloc;
#[cfg(any(feature = "std", test))]
extern crate std;
#[cfg(test)]
const README: &str = include_str!("../README.md");
#[macro_export]
macro_rules! run_tests {
($runner:path: $($name:ident;)*) => {$(
#[test]
fn $name() {
$crate::run_test(core::any::type_name_of_val(&$name), stringify!($name), $crate::README, $runner);
}
)*};
}
pub mod fmt;
#[cfg(any(feature = "std", test))]
pub mod fs;
pub mod fuzz;
pub mod lexer;
pub mod parser;
pub mod son;
mod utils;
mod debug {
pub fn panicking() -> bool {
#[cfg(feature = "std")]
{
std::thread::panicking()
}
#[cfg(not(feature = "std"))]
{
false
}
}
#[cfg(all(debug_assertions, feature = "std"))]
pub type Trace = std::rc::Rc<std::backtrace::Backtrace>;
#[cfg(not(all(debug_assertions, feature = "std")))]
pub type Trace = ();
pub fn trace() -> Trace {
#[cfg(all(debug_assertions, feature = "std"))]
{
std::rc::Rc::new(std::backtrace::Backtrace::capture())
}
#[cfg(not(all(debug_assertions, feature = "std")))]
{}
}
}
pub mod reg {
pub const STACK_PTR: Reg = 254;
pub const ZERO: Reg = 0;
pub const RET: Reg = 1;
pub const RET_ADDR: Reg = 31;
pub type Reg = u8;
}
mod ctx_map {
use core::hash::BuildHasher;
pub type Hash = u64;
pub type HashBuilder = core::hash::BuildHasherDefault<IdentityHasher>;
#[derive(Default)]
pub struct IdentityHasher(u64);
impl core::hash::Hasher for IdentityHasher {
fn finish(&self) -> u64 {
self.0
}
fn write(&mut self, _: &[u8]) {
unimplemented!()
}
fn write_u64(&mut self, i: u64) {
self.0 = i;
}
}
#[derive(Clone)]
pub struct Key<T> {
pub value: T,
pub hash: Hash,
}
impl<T> core::hash::Hash for Key<T> {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
state.write_u64(self.hash);
}
}
pub trait CtxEntry {
type Ctx: ?Sized;
type Key<'a>: Eq + core::hash::Hash;
fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a>;
}
#[derive(Clone)]
pub struct CtxMap<T> {
inner: hashbrown::HashMap<Key<T>, (), HashBuilder>,
}
impl<T> Default for CtxMap<T> {
fn default() -> Self {
Self { inner: Default::default() }
}
}
impl<T: CtxEntry> CtxMap<T> {
pub fn entry<'a, 'b>(
&'a mut self,
key: T::Key<'b>,
ctx: &'b T::Ctx,
) -> (hashbrown::hash_map::RawEntryMut<'a, Key<T>, (), HashBuilder>, Hash) {
let hash = crate::FnvBuildHasher::default().hash_one(&key);
(self.inner.raw_entry_mut().from_hash(hash, |k| k.value.key(ctx) == key), hash)
}
pub fn get<'a>(&self, key: T::Key<'a>, ctx: &'a T::Ctx) -> Option<&T> {
let hash = crate::FnvBuildHasher::default().hash_one(&key);
self.inner
.raw_entry()
.from_hash(hash, |k| k.value.key(ctx) == key)
.map(|(k, _)| &k.value)
}
pub fn clear(&mut self) {
self.inner.clear();
}
pub fn remove(&mut self, value: &T, ctx: &T::Ctx) -> Option<T> {
let (entry, _) = self.entry(value.key(ctx), ctx);
match entry {
hashbrown::hash_map::RawEntryMut::Occupied(o) => Some(o.remove_entry().0.value),
hashbrown::hash_map::RawEntryMut::Vacant(_) => None,
}
}
pub fn insert<'a>(&mut self, key: T::Key<'a>, value: T, ctx: &'a T::Ctx) {
let (entry, hash) = self.entry(key, ctx);
match entry {
hashbrown::hash_map::RawEntryMut::Occupied(_) => unreachable!(),
hashbrown::hash_map::RawEntryMut::Vacant(v) => {
_ = v.insert(Key { hash, value }, ())
}
}
}
pub fn get_or_insert<'a>(
&mut self,
key: T::Key<'a>,
ctx: &'a mut T::Ctx,
with: impl FnOnce(&'a mut T::Ctx) -> T,
) -> &mut T {
let (entry, hash) = self.entry(key, unsafe { &mut *(&mut *ctx as *mut _) });
match entry {
hashbrown::hash_map::RawEntryMut::Occupied(o) => &mut o.into_key_value().0.value,
hashbrown::hash_map::RawEntryMut::Vacant(v) => {
&mut v.insert(Key { hash, value: with(ctx) }, ()).0.value
}
}
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default, Debug)]
pub struct Ident(u32);
impl Ident {
pub const INVALID: Self = Self(u32::MAX);
const LEN_BITS: u32 = 6;
pub fn len(self) -> u32 {
self.0 & ((1 << Self::LEN_BITS) - 1)
}
pub fn is_empty(self) -> bool {
self.len() == 0
}
pub fn is_null(self) -> bool {
(self.0 >> Self::LEN_BITS) == 0
}
pub fn pos(self) -> u32 {
(self.0 >> Self::LEN_BITS).saturating_sub(1)
}
pub fn new(pos: u32, len: u32) -> Option<Self> {
(len < (1 << Self::LEN_BITS)).then_some(((pos + 1) << Self::LEN_BITS) | len).map(Self)
}
pub fn range(self) -> core::ops::Range<usize> {
let (len, pos) = (self.len() as usize, self.pos() as usize);
pos..pos + len
}
fn builtin(builtin: Builtin) -> Ident {
Self(builtin.index() as _)
}
}
pub mod ty {
use {
crate::{
lexer::TokenKind,
parser::{self, Pos},
utils::Ent,
Ident, Size, Types,
},
core::{num::NonZeroU32, ops::Range},
};
pub type ArrayLen = u32;
impl Func {
pub const ECA: Func = Func(u32::MAX);
pub const MAIN: Func = Func(u32::MIN);
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Default, PartialOrd, Ord)]
pub struct Tuple(pub u32);
impl Tuple {
const LEN_BITS: u32 = 5;
const LEN_MASK: usize = Self::MAX_LEN - 1;
const MAX_LEN: usize = 1 << Self::LEN_BITS;
pub fn new(pos: usize, len: usize) -> Option<Self> {
if len >= Self::MAX_LEN {
return None;
}
Some(Self((pos << Self::LEN_BITS | len) as u32))
}
pub fn range(self) -> Range<usize> {
let start = self.0 as usize >> Self::LEN_BITS;
start..start + self.len()
}
pub fn len(self) -> usize {
self.0 as usize & Self::LEN_MASK
}
pub fn is_empty(self) -> bool {
self.len() == 0
}
pub fn empty() -> Self {
Self(0)
}
pub fn args(self) -> ArgIter {
ArgIter(self.range())
}
}
pub struct ArgIter(Range<usize>);
pub enum Arg {
Type(Id),
Value(Id),
}
impl ArgIter {
pub(crate) fn next(&mut self, tys: &Types) -> Option<Arg> {
let ty = tys.ins.args[self.0.next()?];
if ty == Id::TYPE {
return Some(Arg::Type(tys.ins.args[self.0.next().unwrap()]));
}
Some(Arg::Value(ty))
}
pub(crate) fn next_value(&mut self, tys: &Types) -> Option<Id> {
loop {
match self.next(tys)? {
Arg::Type(_) => continue,
Arg::Value(id) => break Some(id),
}
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)]
pub struct Id(NonZeroU32);
impl From<Id> for i64 {
fn from(value: Id) -> Self {
value.0.get() as _
}
}
impl crate::ctx_map::CtxEntry for Id {
type Ctx = crate::TypeIns;
type Key<'a> = crate::SymKey<'a>;
fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> {
match self.expand() {
Kind::Struct(s) => {
let st = &ctx.structs[s];
debug_assert_ne!(st.pos, Pos::MAX);
crate::SymKey::Struct(st.file, st.pos, st.captures)
}
Kind::Enum(e) => {
let en = &ctx.enums[e];
debug_assert_ne!(en.pos, Pos::MAX);
crate::SymKey::Enum(en.file, en.pos)
}
Kind::Ptr(p) => crate::SymKey::Pointer(&ctx.ptrs[p]),
Kind::Opt(p) => crate::SymKey::Optional(&ctx.opts[p]),
Kind::Func(f) => {
let fc = &ctx.funcs[f];
if let Some(base) = fc.base {
// TODO: merge base and sig
crate::SymKey::FuncInst(base, fc.sig.unwrap().args)
} else {
crate::SymKey::Decl(fc.file, fc.name)
}
}
Kind::Global(g) => {
let gb = &ctx.globals[g];
crate::SymKey::Decl(gb.file, gb.name)
}
Kind::Slice(s) => crate::SymKey::Array(&ctx.slices[s]),
Kind::Module(_) | Kind::Builtin(_) => {
crate::SymKey::Decl(Module::default(), Ident::INVALID)
}
Kind::Const(c) => crate::SymKey::Constant(&ctx.consts[c]),
}
}
}
impl Default for Id {
fn default() -> Self {
Self(unsafe { NonZeroU32::new_unchecked(UNDECLARED) })
}
}
impl Id {
pub const DINT: Self = Self::UINT;
pub fn bin_ret(self, op: TokenKind) -> Id {
if op.is_compatison() {
Self::BOOL
} else {
self
}
}
pub fn is_float(self) -> bool {
matches!(self.repr(), F32 | F64) || self.is_never()
}
pub fn is_signed(self) -> bool {
matches!(self.repr(), I8..=INT) || self.is_never()
}
pub fn is_unsigned(self) -> bool {
matches!(self.repr(), U8..=UINT) || self.is_never()
}
pub fn is_integer(self) -> bool {
matches!(self.repr(), U8..=INT) || self.is_never()
}
pub fn is_never(self) -> bool {
self == Self::NEVER
}
pub fn strip_pointer(self) -> Self {
match self.expand() {
Kind::Ptr(_) => Id::UINT,
_ => self,
}
}
pub fn is_pointer(self) -> bool {
matches!(self.expand(), Kind::Ptr(_)) || self.is_never()
}
pub fn is_optional(self) -> bool {
matches!(self.expand(), Kind::Opt(_)) || self.is_never()
}
pub fn try_upcast(self, ob: Self) -> Option<Self> {
self.try_upcast_low(ob, false)
}
pub fn try_upcast_low(self, ob: Self, coerce_pointer: bool) -> Option<Self> {
let (oa, ob) = (Self(self.0.min(ob.0)), Self(self.0.max(ob.0)));
let (a, b) = (oa.strip_pointer(), ob.strip_pointer());
Some(match () {
_ if oa == Id::NEVER => ob,
_ if ob == Id::NEVER => oa,
_ if oa == ob => oa,
_ if ob.is_optional() => ob,
_ if oa.is_pointer() && ob.is_pointer() => return None,
_ if a.is_signed() && b.is_signed() || a.is_unsigned() && b.is_unsigned() => ob,
_ if a.is_unsigned() && b.is_signed() && a.repr() - U8 < b.repr() - I8 => ob,
_ if a.is_unsigned() && b.is_signed() && a.repr() - U8 > b.repr() - I8 => oa,
_ if oa.is_integer() && ob.is_pointer() && coerce_pointer => ob,
_ => return None,
})
}
pub fn expand(self) -> Kind {
Kind::from_ty(self)
}
pub const fn repr(self) -> u32 {
self.0.get()
}
pub(crate) fn simple_size(&self) -> Option<Size> {
Some(match self.expand() {
Kind::Ptr(_) => 8,
Kind::Builtin(Builtin(VOID)) => 0,
Kind::Builtin(Builtin(NEVER)) => 0,
Kind::Builtin(Builtin(INT | UINT | F64)) => 8,
Kind::Builtin(Builtin(I32 | U32 | TYPE | F32)) => 4,
Kind::Builtin(Builtin(I16 | U16)) => 2,
Kind::Builtin(Builtin(I8 | U8 | BOOL)) => 1,
_ => return None,
})
}
pub(crate) fn extend(self) -> Self {
if self.is_signed() {
Self::INT
} else if self.is_pointer() {
self
} else {
Self::UINT
}
}
pub(crate) fn loc(&self, tys: &Types) -> Loc {
match self.expand() {
Kind::Opt(o)
if let ty = tys.ins.opts[o].base
&& ty.loc(tys) == Loc::Reg
&& (ty.is_pointer() || tys.size_of(ty) < 8) =>
{
Loc::Reg
}
Kind::Ptr(_) | Kind::Enum(_) | Kind::Builtin(_) => Loc::Reg,
Kind::Struct(_) if tys.size_of(*self) == 0 => Loc::Reg,
Kind::Struct(_) | Kind::Slice(_) | Kind::Opt(_) => Loc::Stack,
c @ (Kind::Func(_) | Kind::Global(_) | Kind::Module(_) | Kind::Const(_)) => {
unreachable!("{c:?}")
}
}
}
pub(crate) fn has_pointers(&self, tys: &Types) -> bool {
match self.expand() {
Kind::Struct(s) => tys.struct_fields(s).iter().any(|f| f.ty.has_pointers(tys)),
Kind::Ptr(_) => true,
Kind::Slice(s) => tys.ins.slices[s].len == ArrayLen::MAX,
_ => false,
}
}
}
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum Loc {
Reg,
Stack,
}
impl From<u64> for Id {
fn from(id: u64) -> Self {
Self(unsafe { NonZeroU32::new_unchecked(id as _) })
}
}
const fn array_to_lower_case<const N: usize>(array: [u8; N]) -> [u8; N] {
let mut result = [0; N];
let mut i = 0;
while i < N {
result[i] = array[i].to_ascii_lowercase();
i += 1;
}
result
}
// const string to lower case
macro_rules! builtin_type {
($($name:ident;)*) => {
$(const $name: u32 = ${index(0)} + 1;)*
mod __lc_names {
use super::*;
$(pub const $name: &str = unsafe {
const LCL: &[u8] = unsafe {
&array_to_lower_case(
*(stringify!($name).as_ptr() as *const [u8; stringify!($name).len()])
)
};
core::str::from_utf8_unchecked(LCL)
};)*
}
impl Builtin {
$(pub const $name: Self = Builtin($name);)*
}
impl Id {
$(pub const $name: Self = Kind::Builtin(Builtin($name)).compress();)*
}
impl Kind {
$(pub const $name: Self = Kind::Builtin(Builtin($name));)*
}
pub fn from_str(name: &str) -> Option<Builtin> {
match name {
$(__lc_names::$name => Some(Builtin($name)),)*
_ => None,
}
}
pub fn to_str(ty: Builtin) -> &'static str {
match ty.0 {
$($name => __lc_names::$name,)*
v => unreachable!("invalid type: {}", v),
}
}
};
}
builtin_type! {
UNDECLARED;
LEFT_UNREACHABLE;
RIGHT_UNREACHABLE;
NEVER;
VOID;
TYPE;
BOOL;
U8;
U16;
U32;
UINT;
I8;
I16;
I32;
INT;
F32;
F64;
}
macro_rules! type_kind {
($(#[$meta:meta])* $vis:vis enum $name:ident {$( $variant:ident, )*}) => {
crate::utils::decl_ent! {
$(pub struct $variant(u32);)*
}
$(#[$meta])*
$vis enum $name {
$($variant($variant),)*
}
impl $name {
const FLAG_BITS: u32 = (${count($variant)} as u32).next_power_of_two().ilog2();
const FLAG_OFFSET: u32 = core::mem::size_of::<Id>() as u32 * 8 - Self::FLAG_BITS;
const INDEX_MASK: u32 = (1 << (32 - Self::FLAG_BITS)) - 1;
$vis fn from_ty(ty: Id) -> Self {
let (flag, index) = (ty.repr() >> Self::FLAG_OFFSET, ty.repr() & Self::INDEX_MASK);
match flag {
$(${index(0)} => Self::$variant($variant(index)),)*
i => unreachable!("{i}"),
}
}
$vis const fn compress(self) -> Id {
let (index, flag) = match self {
$(Self::$variant(index) => (index.0, ${index(0)}),)*
};
Id(unsafe { NonZeroU32::new_unchecked((flag << Self::FLAG_OFFSET) | index) })
}
}
$(
impl From<$variant> for $name {
fn from(value: $variant) -> Self {
Self::$variant(value)
}
}
impl From<$variant> for i64 {
fn from(value: $variant) -> Self {
Id::from(value).into()
}
}
impl From<$variant> for Id {
fn from(value: $variant) -> Self {
$name::$variant(value).compress()
}
}
)*
};
}
type_kind! {
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Kind {
Builtin,
Struct,
Enum,
Ptr,
Slice,
Opt,
Func,
Global,
Module,
Const,
}
}
impl Module {
pub const MAIN: Self = Self(0);
}
impl Default for Module {
fn default() -> Self {
Self(u32::MAX)
}
}
impl TryFrom<Ident> for Builtin {
type Error = ();
fn try_from(value: Ident) -> Result<Self, Self::Error> {
if value.is_null() {
Ok(Self(value.len()))
} else {
Err(())
}
}
}
impl Default for Kind {
fn default() -> Self {
Id::UNDECLARED.expand()
}
}
pub struct Display<'a> {
tys: &'a super::Types,
files: &'a [parser::Ast],
ty: Id,
}
impl<'a> Display<'a> {
pub fn new(tys: &'a super::Types, files: &'a [parser::Ast], ty: Id) -> Self {
Self { tys, files, ty }
}
pub fn rety(&self, ty: Id) -> Self {
Self::new(self.tys, self.files, ty)
}
}
impl core::fmt::Display for Display<'_> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
use Kind as TK;
match TK::from_ty(self.ty) {
TK::Module(idx) => {
f.write_str("@use(\"")?;
self.files[idx.index()].path.fmt(f)?;
f.write_str(")[")?;
idx.fmt(f)?;
f.write_str("]")
}
TK::Builtin(ty) => f.write_str(to_str(ty)),
TK::Opt(ty) => {
f.write_str("?")?;
self.rety(self.tys.ins.opts[ty].base).fmt(f)
}
TK::Ptr(ty) => {
f.write_str("^")?;
self.rety(self.tys.ins.ptrs[ty].base).fmt(f)
}
TK::Struct(idx) => {
let record = &self.tys.ins.structs[idx];
if record.name.is_null() {
f.write_str("[")?;
idx.fmt(f)?;
f.write_str("]{")?;
for (i, &super::StructField { name, ty }) in
self.tys.struct_fields(idx).iter().enumerate()
{
if i != 0 {
f.write_str(", ")?;
}
f.write_str(self.tys.names.ident_str(name))?;
f.write_str(": ")?;
self.rety(ty).fmt(f)?;
}
f.write_str("}")
} else {
let file = &self.files[record.file.index()];
f.write_str(file.ident_str(record.name))
}
}
TK::Enum(idx) => {
let enm = &self.tys.ins.enums[idx];
debug_assert!(!enm.name.is_null());
let file = &self.files[enm.file.index()];
f.write_str(file.ident_str(enm.name))
}
TK::Func(idx) => {
f.write_str("fn")?;
idx.fmt(f)
}
TK::Global(idx) => {
let global = &self.tys.ins.globals[idx];
let file = &self.files[global.file.index()];
f.write_str(file.ident_str(global.name))?;
f.write_str(" (global)")
}
TK::Slice(idx) => {
let array = self.tys.ins.slices[idx];
f.write_str("[")?;
self.rety(array.elem).fmt(f)?;
if array.len != ArrayLen::MAX {
f.write_str("; ")?;
array.len.fmt(f)?;
}
f.write_str("]")
}
TK::Const(idx) => {
let cnst = &self.tys.ins.consts[idx];
let file = &self.files[cnst.file.index()];
f.write_str(file.ident_str(cnst.name))?;
f.write_str(" (const)")
}
}
}
}
}
type Offset = u32;
type Size = u32;
#[derive(PartialEq, Eq, Hash, Clone, Copy)]
pub enum SymKey<'a> {
Pointer(&'a Ptr),
Optional(&'a Opt),
Struct(Module, Pos, ty::Tuple),
Enum(Module, Pos),
FuncInst(ty::Func, ty::Tuple),
Decl(Module, Ident),
Array(&'a Array),
Constant(&'a Const),
}
#[derive(Clone, Copy)]
pub struct Sig {
args: ty::Tuple,
ret: ty::Id,
}
#[derive(Default, Clone, Copy)]
struct Func {
file: Module,
parent: ty::Id,
name: Ident,
base: Option<ty::Func>,
expr: ExprRef,
sig: Option<Sig>,
is_inline: bool,
returns_type: bool,
comp_state: [CompState; 2],
}
#[derive(Default, PartialEq, Eq, Clone, Copy)]
enum CompState {
#[default]
Dead,
Queued(usize),
Compiled,
}
#[derive(Clone, Copy)]
struct TypedReloc {
target: ty::Id,
reloc: Reloc,
}
#[derive(Clone, Default)]
struct Global {
file: Module,
name: Ident,
ty: ty::Id,
data: Vec<u8>,
}
#[derive(PartialEq, Eq, Hash)]
pub struct Const {
ast: ExprRef,
name: Ident,
file: Module,
parent: ty::Id,
}
// TODO: make into bit struct (width: u2, sub_offset: u3, offset: u27)
#[derive(Clone, Copy, Debug)]
struct Reloc {
offset: Offset,
sub_offset: u8,
width: u8,
}
impl Reloc {
fn new(offset: usize, sub_offset: u8, width: u8) -> Self {
Self { offset: offset as u32, sub_offset, width }
}
fn apply_jump(mut self, code: &mut [u8], to: u32, from: u32) -> i64 {
self.offset += from;
let offset = to as i64 - self.offset as i64;
self.write_offset(code, offset);
offset
}
fn write_offset(&self, code: &mut [u8], offset: i64) {
let bytes = offset.to_ne_bytes();
let slice = &mut code[self.offset as usize + self.sub_offset as usize..];
slice[..self.width as usize].copy_from_slice(&bytes[..self.width as usize]);
}
}
struct EnumField {
name: Ident,
}
#[derive(Default)]
struct Enum {
name: Ident,
pos: Pos,
file: Module,
field_start: u32,
}
struct StructField {
name: Ident,
ty: ty::Id,
}
#[derive(Default)]
struct Struct {
name: Ident,
pos: Pos,
file: Module,
size: Cell<Size>,
align: Cell<u8>,
captures: ty::Tuple,
explicit_alignment: Option<u8>,
field_start: u32,
ast: ExprRef,
}
#[derive(PartialEq, Eq, Hash, Clone, Copy)]
pub struct Opt {
base: ty::Id,
}
#[derive(PartialEq, Eq, Hash, Clone, Copy)]
pub struct Ptr {
base: ty::Id,
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct Array {
elem: ty::Id,
len: ArrayLen,
}
impl Array {
fn len(&self) -> Option<usize> {
(self.len != ArrayLen::MAX).then_some(self.len as usize)
}
}
#[derive(Clone, Copy)]
enum PLoc {
Reg(u8, u16),
WideReg(u8, u16),
Ref(u8, u32),
}
struct ParamAlloc(Range<u8>);
impl ParamAlloc {
pub fn next(&mut self, ty: ty::Id, tys: &Types) -> Option<PLoc> {
Some(match tys.size_of(ty) {
0 => return None,
size @ 1..=8 => PLoc::Reg(self.0.next().unwrap(), size as _),
size @ 9..=16 => PLoc::WideReg(self.0.next_chunk::<2>().unwrap()[0], size as _),
size @ 17.. => PLoc::Ref(self.0.next().unwrap(), size),
})
}
}
impl ctx_map::CtxEntry for Ident {
type Ctx = str;
type Key<'a> = &'a str;
fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> {
unsafe { ctx.get_unchecked(self.range()) }
}
}
#[derive(Default)]
struct IdentInterner {
lookup: ctx_map::CtxMap<Ident>,
strings: String,
}
impl IdentInterner {
fn intern(&mut self, ident: &str) -> Ident {
let (entry, hash) = self.lookup.entry(ident, &self.strings);
match entry {
hash_map::RawEntryMut::Occupied(o) => o.get_key_value().0.value,
hash_map::RawEntryMut::Vacant(v) => {
let id = Ident::new(self.strings.len() as _, ident.len() as _).unwrap();
self.strings.push_str(ident);
v.insert(ctx_map::Key { hash, value: id }, ());
id
}
}
}
fn ident_str(&self, ident: Ident) -> &str {
&self.strings[ident.range()]
}
fn project(&self, ident: &str) -> Option<Ident> {
self.lookup.get(ident, &self.strings).copied()
}
fn clear(&mut self) {
self.lookup.clear();
self.strings.clear()
}
}
#[derive(Default)]
struct TypesTmp {
struct_fields: Vec<StructField>,
enum_fields: Vec<EnumField>,
args: Vec<ty::Id>,
}
#[derive(Default)]
pub struct TypeIns {
args: Vec<ty::Id>,
struct_fields: Vec<StructField>,
enum_fields: Vec<EnumField>,
funcs: EntVec<ty::Func, Func>,
globals: EntVec<ty::Global, Global>,
consts: EntVec<ty::Const, Const>,
structs: EntVec<ty::Struct, Struct>,
enums: EntVec<ty::Enum, Enum>,
ptrs: EntVec<ty::Ptr, Ptr>,
opts: EntVec<ty::Opt, Opt>,
slices: EntVec<ty::Slice, Array>,
}
struct FTask {
file: Module,
id: ty::Func,
ct: bool,
}
struct StringRef(ty::Global);
impl ctx_map::CtxEntry for StringRef {
type Ctx = EntVec<ty::Global, Global>;
type Key<'a> = &'a [u8];
fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> {
&ctx[self.0].data
}
}
#[derive(Default)]
pub struct Types {
syms: ctx_map::CtxMap<ty::Id>,
names: IdentInterner,
strings: ctx_map::CtxMap<StringRef>,
ins: TypeIns,
tmp: TypesTmp,
tasks: Vec<Option<FTask>>,
}
impl Types {
pub fn case(&self, ty: ty::Id) -> fn(&str) -> Result<(), &'static str> {
match ty.expand() {
ty::Kind::NEVER => |_| Ok(()),
ty::Kind::Enum(_)
| ty::Kind::Struct(_)
| ty::Kind::Builtin(_)
| ty::Kind::Ptr(_)
| ty::Kind::Slice(_)
| ty::Kind::Opt(_) => utils::is_pascal_case,
ty::Kind::Func(f) if self.ins.funcs[f].returns_type => utils::is_pascal_case,
ty::Kind::Func(_) | ty::Kind::Global(_) | ty::Kind::Module(_) => utils::is_snake_case,
ty::Kind::Const(_) => utils::is_screaming_case,
}
}
fn pack_args(&mut self, arg_base: usize) -> Option<ty::Tuple> {
let base = self.ins.args.len();
self.ins.args.extend(self.tmp.args.drain(arg_base..));
let needle = &self.ins.args[base..];
if needle.is_empty() {
return Some(ty::Tuple::empty());
}
let len = needle.len();
// FIXME: maybe later when this becomes a bottleneck we use more
// efficient search (SIMD?, indexing?)
let sp = self.ins.args.windows(needle.len()).position(|val| val == needle).unwrap();
self.ins.args.truncate((sp + needle.len()).max(base));
ty::Tuple::new(sp, len)
}
fn struct_fields(&self, strct: ty::Struct) -> &[StructField] {
&self.ins.struct_fields[self.struct_field_range(strct)]
}
fn struct_field_range(&self, strct: ty::Struct) -> Range<usize> {
let start = self.ins.structs[strct].field_start as usize;
let end = self
.ins
.structs
.next(strct)
.map_or(self.ins.struct_fields.len(), |s| s.field_start as usize);
start..end
}
fn enum_fields(&self, enm: ty::Enum) -> &[EnumField] {
&self.ins.enum_fields[self.enum_field_range(enm)]
}
fn enum_field_range(&self, enm: ty::Enum) -> Range<usize> {
let start = self.ins.enums[enm].field_start as usize;
let end =
self.ins.enums.next(enm).map_or(self.ins.enum_fields.len(), |s| s.field_start as usize);
start..end
}
fn parama(&self, ret: impl Into<ty::Id>) -> (Option<PLoc>, ParamAlloc) {
let mut iter = ParamAlloc(1..12);
let ret = iter.next(ret.into(), self);
iter.0.start += ret.is_none() as u8;
(ret, iter)
}
fn make_opt(&mut self, base: ty::Id) -> ty::Id {
self.make_generic_ty(Opt { base }, |ins| &mut ins.opts, |e| SymKey::Optional(e))
}
fn make_ptr(&mut self, base: ty::Id) -> ty::Id {
self.make_generic_ty(Ptr { base }, |ins| &mut ins.ptrs, |e| SymKey::Pointer(e))
}
fn make_array(&mut self, elem: ty::Id, len: ArrayLen) -> ty::Id {
self.make_generic_ty(Array { elem, len }, |ins| &mut ins.slices, |e| SymKey::Array(e))
}
fn make_generic_ty<K: Ent + Into<ty::Id>, T: Copy>(
&mut self,
ty: T,
get_col: fn(&mut TypeIns) -> &mut EntVec<K, T>,
key: fn(&T) -> SymKey,
) -> ty::Id {
*self.syms.get_or_insert(key(&{ ty }), &mut self.ins, |ins| get_col(ins).push(ty).into())
}
fn size_of(&self, ty: ty::Id) -> Size {
match ty.expand() {
ty::Kind::Slice(arr) => {
let arr = &self.ins.slices[arr];
match arr.len {
0 => 0,
ArrayLen::MAX => 16,
len => self.size_of(arr.elem) * len,
}
}
ty::Kind::Struct(stru) => {
if self.ins.structs[stru].size.get() != 0 {
return self.ins.structs[stru].size.get();
}
let mut oiter = OffsetIter::new(stru, self);
while oiter.next(self).is_some() {}
self.ins.structs[stru].size.set(oiter.offset);
oiter.offset
}
ty::Kind::Enum(enm) => (self.enum_field_range(enm).len().ilog2() + 7) / 8,
ty::Kind::Opt(opt) => {
let base = self.ins.opts[opt].base;
if self.nieche_of(base).is_some() {
self.size_of(base)
} else {
self.size_of(base) + self.align_of(base)
}
}
_ if let Some(size) = ty.simple_size() => size,
ty => unimplemented!("size_of: {:?}", ty),
}
}
fn align_of(&self, ty: ty::Id) -> Size {
match ty.expand() {
ty::Kind::Struct(stru) => {
if self.ins.structs[stru].align.get() != 0 {
return self.ins.structs[stru].align.get() as _;
}
let align = self.ins.structs[stru].explicit_alignment.map_or_else(
|| {
self.struct_fields(stru)
.iter()
.map(|&StructField { ty, .. }| self.align_of(ty))
.max()
.unwrap_or(1)
},
|a| a as _,
);
self.ins.structs[stru].align.set(align.try_into().unwrap());
align
}
ty::Kind::Slice(arr) => {
let arr = &self.ins.slices[arr];
match arr.len {
ArrayLen::MAX => 8,
_ => self.align_of(arr.elem),
}
}
_ => self.size_of(ty).max(1),
}
}
fn base_of(&self, ty: ty::Id) -> Option<ty::Id> {
match ty.expand() {
ty::Kind::Ptr(p) => Some(self.ins.ptrs[p].base),
_ => None,
}
}
fn inner_of(&self, ty: ty::Id) -> Option<ty::Id> {
match ty.expand() {
ty::Kind::Opt(o) => Some(self.ins.opts[o].base),
_ => None,
}
}
fn opt_layout(&self, inner_ty: ty::Id) -> OptLayout {
match self.nieche_of(inner_ty) {
Some((_, flag_offset, flag_ty)) => {
OptLayout { flag_ty, flag_offset, payload_offset: 0 }
}
None => OptLayout {
flag_ty: ty::Id::BOOL,
flag_offset: 0,
payload_offset: self.align_of(inner_ty),
},
}
}
fn nieche_of(&self, ty: ty::Id) -> Option<(bool, Offset, ty::Id)> {
match ty.expand() {
ty::Kind::Ptr(_) => Some((false, 0, ty::Id::UINT)),
// TODO: cache this
ty::Kind::Struct(s) => OffsetIter::new(s, self).into_iter(self).find_map(|(f, off)| {
self.nieche_of(f.ty).map(|(uninit, o, ty)| (uninit, o + off, ty))
}),
_ => None,
}
}
fn find_struct_field(&self, s: ty::Struct, name: &str) -> Option<usize> {
let name = self.names.project(name)?;
self.struct_fields(s).iter().position(|f| f.name == name)
}
fn clear(&mut self) {
self.syms.clear();
self.names.clear();
self.strings.clear();
self.ins.funcs.clear();
self.ins.args.clear();
self.ins.globals.clear();
self.ins.structs.clear();
self.ins.struct_fields.clear();
self.ins.ptrs.clear();
self.ins.slices.clear();
debug_assert_eq!(self.tmp.struct_fields.len(), 0);
debug_assert_eq!(self.tmp.args.len(), 0);
debug_assert_eq!(self.tasks.len(), 0);
}
fn scope_of<'a>(&self, parent: ty::Id, file: &'a parser::Ast) -> Option<&'a [Expr<'a>]> {
match parent.expand() {
ty::Kind::Struct(s) => {
if let Expr::Struct { fields: [.., CommentOr::Or(Err(scope))], .. } =
self.ins.structs[s].ast.get(file)
{
Some(scope)
} else {
Some(&[])
}
}
_ => None,
}
}
fn parent_of(&self, ty: ty::Id) -> Option<ty::Id> {
match ty.expand() {
ty::Kind::Struct(s) => Some(self.ins.structs[s].file.into()),
_ => None,
}
}
}
struct OptLayout {
flag_ty: ty::Id,
flag_offset: Offset,
payload_offset: Offset,
}
struct OffsetIter {
strct: ty::Struct,
offset: Offset,
fields: Range<usize>,
}
impl OffsetIter {
fn new(strct: ty::Struct, tys: &Types) -> Self {
Self { strct, offset: 0, fields: tys.struct_field_range(strct) }
}
fn offset_of(tys: &Types, idx: ty::Struct, field: &str) -> Option<(Offset, ty::Id)> {
let field_id = tys.names.project(field)?;
OffsetIter::new(idx, tys)
.into_iter(tys)
.find(|(f, _)| f.name == field_id)
.map(|(f, off)| (off, f.ty))
}
fn next<'a>(&mut self, tys: &'a Types) -> Option<(&'a StructField, Offset)> {
let stru = &tys.ins.structs[self.strct];
let field = &tys.ins.struct_fields[self.fields.next()?];
let align = stru.explicit_alignment.map_or_else(|| tys.align_of(field.ty), |a| a as u32);
self.offset = (self.offset + align - 1) & !(align - 1);
let off = self.offset;
self.offset += tys.size_of(field.ty);
Some((field, off))
}
fn next_ty(&mut self, tys: &Types) -> Option<(ty::Id, Offset)> {
let (field, off) = self.next(tys)?;
Some((field.ty, off))
}
fn into_iter(mut self, tys: &Types) -> impl Iterator<Item = (&StructField, Offset)> {
core::iter::from_fn(move || self.next(tys))
}
}
#[cfg(test)]
pub fn run_test(
name: &'static str,
ident: &'static str,
input: &'static str,
test: fn(&'static str, &'static str, &mut String),
) {
use std::{io::Write, path::PathBuf, string::ToString};
let filter = std::env::var("PT_FILTER").unwrap_or_default();
if !filter.is_empty() && !name.contains(&filter) {
return;
}
let mut output = String::new();
{
struct DumpOut<'a>(&'a mut String);
impl Drop for DumpOut<'_> {
fn drop(&mut self) {
if std::thread::panicking() {
std::println!("{}", self.0);
}
}
}
let dump = DumpOut(&mut output);
test(ident, input, dump.0);
}
let mut root = PathBuf::from(
std::env::var("PT_TEST_ROOT")
.unwrap_or(concat!(env!("CARGO_MANIFEST_DIR"), "/tests").to_string()),
);
root.push(name.replace("::", "_").replace(concat!(env!("CARGO_PKG_NAME"), "_"), ""));
root.set_extension("txt");
let expected = std::fs::read_to_string(&root).unwrap_or_default();
if output == expected {
return;
}
if std::env::var("PT_UPDATE").is_ok() {
std::fs::write(&root, output).unwrap();
return;
}
if !root.exists() {
std::fs::create_dir_all(root.parent().unwrap()).unwrap();
std::fs::write(&root, vec![]).unwrap();
}
let mut proc = std::process::Command::new("diff")
.arg("-u")
.arg("--color")
.arg(&root)
.arg("-")
.stdin(std::process::Stdio::piped())
.stdout(std::process::Stdio::inherit())
.spawn()
.unwrap();
proc.stdin.as_mut().unwrap().write_all(output.as_bytes()).unwrap();
proc.wait().unwrap();
panic!("test failed");
}
#[cfg(test)]
fn test_parse_files(
ident: &str,
input: &str,
ctx: &mut parser::Ctx,
) -> (Vec<parser::Ast>, Vec<Vec<u8>>) {
use {
self::parser::FileKind,
std::{borrow::ToOwned, string::ToString},
};
fn find_block<'a>(mut input: &'a str, test_name: &str) -> &'a str {
const CASE_PREFIX: &str = "#### ";
const CASE_SUFFIX: &str = "\n```hb";
loop {
let Some(pos) = input.find(CASE_PREFIX) else {
unreachable!("test {test_name} not found");
};
input = unsafe { input.get_unchecked(pos + CASE_PREFIX.len()..) };
if !input.starts_with(test_name) {
continue;
}
input = unsafe { input.get_unchecked(test_name.len()..) };
if !input.starts_with(CASE_SUFFIX) {
continue;
}
input = unsafe { input.get_unchecked(CASE_SUFFIX.len()..) };
let end = input.find("```").unwrap_or(input.len());
break unsafe { input.get_unchecked(..end) };
}
}
let input = find_block(input, ident);
let mut module_map = Vec::new();
let mut embed_map = Vec::new();
let mut last_start = 0;
let mut last_module_name = "test.hb";
for (i, m) in input.match_indices("// in module: ") {
if last_module_name.ends_with(".hb") {
fmt::test::format(ident, input[last_start..i].trim());
module_map.push((last_module_name, &input[last_start..i]));
} else {
embed_map.push((last_module_name, &input[last_start..i]));
}
let (module_name, _) = input[i + m.len()..].split_once('\n').unwrap();
last_module_name = module_name;
last_start = i + m.len() + module_name.len() + 1;
}
if last_module_name.ends_with(".hb") {
fmt::test::format(ident, input[last_start..].trim());
module_map.push((last_module_name, &input[last_start..]));
} else {
embed_map.push((last_module_name, &input[last_start..]));
}
let mut loader = |path: &str, _: &str, kind| match kind {
FileKind::Module => module_map
.iter()
.position(|&(name, _)| name == path)
.ok_or("Module Not Found".to_string()),
FileKind::Embed => embed_map
.iter()
.position(|&(name, _)| name == path)
.ok_or("Embed Not Found".to_string()),
};
(
module_map
.iter()
.map(|&(path, content)| parser::Ast::new(path, content.to_owned(), ctx, &mut loader))
.collect(),
embed_map.iter().map(|&(_, content)| content.to_owned().into_bytes()).collect(),
)
}
fn endoce_string(
literal: &str,
str: &mut Vec<u8>,
report: impl Fn(&core::str::Bytes, &str),
) -> Option<()> {
let report = |bytes: &core::str::Bytes, msg: &_| {
report(bytes, msg);
None::<u8>
};
let decode_braces = |str: &mut Vec<u8>, bytes: &mut core::str::Bytes| {
while let Some(b) = bytes.next()
&& b != b'}'
{
let c = bytes.next().or_else(|| report(bytes, "incomplete escape sequence"))?;
let decode = |b: u8| {
Some(match b {
b'0'..=b'9' => b - b'0',
b'a'..=b'f' => b - b'a' + 10,
b'A'..=b'F' => b - b'A' + 10,
_ => report(bytes, "expected hex digit or '}'")?,
})
};
str.push(decode(b)? << 4 | decode(c)?);
}
Some(())
};
let mut bytes = literal.bytes();
while let Some(b) = bytes.next() {
if b != b'\\' {
str.push(b);
continue;
}
let b = match bytes.next().or_else(|| report(&bytes, "incomplete escape sequence"))? {
b'n' => b'\n',
b'r' => b'\r',
b't' => b'\t',
b'\\' => b'\\',
b'\'' => b'\'',
b'"' => b'"',
b'0' => b'\0',
b'{' => {
decode_braces(str, &mut bytes);
continue;
}
_ => report(&bytes, "unknown escape sequence, expected [nrt\\\"'{0]")?,
};
str.push(b);
}
if str.last() != Some(&0) {
report(&bytes, "string literal must end with null byte (for now)");
}
Some(())
}
pub fn quad_sort<T>(mut slice: &mut [T], mut cmp: impl FnMut(&T, &T) -> core::cmp::Ordering) {
while let Some(it) = slice.take_first_mut() {
for ot in &mut *slice {
if cmp(it, ot) == core::cmp::Ordering::Greater {
core::mem::swap(it, ot);
}
}
}
debug_assert!(slice.is_sorted_by(|a, b| cmp(a, b) != core::cmp::Ordering::Greater));
}
type FnvBuildHasher = core::hash::BuildHasherDefault<FnvHasher>;
struct FnvHasher(u64);
impl core::hash::Hasher for FnvHasher {
fn finish(&self) -> u64 {
self.0
}
fn write(&mut self, bytes: &[u8]) {
self.0 = bytes.iter().fold(self.0, |hash, &byte| {
let mut hash = hash;
hash ^= byte as u64;
hash = hash.wrapping_mul(0x100000001B3);
hash
});
}
}
impl Default for FnvHasher {
fn default() -> Self {
Self(0xCBF29CE484222325)
}
}