holey-bytes/hblang/src/son.rs
2024-09-19 13:40:03 +02:00

2798 lines
92 KiB
Rust

#![allow(dead_code)]
use {
crate::{
ident::{self, Ident},
instrs::{self},
lexer::{self, TokenKind},
log,
parser::{
self,
idfl::{self},
CommentOr, Expr, ExprRef, FileId, Pos, StructField,
},
task,
ty::{self},
Field, Func, HashMap, Reloc, Sig, Struct, SymKey, TypedReloc, Types,
},
core::fmt,
regalloc2::VReg,
std::{
cell::RefCell,
collections::hash_map,
fmt::{Debug, Display, Write},
hash::{Hash as _, Hasher},
mem::{self, MaybeUninit},
ops::{self, Deref, DerefMut, Not},
ptr::Unique,
},
};
const VC_SIZE: usize = 16;
const INLINE_ELEMS: usize = VC_SIZE / 2 - 1;
const VOID: Nid = 0;
const NEVER: Nid = 1;
union Vc {
inline: InlineVc,
alloced: AllocedVc,
}
impl Default for Vc {
fn default() -> Self {
Vc { inline: InlineVc { elems: MaybeUninit::uninit(), cap: 0 } }
}
}
impl Debug for Vc {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.as_slice().fmt(f)
}
}
impl Vc {
fn is_inline(&self) -> bool {
unsafe { self.inline.cap <= INLINE_ELEMS as Nid }
}
fn layout(&self) -> Option<std::alloc::Layout> {
unsafe {
self.is_inline()
.not()
.then(|| std::alloc::Layout::array::<Nid>(self.alloced.cap as _).unwrap_unchecked())
}
}
fn len(&self) -> usize {
unsafe {
if self.is_inline() {
self.inline.cap as _
} else {
self.alloced.len as _
}
}
}
fn len_mut(&mut self) -> &mut Nid {
unsafe {
if self.is_inline() {
&mut self.inline.cap
} else {
&mut self.alloced.len
}
}
}
fn as_ptr(&self) -> *const Nid {
unsafe {
match self.is_inline() {
true => self.inline.elems.as_ptr().cast(),
false => self.alloced.base.as_ptr(),
}
}
}
fn as_mut_ptr(&mut self) -> *mut Nid {
unsafe {
match self.is_inline() {
true => self.inline.elems.as_mut_ptr().cast(),
false => self.alloced.base.as_ptr(),
}
}
}
fn as_slice(&self) -> &[Nid] {
unsafe { std::slice::from_raw_parts(self.as_ptr(), self.len()) }
}
fn as_slice_mut(&mut self) -> &mut [Nid] {
unsafe { std::slice::from_raw_parts_mut(self.as_mut_ptr(), self.len()) }
}
fn push(&mut self, value: Nid) {
if let Some(layout) = self.layout()
&& unsafe { self.alloced.len == self.alloced.cap }
{
unsafe {
self.alloced.cap *= 2;
self.alloced.base = Unique::new_unchecked(
std::alloc::realloc(
self.alloced.base.as_ptr().cast(),
layout,
self.alloced.cap as usize * std::mem::size_of::<Nid>(),
)
.cast(),
);
}
} else if self.len() == INLINE_ELEMS {
unsafe {
let mut allcd =
Self::alloc((self.inline.cap + 1).next_power_of_two() as _, self.len());
std::ptr::copy_nonoverlapping(self.as_ptr(), allcd.as_mut_ptr(), self.len());
*self = allcd;
}
}
unsafe {
*self.len_mut() += 1;
self.as_mut_ptr().add(self.len() - 1).write(value);
}
}
unsafe fn alloc(cap: usize, len: usize) -> Self {
debug_assert!(cap > INLINE_ELEMS);
let layout = unsafe { std::alloc::Layout::array::<Nid>(cap).unwrap_unchecked() };
let alloc = unsafe { std::alloc::alloc(layout) };
unsafe {
Vc {
alloced: AllocedVc {
base: Unique::new_unchecked(alloc.cast()),
len: len as _,
cap: cap as _,
},
}
}
}
fn swap_remove(&mut self, index: usize) {
let len = self.len() - 1;
self.as_slice_mut().swap(index, len);
*self.len_mut() -= 1;
}
fn remove(&mut self, index: usize) {
self.as_slice_mut().copy_within(index + 1.., index);
*self.len_mut() -= 1;
}
}
impl Drop for Vc {
fn drop(&mut self) {
if let Some(layout) = self.layout() {
unsafe {
std::alloc::dealloc(self.alloced.base.as_ptr().cast(), layout);
}
}
}
}
impl Clone for Vc {
fn clone(&self) -> Self {
self.as_slice().into()
}
}
impl IntoIterator for Vc {
type IntoIter = VcIntoIter;
type Item = Nid;
fn into_iter(self) -> Self::IntoIter {
VcIntoIter { start: 0, end: self.len(), vc: self }
}
}
struct VcIntoIter {
start: usize,
end: usize,
vc: Vc,
}
impl Iterator for VcIntoIter {
type Item = Nid;
fn next(&mut self) -> Option<Self::Item> {
if self.start == self.end {
return None;
}
let ret = unsafe { std::ptr::read(self.vc.as_slice().get_unchecked(self.start)) };
self.start += 1;
Some(ret)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.end - self.start;
(len, Some(len))
}
}
impl DoubleEndedIterator for VcIntoIter {
fn next_back(&mut self) -> Option<Self::Item> {
if self.start == self.end {
return None;
}
self.end -= 1;
Some(unsafe { std::ptr::read(self.vc.as_slice().get_unchecked(self.end)) })
}
}
impl ExactSizeIterator for VcIntoIter {}
impl<const SIZE: usize> From<[Nid; SIZE]> for Vc {
fn from(value: [Nid; SIZE]) -> Self {
value.as_slice().into()
}
}
impl<'a> From<&'a [Nid]> for Vc {
fn from(value: &'a [Nid]) -> Self {
if value.len() <= INLINE_ELEMS {
let mut dflt = Self::default();
unsafe {
std::ptr::copy_nonoverlapping(value.as_ptr(), dflt.as_mut_ptr(), value.len())
};
dflt.inline.cap = value.len() as _;
dflt
} else {
let mut allcd = unsafe { Self::alloc(value.len(), value.len()) };
unsafe {
std::ptr::copy_nonoverlapping(value.as_ptr(), allcd.as_mut_ptr(), value.len())
};
allcd
}
}
}
impl Deref for Vc {
type Target = [Nid];
fn deref(&self) -> &Self::Target {
self.as_slice()
}
}
impl DerefMut for Vc {
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_slice_mut()
}
}
#[derive(Clone, Copy)]
#[repr(C)]
struct InlineVc {
cap: Nid,
elems: MaybeUninit<[Nid; INLINE_ELEMS]>,
}
#[derive(Clone, Copy)]
#[repr(C)]
struct AllocedVc {
cap: Nid,
len: Nid,
base: Unique<Nid>,
}
#[derive(Default)]
struct BitSet {
data: Vec<usize>,
}
impl BitSet {
const ELEM_SIZE: usize = std::mem::size_of::<usize>() * 8;
pub fn clear(&mut self, bit_size: usize) {
let new_len = (bit_size + Self::ELEM_SIZE - 1) / Self::ELEM_SIZE;
self.data.clear();
self.data.resize(new_len, 0);
}
#[track_caller]
pub fn set(&mut self, idx: Nid) -> bool {
let idx = idx as usize;
let data_idx = idx / Self::ELEM_SIZE;
let sub_idx = idx % Self::ELEM_SIZE;
let prev = self.data[data_idx] & (1 << sub_idx);
self.data[data_idx] |= 1 << sub_idx;
prev == 0
}
}
type Nid = u16;
pub mod reg {
pub const STACK_PTR: Reg = 254;
pub const ZERO: Reg = 0;
pub const RET: Reg = 1;
pub const RET_ADDR: Reg = 31;
pub type Reg = u8;
}
struct LookupEntry {
nid: Nid,
hash: u64,
}
#[derive(Default)]
struct IdentityHash(u64);
impl std::hash::Hasher for IdentityHash {
fn finish(&self) -> u64 {
self.0
}
fn write(&mut self, _: &[u8]) {
unimplemented!()
}
fn write_u64(&mut self, i: u64) {
self.0 = i;
}
}
impl std::hash::Hash for LookupEntry {
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u64(self.hash);
}
}
type Lookup = std::collections::hash_map::HashMap<
LookupEntry,
(),
std::hash::BuildHasherDefault<IdentityHash>,
>;
struct Nodes {
values: Vec<Result<Node, Nid>>,
visited: BitSet,
free: Nid,
lookup: Lookup,
}
impl Default for Nodes {
fn default() -> Self {
Self {
values: Default::default(),
free: Nid::MAX,
lookup: Default::default(),
visited: Default::default(),
}
}
}
impl Nodes {
fn remove_low(&mut self, id: Nid) -> Node {
let value = mem::replace(&mut self.values[id as usize], Err(self.free)).unwrap();
self.free = id;
value
}
fn clear(&mut self) {
self.values.clear();
self.lookup.clear();
self.free = Nid::MAX;
}
fn new_node_nop(&mut self, ty: impl Into<ty::Id>, kind: Kind, inps: impl Into<Vc>) -> Nid {
let ty = ty.into();
let node =
Node { ralloc_backref: u16::MAX, inputs: inps.into(), kind, ty, ..Default::default() };
let mut lookup_meta = None;
if !node.is_lazy_phi() {
let (raw_entry, hash) = Self::find_node(&mut self.lookup, &self.values, &node);
let entry = match raw_entry {
hash_map::RawEntryMut::Occupied(mut o) => return o.get_key_value().0.nid,
hash_map::RawEntryMut::Vacant(v) => v,
};
lookup_meta = Some((entry, hash));
}
if self.free == Nid::MAX {
self.free = self.values.len() as _;
self.values.push(Err(Nid::MAX));
}
let free = self.free;
for &d in node.inputs.as_slice() {
debug_assert_ne!(d, free);
self.values[d as usize].as_mut().unwrap_or_else(|_| panic!("{d}")).outputs.push(free);
}
self.free = mem::replace(&mut self.values[free as usize], Ok(node)).unwrap_err();
if let Some((entry, hash)) = lookup_meta {
entry.insert(LookupEntry { nid: free, hash }, ());
}
free
}
fn find_node<'a>(
lookup: &'a mut Lookup,
values: &[Result<Node, Nid>],
node: &Node,
) -> (
hash_map::RawEntryMut<'a, LookupEntry, (), std::hash::BuildHasherDefault<IdentityHash>>,
u64,
) {
let mut hasher = crate::FnvHasher::default();
node.key().hash(&mut hasher);
let hash = hasher.finish();
let entry = lookup
.raw_entry_mut()
.from_hash(hash, |n| values[n.nid as usize].as_ref().unwrap().key() == node.key());
(entry, hash)
}
fn remove_node_lookup(&mut self, target: Nid) {
if !self[target].is_lazy_phi() {
match Self::find_node(
&mut self.lookup,
&self.values,
self.values[target as usize].as_ref().unwrap(),
)
.0
{
hash_map::RawEntryMut::Occupied(o) => o.remove(),
hash_map::RawEntryMut::Vacant(_) => unreachable!(),
};
}
}
fn new_node(&mut self, ty: impl Into<ty::Id>, kind: Kind, inps: impl Into<Vc>) -> Nid {
let id = self.new_node_nop(ty, kind, inps);
if let Some(opt) = self.peephole(id) {
debug_assert_ne!(opt, id);
self.lock(opt);
self.remove(id);
self.unlock(opt);
opt
} else {
id
}
}
fn lock(&mut self, target: Nid) {
self[target].lock_rc += 1;
}
#[track_caller]
fn unlock(&mut self, target: Nid) {
self[target].lock_rc -= 1;
}
fn remove(&mut self, target: Nid) -> bool {
if !self[target].is_dangling() {
return false;
}
for i in 0..self[target].inputs.len() {
let inp = self[target].inputs[i];
let index = self[inp].outputs.iter().position(|&p| p == target).unwrap();
self[inp].outputs.swap_remove(index);
self.remove(inp);
}
self.remove_node_lookup(target);
self.remove_low(target);
true
}
fn peephole(&mut self, target: Nid) -> Option<Nid> {
match self[target].kind {
Kind::Start => {}
Kind::End => {}
Kind::BinOp { op } => return self.peephole_binop(target, op),
Kind::UnOp { op } => return self.peephole_unop(target, op),
Kind::Return => {}
Kind::Tuple { .. } => {}
Kind::CInt { .. } => {}
Kind::Call { .. } => {}
Kind::If => return self.peephole_if(target),
Kind::Region => {}
Kind::Phi => return self.peephole_phi(target),
Kind::Loop => {}
}
None
}
fn peephole_phi(&mut self, target: Nid) -> Option<Nid> {
if self[target].inputs[1] == self[target].inputs[2] {
return Some(self[target].inputs[1]);
}
None
}
fn peephole_if(&mut self, target: Nid) -> Option<Nid> {
let cond = self[target].inputs[1];
if let Kind::CInt { value } = self[cond].kind {
let ty = if value == 0 { ty::LEFT_UNREACHABLE } else { ty::RIGHT_UNREACHABLE };
return Some(self.new_node_nop(ty, Kind::If, [self[target].inputs[0], cond]));
}
None
}
fn peephole_unop(&mut self, target: Nid, op: TokenKind) -> Option<Nid> {
let &[ctrl, oper] = self[target].inputs.as_slice() else { unreachable!() };
let ty = self[target].ty;
if let Kind::CInt { value } = self[oper].kind {
return Some(self.new_node(ty, Kind::CInt { value: op.apply_unop(value) }, [ctrl]));
}
None
}
fn peephole_binop(&mut self, target: Nid, op: TokenKind) -> Option<Nid> {
use {Kind as K, TokenKind as T};
let &[ctrl, mut lhs, mut rhs] = self[target].inputs.as_slice() else { unreachable!() };
let ty = self[target].ty;
if let (&K::CInt { value: a }, &K::CInt { value: b }) = (&self[lhs].kind, &self[rhs].kind) {
return Some(self.new_node(ty, K::CInt { value: op.apply_binop(a, b) }, [ctrl]));
}
if lhs == rhs {
match op {
T::Sub => return Some(self.new_node(ty, K::CInt { value: 0 }, [ctrl])),
T::Add => {
let rhs = self.new_node_nop(ty, K::CInt { value: 2 }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, lhs, rhs]));
}
_ => {}
}
}
// this is more general the pushing constants to left to help deduplicate expressions more
let mut changed = false;
if op.is_comutative() && self[lhs].key() < self[rhs].key() {
std::mem::swap(&mut lhs, &mut rhs);
changed = true;
}
if let K::CInt { value } = self[rhs].kind {
match (op, value) {
(T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs),
(T::Mul, 0) => return Some(rhs),
_ => {}
}
}
if op.is_comutative() && self[lhs].kind == (K::BinOp { op }) {
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
if let K::CInt { value: av } = self[b].kind
&& let K::CInt { value: bv } = self[rhs].kind
{
// (a op #b) op #c => a op (#b op #c)
let new_rhs =
self.new_node_nop(ty, K::CInt { value: op.apply_binop(av, bv) }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs]));
}
if self.is_const(b) {
// (a op #b) op c => (a op c) op #b
let new_lhs = self.new_node(ty, K::BinOp { op }, [ctrl, a, rhs]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, new_lhs, b]));
}
}
if op == T::Add
&& self[lhs].kind == (K::BinOp { op: T::Mul })
&& self[lhs].inputs[1] == rhs
&& let K::CInt { value } = self[self[lhs].inputs[2]].kind
{
// a * #n + a => a * (#n + 1)
let new_rhs = self.new_node_nop(ty, K::CInt { value: value + 1 }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, rhs, new_rhs]));
}
if op == T::Sub && self[lhs].kind == (K::BinOp { op }) {
// (a - b) - c => a - (b + c)
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
let c = rhs;
let new_rhs = self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, b, c]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs]));
}
changed.then(|| self.new_node(ty, self[target].kind, [ctrl, lhs, rhs]))
}
fn is_const(&self, id: Nid) -> bool {
matches!(self[id].kind, Kind::CInt { .. })
}
fn replace(&mut self, target: Nid, with: Nid) {
let mut back_press = 0;
for i in 0..self[target].outputs.len() {
let out = self[target].outputs[i - back_press];
let index = self[out].inputs.iter().position(|&p| p == target).unwrap();
let prev_len = self[target].outputs.len();
self.modify_input(out, index, with);
back_press += (self[target].outputs.len() != prev_len) as usize;
}
self.remove(target);
}
fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid {
self.remove_node_lookup(target);
debug_assert_ne!(self[target].inputs[inp_index], with);
let prev = self[target].inputs[inp_index];
self[target].inputs[inp_index] = with;
let (entry, hash) = Self::find_node(
&mut self.lookup,
&self.values,
self.values[target as usize].as_ref().unwrap(),
);
match entry {
hash_map::RawEntryMut::Occupied(mut other) => {
let rpl = other.get_key_value().0.nid;
self[target].inputs[inp_index] = prev;
self.replace(target, rpl);
rpl
}
hash_map::RawEntryMut::Vacant(slot) => {
slot.insert(LookupEntry { nid: target, hash }, ());
let index = self[prev].outputs.iter().position(|&o| o == target).unwrap();
self[prev].outputs.swap_remove(index);
self[with].outputs.push(target);
target
}
}
}
#[track_caller]
fn unlock_remove(&mut self, id: Nid) -> bool {
self[id].lock_rc -= 1;
self.remove(id)
}
fn iter(&self) -> impl DoubleEndedIterator<Item = (Nid, &Node)> {
self.values.iter().enumerate().filter_map(|(i, s)| Some((i as _, s.as_ref().ok()?)))
}
fn graphviz_low(&self, out: &mut String) -> std::fmt::Result {
use std::fmt::Write;
for (i, node) in self.iter() {
let color = if self.is_cfg(i) { "yellow" } else { "white" };
writeln!(out, "node{i}[label=\"{}\" color={color}]", node.kind)?;
for (j, &o) in node.outputs.iter().enumerate() {
let color = if self.is_cfg(i) && self.is_cfg(o) { "red" } else { "lightgray" };
let index = self[o].inputs.iter().position(|&inp| i == inp).unwrap();
let style = if index == 0 && !self.is_cfg(o) { "style=dotted" } else { "" };
writeln!(
out,
"node{o} -> node{i}[color={color} taillabel={index} headlabel={j} {style}]",
)?;
}
}
Ok(())
}
#[allow(clippy::format_in_format_args)]
fn basic_blocks_instr(&mut self, out: &mut String, node: Nid) -> std::fmt::Result {
if self[node].kind != Kind::Loop && self[node].kind != Kind::Region {
write!(out, " {node:>2}-c{:>2}: ", self[node].ralloc_backref)?;
}
match self[node].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::If => write!(out, " if: "),
Kind::Region | Kind::Loop => writeln!(out, " goto: {node}"),
Kind::Return => write!(out, " ret: "),
Kind::CInt { value } => write!(out, "cint: #{value:<4}"),
Kind::Phi => write!(out, " phi: "),
Kind::Tuple { index } => write!(out, " arg: {index:<5}"),
Kind::BinOp { op } | Kind::UnOp { op } => {
write!(out, "{:>4}: ", op.name())
}
Kind::Call { func } => {
write!(out, "call: {func} {} ", self[node].depth)
}
}?;
if self[node].kind != Kind::Loop && self[node].kind != Kind::Region {
writeln!(
out,
" {:<14} {}",
format!("{:?}", self[node].inputs),
format!("{:?}", self[node].outputs)
)?;
}
Ok(())
}
fn basic_blocks_low(&mut self, out: &mut String, mut node: Nid) -> std::fmt::Result {
let iter = |nodes: &Nodes, node| nodes[node].outputs.clone().into_iter().rev();
while self.visited.set(node) {
match self[node].kind {
Kind::Start => {
writeln!(out, "start: {}", self[node].depth)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self[o].kind == (Kind::Tuple { index: 0 }) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::End => break,
Kind::If => {
self.basic_blocks_low(out, self[node].outputs[0])?;
node = self[node].outputs[1];
}
Kind::Region => {
writeln!(
out,
"region{node}: {} {} {:?}",
self[node].depth, self[node].loop_depth, self[node].inputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Loop => {
writeln!(
out,
"loop{node}: {} {} {:?}",
self[node].depth, self[node].loop_depth, self[node].outputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Return => {
node = self[node].outputs[0];
}
Kind::Tuple { .. } => {
writeln!(
out,
"b{node}: {} {} {:?}",
self[node].depth, self[node].loop_depth, self[node].outputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Call { .. } => {
let mut cfg_index = Nid::MAX;
let mut print_ret = true;
for o in iter(self, node) {
if self[o].inputs[0] == node
&& (self[node].outputs[0] != o || std::mem::take(&mut print_ret))
{
self.basic_blocks_instr(out, o)?;
}
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::CInt { .. } | Kind::Phi | Kind::BinOp { .. } | Kind::UnOp { .. } => {
unreachable!()
}
}
}
Ok(())
}
fn basic_blocks(&mut self) {
let mut out = String::new();
self.visited.clear(self.values.len());
self.basic_blocks_low(&mut out, VOID).unwrap();
log::inf!("{out}");
}
fn graphviz(&self) {
let out = &mut String::new();
_ = self.graphviz_low(out);
log::inf!("{out}");
}
fn is_cfg(&self, o: Nid) -> bool {
self[o].kind.is_cfg()
}
fn check_final_integrity(&self) {
//let mut failed = false;
for (_, node) in self.iter() {
debug_assert_eq!(node.lock_rc, 0, "{:?}", node.kind);
// if !matches!(node.kind, Kind::Return | Kind::End) && node.outputs.is_empty() {
// log::err!("outputs are empry {i} {:?}", node.kind);
// failed = true;
// }
// let mut allowed_cfgs = 1 + (node.kind == Kind::If) as usize;
// for &o in node.outputs.iter() {
// if self.is_cfg(i) {
// if allowed_cfgs == 0 && self.is_cfg(o) {
// log::err!(
// "multiple cfg outputs detected: {:?} -> {:?}",
// node.kind,
// self[o].kind
// );
// failed = true;
// } else {
// allowed_cfgs += self.is_cfg(o) as usize;
// }
// }
// let other = match &self.values[o as usize] {
// Ok(other) => other,
// Err(_) => {
// log::err!("the edge points to dropped node: {i} {:?} {o}", node.kind,);
// failed = true;
// continue;
// }
// };
// let occurs = self[o].inputs.iter().filter(|&&el| el == i).count();
// let self_occurs = self[i].outputs.iter().filter(|&&el| el == o).count();
// if occurs != self_occurs {
// log::err!(
// "the edge is not bidirectional: {i} {:?} {self_occurs} {o} {:?} {occurs}",
// node.kind,
// other.kind
// );
// failed = true;
// }
// }
}
//if failed {
// panic!()
//}
}
fn climb_expr(&mut self, from: Nid, mut for_each: impl FnMut(Nid, &Node) -> bool) -> bool {
fn climb_impl(
nodes: &mut Nodes,
from: Nid,
for_each: &mut impl FnMut(Nid, &Node) -> bool,
) -> bool {
for i in 0..nodes[from].inputs.len() {
let n = nodes[from].inputs[i];
if n != Nid::MAX
&& nodes.visited.set(n)
&& !nodes.is_cfg(n)
&& (for_each(n, &nodes[n]) || climb_impl(nodes, n, for_each))
{
return true;
}
}
false
}
self.visited.clear(self.values.len());
climb_impl(self, from, &mut for_each)
}
fn late_peephole(&mut self, target: Nid) -> Nid {
if let Some(id) = self.peephole(target) {
self.replace(target, id);
return id;
}
target
}
fn load_loop_value(&mut self, index: usize, value: &mut Nid, loops: &mut [Loop]) {
if *value != 0 {
return;
}
let [loob, loops @ ..] = loops else { unreachable!() };
let lvalue = &mut loob.scope[index].value;
self.load_loop_value(index, lvalue, loops);
if !self[*lvalue].is_lazy_phi() {
self.unlock(*value);
let inps = [loob.node, *lvalue, VOID];
self.unlock(inps[1]);
let ty = self[inps[1]].ty;
let phi = self.new_node_nop(ty, Kind::Phi, inps);
self[phi].lock_rc += 2;
*value = phi;
*lvalue = phi;
} else {
self.lock(*lvalue);
self.unlock(*value);
*value = *lvalue;
}
}
fn check_dominance(&mut self, nd: Nid, min: Nid, check_outputs: bool) {
let node = self[nd].clone();
for &i in node.inputs.iter() {
let dom = idom(self, i);
debug_assert!(
self.dominates(dom, min),
"{dom} {min} {node:?} {:?}",
self.basic_blocks()
);
}
if check_outputs {
for &o in node.outputs.iter() {
let dom = use_block(nd, o, self);
debug_assert!(
self.dominates(min, dom),
"{min} {dom} {node:?} {:?}",
self.basic_blocks()
);
}
}
}
fn dominates(&mut self, dominator: Nid, mut dominated: Nid) -> bool {
loop {
if dominator == dominated {
break true;
}
if idepth(self, dominator) > idepth(self, dominated) {
break false;
}
dominated = idom(self, dominated);
}
}
fn iter_mut(&mut self) -> impl Iterator<Item = &mut Node> {
self.values.iter_mut().flat_map(Result::as_mut)
}
}
impl ops::Index<Nid> for Nodes {
type Output = Node;
fn index(&self, index: Nid) -> &Self::Output {
self.values[index as usize].as_ref().unwrap()
}
}
impl ops::IndexMut<Nid> for Nodes {
fn index_mut(&mut self, index: Nid) -> &mut Self::Output {
self.values[index as usize].as_mut().unwrap()
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Default)]
#[repr(u8)]
pub enum Kind {
#[default]
Start,
End,
If,
Region,
Loop,
Return,
CInt {
value: i64,
},
Phi,
Tuple {
index: u32,
},
UnOp {
op: lexer::TokenKind,
},
BinOp {
op: lexer::TokenKind,
},
Call {
func: ty::Func,
},
}
impl Kind {
fn is_pinned(&self) -> bool {
self.is_cfg() || matches!(self, Self::Phi)
}
fn is_cfg(&self) -> bool {
matches!(
self,
Self::Start
| Self::End
| Self::Return
| Self::Tuple { .. }
| Self::Call { .. }
| Self::If
| Self::Region
| Self::Loop
)
}
fn ends_basic_block(&self) -> bool {
matches!(self, Self::Return | Self::If | Self::End)
}
fn starts_basic_block(&self) -> bool {
matches!(self, Self::Start | Self::End | Self::Tuple { .. } | Self::Region | Self::Loop)
}
}
impl fmt::Display for Kind {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Kind::CInt { value } => write!(f, "#{value}"),
Kind::Tuple { index } => write!(f, "tupl[{index}]"),
Kind::BinOp { op } => write!(f, "{op}"),
Kind::Call { func, .. } => write!(f, "call {func}"),
slf => write!(f, "{slf:?}"),
}
}
}
#[derive(Debug, Default, Clone)]
//#[repr(align(64))]
struct Node {
inputs: Vc,
outputs: Vc,
kind: Kind,
ralloc_backref: RallocBRef,
depth: IDomDepth,
lock_rc: LockRc,
ty: ty::Id,
loop_depth: LoopDepth,
offset: Offset,
}
impl Node {
fn is_dangling(&self) -> bool {
self.outputs.len() + self.lock_rc as usize == 0
}
fn key(&self) -> (Kind, &[Nid], ty::Id) {
(self.kind, &self.inputs, self.ty)
}
fn is_lazy_phi(&self) -> bool {
self.kind == Kind::Phi && self.inputs[2] == 0
}
}
type Offset = u32;
type Size = u32;
type RallocBRef = u16;
type LoopDepth = u16;
type CallCount = u16;
type LockRc = u16;
type IDomDepth = u16;
struct Loop {
node: Nid,
ctrl: [Nid; 2],
ctrl_scope: [Vec<Variable>; 2],
scope: Vec<Variable>,
}
#[derive(Clone, Copy)]
struct Variable {
id: Ident,
value: Nid,
}
struct ColorMeta {
rc: u32,
depth: LoopDepth,
loc: Loc,
}
#[derive(Default)]
struct ItemCtx {
file: FileId,
id: ty::Id,
ret: Option<ty::Id>,
task_base: usize,
nodes: Nodes,
ctrl: Nid,
loop_depth: LoopDepth,
call_count: u16,
filled: Vec<Nid>,
delayed_frees: Vec<RallocBRef>,
loops: Vec<Loop>,
vars: Vec<Variable>,
ret_relocs: Vec<Reloc>,
relocs: Vec<TypedReloc>,
jump_relocs: Vec<(Nid, Reloc)>,
code: Vec<u8>,
}
impl ItemCtx {
fn emit(&mut self, instr: (usize, [u8; instrs::MAX_SIZE])) {
crate::emit(&mut self.code, instr);
}
}
fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) {
let value = value.to_ne_bytes();
doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]);
}
struct FTask {
file: FileId,
id: ty::Func,
}
#[derive(Default, Debug)]
struct Ctx {
ty: Option<ty::Id>,
}
impl Ctx {
pub fn with_ty(self, ty: impl Into<ty::Id>) -> Self {
Self { ty: Some(ty.into()) }
}
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
struct Loc {
reg: reg::Reg,
}
#[derive(Default, Debug, Clone, Copy)]
struct GenCtx {
loc: Option<Loc>,
}
impl GenCtx {
pub fn with_loc(self, loc: impl Into<Loc>) -> Self {
Self { loc: Some(loc.into()) }
}
}
#[derive(Default)]
struct Pool {
cis: Vec<ItemCtx>,
}
#[derive(Default)]
pub struct Codegen {
pub files: Vec<parser::Ast>,
tasks: Vec<Option<FTask>>,
tys: Types,
ci: ItemCtx,
pool: Pool,
errors: RefCell<String>,
}
impl Codegen {
pub fn generate(&mut self) {
self.find_or_declare(0, 0, None, "main");
self.make_func_reachable(0);
self.complete_call_graph();
}
fn make_func_reachable(&mut self, func: ty::Func) {
let fuc = &mut self.tys.funcs[func as usize];
if fuc.offset == u32::MAX {
fuc.offset = task::id(self.tasks.len() as _);
self.tasks.push(Some(FTask { file: fuc.file, id: func }));
}
}
fn expr(&mut self, expr: &Expr) -> Option<Nid> {
self.expr_ctx(expr, Ctx::default())
}
fn build_struct(&mut self, fields: &[CommentOr<StructField>]) -> ty::Struct {
let fields = fields
.iter()
.filter_map(CommentOr::or)
.map(|sf| Field { name: sf.name.into(), ty: self.ty(&sf.ty) })
.collect();
self.tys.structs.push(Struct { fields });
self.tys.structs.len() as u32 - 1
}
fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Nid> {
let msg = "i know nothing about this name gal which is vired \
because we parsed succesfully";
match *expr {
Expr::Comment { .. } => Some(VOID),
Expr::Ident { pos, id, .. } => {
let Some(index) = self.ci.vars.iter().position(|v| v.id == id) else {
self.report(pos, msg);
return Some(NEVER);
};
self.ci.nodes.load_loop_value(
index,
&mut self.ci.vars[index].value,
&mut self.ci.loops,
);
Some(self.ci.vars[index].value)
}
Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right } => {
let value = self.expr(right)?;
self.ci.nodes.lock(value);
self.ci.vars.push(Variable { id, value });
Some(VOID)
}
Expr::BinOp { left: &Expr::Ident { id, pos, .. }, op: TokenKind::Assign, right } => {
let value = self.expr(right)?;
self.ci.nodes.lock(value);
let Some(var) = self.ci.vars.iter_mut().find(|v| v.id == id) else {
self.report(pos, msg);
return Some(NEVER);
};
let prev = std::mem::replace(&mut var.value, value);
self.ci.nodes.unlock_remove(prev);
Some(VOID)
}
Expr::BinOp { left, op, right } => {
let lhs = self.expr_ctx(left, ctx)?;
self.ci.nodes.lock(lhs);
let rhs = self.expr_ctx(right, Ctx::default().with_ty(self.tof(lhs)));
self.ci.nodes.unlock(lhs);
let rhs = rhs?;
let ty = self.assert_ty(
left.pos(),
self.tof(rhs),
self.tof(lhs),
false,
"right operand",
);
let inps = [VOID, lhs, rhs];
Some(self.ci.nodes.new_node(ty::bin_ret(ty, op), Kind::BinOp { op }, inps))
}
Expr::UnOp { pos, op, val } => {
let val = self.expr_ctx(val, ctx)?;
if !self.tof(val).is_integer() {
self.report(
pos,
format_args!("cant negate '{}'", self.ty_display(self.tof(val))),
);
}
Some(self.ci.nodes.new_node(self.tof(val), Kind::UnOp { op }, [VOID, val]))
}
Expr::If { cond, then, else_, .. } => {
let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?;
let if_node = self.ci.nodes.new_node(ty::VOID, Kind::If, [self.ci.ctrl, cond]);
'b: {
let branch = match self.tof(if_node).expand().inner() {
ty::LEFT_UNREACHABLE => else_,
ty::RIGHT_UNREACHABLE => Some(then),
_ => break 'b,
};
self.ci.nodes.lock(self.ci.ctrl);
self.ci.nodes.remove(if_node);
self.ci.nodes.unlock(self.ci.ctrl);
if let Some(branch) = branch {
return self.expr(branch);
} else {
return Some(VOID);
}
}
let mut else_scope = self.ci.vars.clone();
for &el in &self.ci.vars {
self.ci.nodes.lock(el.value);
}
self.ci.ctrl =
self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [if_node]);
let lcntrl = self.expr(then).map_or(Nid::MAX, |_| self.ci.ctrl);
let mut then_scope = std::mem::replace(&mut self.ci.vars, else_scope);
self.ci.ctrl =
self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 1 }, [if_node]);
let rcntrl = if let Some(else_) = else_ {
self.expr(else_).map_or(Nid::MAX, |_| self.ci.ctrl)
} else {
self.ci.ctrl
};
if lcntrl == Nid::MAX && rcntrl == Nid::MAX {
for then_var in then_scope {
self.ci.nodes.unlock_remove(then_var.value);
}
return None;
} else if lcntrl == Nid::MAX {
for then_var in then_scope {
self.ci.nodes.unlock_remove(then_var.value);
}
return Some(VOID);
} else if rcntrl == Nid::MAX {
for else_var in &self.ci.vars {
self.ci.nodes.unlock_remove(else_var.value);
}
self.ci.vars = then_scope;
self.ci.ctrl = lcntrl;
return Some(VOID);
}
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Region, [lcntrl, rcntrl]);
else_scope = std::mem::take(&mut self.ci.vars);
Self::merge_scopes(
&mut self.ci.nodes,
&mut self.ci.loops,
self.ci.ctrl,
&mut else_scope,
&mut then_scope,
true,
);
self.ci.vars = else_scope;
Some(VOID)
}
Expr::Loop { body, .. } => {
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Loop, [self.ci.ctrl; 2]);
self.ci.loops.push(Loop {
node: self.ci.ctrl,
ctrl: [Nid::MAX; 2],
ctrl_scope: std::array::from_fn(|_| vec![]),
scope: self.ci.vars.clone(),
});
for var in &mut self.ci.vars {
var.value = VOID;
}
self.ci.nodes[VOID].lock_rc += self.ci.vars.len() as LockRc;
self.expr(body);
let Loop { node, ctrl: [mut con, bre], ctrl_scope: [mut cons, mut bres], scope } =
self.ci.loops.pop().unwrap();
if con != Nid::MAX {
con = self.ci.nodes.new_node(ty::VOID, Kind::Region, [con, self.ci.ctrl]);
Self::merge_scopes(
&mut self.ci.nodes,
&mut self.ci.loops,
con,
&mut self.ci.vars,
&mut cons,
true,
);
self.ci.ctrl = con;
}
self.ci.nodes.modify_input(node, 1, self.ci.ctrl);
let idx = self.ci.nodes[node]
.outputs
.iter()
.position(|&n| self.ci.nodes.is_cfg(n))
.unwrap();
self.ci.nodes[node].outputs.swap(idx, 0);
if bre == Nid::MAX {
self.ci.ctrl = NEVER;
return None;
}
self.ci.ctrl = bre;
self.ci.nodes.lock(self.ci.ctrl);
std::mem::swap(&mut self.ci.vars, &mut bres);
for ((dest_var, mut scope_var), loop_var) in
self.ci.vars.iter_mut().zip(scope).zip(bres)
{
self.ci.nodes.unlock(loop_var.value);
if loop_var.value != VOID {
self.ci.nodes.unlock(scope_var.value);
if loop_var.value != scope_var.value {
scope_var.value =
self.ci.nodes.modify_input(scope_var.value, 2, loop_var.value);
self.ci.nodes.lock(scope_var.value);
} else {
let phi = &self.ci.nodes[scope_var.value];
debug_assert_eq!(phi.kind, Kind::Phi);
debug_assert_eq!(phi.inputs[2], VOID);
let prev = phi.inputs[1];
self.ci.nodes.replace(scope_var.value, prev);
scope_var.value = prev;
self.ci.nodes.lock(prev);
}
}
if dest_var.value == VOID {
self.ci.nodes.unlock(dest_var.value);
dest_var.value = scope_var.value;
self.ci.nodes.lock(dest_var.value);
}
self.ci.nodes.unlock_remove(scope_var.value);
}
self.ci.nodes.unlock(self.ci.ctrl);
Some(VOID)
}
Expr::Break { pos } => self.jump_to(pos, 1),
Expr::Continue { pos } => self.jump_to(pos, 0),
Expr::Call { func: &Expr::Ident { pos, id, name, .. }, args, .. } => {
self.ci.call_count += 1;
let func = self.find_or_declare(pos, self.ci.file, Some(id), name);
let ty::Kind::Func(func) = func else {
self.report(
pos,
format_args!(
"compiler cant (yet) call '{}'",
self.ty_display(func.compress())
),
);
return Some(NEVER);
};
self.make_func_reachable(func);
let fuc = &self.tys.funcs[func as usize];
let sig = fuc.sig.expect("TODO: generic functions");
let ast = self.files[fuc.file as usize].clone();
let Expr::BinOp { right: &Expr::Closure { args: cargs, .. }, .. } =
fuc.expr.get(&ast).unwrap()
else {
unreachable!()
};
self.assert_report(
args.len() == cargs.len(),
pos,
format_args!(
"expected {} function argumenr{}, got {}",
cargs.len(),
if cargs.len() == 1 { "" } else { "s" },
args.len()
),
);
let mut inps = Vc::from([self.ci.ctrl]);
for ((arg, carg), tyx) in args.iter().zip(cargs).zip(sig.args.range()) {
let ty = self.tys.args[tyx];
if self.tys.size_of(ty) == 0 {
continue;
}
let value = self.expr_ctx(arg, Ctx::default().with_ty(ty))?;
_ = self.assert_ty(
arg.pos(),
self.tof(value),
ty,
true,
format_args!("argument {}", carg.name),
);
inps.push(value);
}
self.ci.ctrl = self.ci.nodes.new_node(sig.ret, Kind::Call { func }, inps);
Some(self.ci.ctrl)
}
Expr::Return { pos, val } => {
let value = if let Some(val) = val {
self.expr_ctx(val, Ctx { ty: self.ci.ret })?
} else {
VOID
};
let inps = [self.ci.ctrl, value];
let out = &mut String::new();
self.report_log_to(pos, "returning here", out);
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Return, inps);
self.ci.nodes[NEVER].inputs.push(self.ci.ctrl);
self.ci.nodes[self.ci.ctrl].outputs.push(NEVER);
let expected = *self.ci.ret.get_or_insert(self.tof(value));
_ = self.assert_ty(pos, self.tof(value), expected, true, "return value");
None
}
Expr::Block { stmts, .. } => {
let base = self.ci.vars.len();
let mut ret = Some(VOID);
for stmt in stmts {
ret = ret.and(self.expr(stmt));
if let Some(id) = ret {
_ = self.assert_ty(
stmt.pos(),
self.tof(id),
ty::VOID.into(),
true,
"statement",
);
} else {
break;
}
}
self.ci.nodes.lock(self.ci.ctrl);
for var in self.ci.vars.drain(base..) {
self.ci.nodes.unlock_remove(var.value);
}
self.ci.nodes.unlock(self.ci.ctrl);
ret
}
Expr::Number { value, .. } => Some(self.ci.nodes.new_node(
ctx.ty.filter(|ty| ty.is_integer() || ty.is_pointer()).unwrap_or(ty::INT.into()),
Kind::CInt { value },
[VOID],
)),
ref e => {
self.report_unhandled_ast(e, "bruh");
Some(NEVER)
}
}
}
fn jump_to(&mut self, pos: Pos, id: usize) -> Option<Nid> {
let Some(mut loob) = self.ci.loops.last_mut() else {
self.report(pos, "break outside a loop");
return None;
};
if loob.ctrl[id] == Nid::MAX {
loob.ctrl[id] = self.ci.ctrl;
loob.ctrl_scope[id] = self.ci.vars[..loob.scope.len()].to_owned();
for v in &loob.ctrl_scope[id] {
self.ci.nodes.lock(v.value)
}
} else {
let reg = self.ci.nodes.new_node(ty::VOID, Kind::Region, [self.ci.ctrl, loob.ctrl[id]]);
let mut scope = std::mem::take(&mut loob.ctrl_scope[id]);
Self::merge_scopes(
&mut self.ci.nodes,
&mut self.ci.loops,
reg,
&mut scope,
&mut self.ci.vars,
false,
);
loob = self.ci.loops.last_mut().unwrap();
loob.ctrl_scope[id] = scope;
loob.ctrl[id] = reg;
}
self.ci.ctrl = NEVER;
None
}
fn merge_scopes(
nodes: &mut Nodes,
loops: &mut [Loop],
ctrl: Nid,
to: &mut [Variable],
from: &mut [Variable],
drop_from: bool,
) {
for (i, (else_var, then_var)) in to.iter_mut().zip(from).enumerate() {
if else_var.value != then_var.value {
nodes.load_loop_value(i, &mut then_var.value, loops);
nodes.load_loop_value(i, &mut else_var.value, loops);
if else_var.value != then_var.value {
let ty = nodes[else_var.value].ty;
debug_assert_eq!(ty, nodes[then_var.value].ty, "TODO: typecheck properly");
let inps = [ctrl, then_var.value, else_var.value];
nodes.unlock(else_var.value);
else_var.value = nodes.new_node(ty, Kind::Phi, inps);
nodes.lock(else_var.value);
}
}
if drop_from {
nodes.unlock_remove(then_var.value);
}
}
}
#[inline(always)]
fn tof(&self, id: Nid) -> ty::Id {
self.ci.nodes[id].ty
}
fn complete_call_graph(&mut self) {
while self.ci.task_base < self.tasks.len()
&& let Some(task_slot) = self.tasks.pop()
{
let Some(task) = task_slot else { continue };
self.emit_func(task);
}
}
fn emit_func(&mut self, FTask { file, id }: FTask) {
let func = &mut self.tys.funcs[id as usize];
func.offset = u32::MAX - 1;
debug_assert!(func.file == file);
let sig = func.sig.unwrap();
let ast = self.files[file as usize].clone();
let expr = func.expr.get(&ast).unwrap();
let repl = ItemCtx {
file,
id: ty::Kind::Func(id).compress(),
ret: Some(sig.ret),
..self.pool.cis.pop().unwrap_or_default()
};
let prev_ci = std::mem::replace(&mut self.ci, repl);
let start = self.ci.nodes.new_node(ty::VOID, Kind::Start, []);
debug_assert_eq!(start, VOID);
let end = self.ci.nodes.new_node(ty::NEVER, Kind::End, []);
debug_assert_eq!(end, NEVER);
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [VOID]);
let Expr::BinOp {
left: Expr::Ident { .. },
op: TokenKind::Decl,
right: &Expr::Closure { body, args, .. },
} = expr
else {
unreachable!("{expr}")
};
let mut sig_args = sig.args.range();
for (arg, index) in args.iter().zip(1u32..) {
let ty = self.tys.args[sig_args.next().unwrap()];
let value = self.ci.nodes.new_node(ty, Kind::Tuple { index }, [VOID]);
self.ci.nodes.lock(value);
let sym = parser::find_symbol(&ast.symbols, arg.id);
assert!(sym.flags & idfl::COMPTIME == 0, "TODO");
self.ci.vars.push(Variable { id: arg.id, value });
}
let orig_vars = self.ci.vars.clone();
if self.expr(body).is_some() {
self.report(body.pos(), "expected all paths in the fucntion to return");
}
for var in self.ci.vars.drain(..) {
self.ci.nodes.unlock(var.value);
}
if self.errors.borrow().is_empty() {
self.gcm();
#[cfg(debug_assertions)]
{
self.ci.nodes.check_final_integrity();
}
'_open_function: {
self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0));
self.ci.emit(instrs::st(reg::RET_ADDR, reg::STACK_PTR, 0, 0));
}
self.ci.nodes.basic_blocks();
//self.ci.nodes.graphviz();
self.ci.vars = orig_vars;
self.ci.nodes.visited.clear(self.ci.nodes.values.len());
let saved = self.emit_body(sig);
self.ci.vars.clear();
if let Some(last_ret) = self.ci.ret_relocs.last()
&& last_ret.offset as usize == self.ci.code.len() - 5
{
self.ci.code.truncate(self.ci.code.len() - 5);
self.ci.ret_relocs.pop();
}
// FIXME: maybe do this incrementally
for (nd, rel) in self.ci.jump_relocs.drain(..) {
let offset = self.ci.nodes[nd].offset;
rel.apply_jump(&mut self.ci.code, offset, 0);
}
let end = self.ci.code.len();
for ret_rel in self.ci.ret_relocs.drain(..) {
ret_rel.apply_jump(&mut self.ci.code, end as _, 0);
}
'_close_function: {
let pushed = (saved as i64 + 1) * 8;
let stack = 0;
write_reloc(&mut self.ci.code, 3, -(pushed + stack), 8);
write_reloc(&mut self.ci.code, 3 + 8 + 3, stack, 8);
write_reloc(&mut self.ci.code, 3 + 8 + 3 + 8, pushed, 2);
self.ci.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _));
self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _));
self.ci.emit(instrs::jala(reg::ZERO, reg::RET_ADDR, 0));
}
}
self.tys.funcs[id as usize].code.append(&mut self.ci.code);
self.tys.funcs[id as usize].relocs.append(&mut self.ci.relocs);
self.ci.nodes.clear();
self.ci.filled.clear();
self.pool.cis.push(std::mem::replace(&mut self.ci, prev_ci));
}
fn emit_body(&mut self, sig: Sig) -> usize {
// FIXME: make this more efficient (allocated with arena)
#[derive(Debug)]
struct Block {
nid: Nid,
preds: Vec<regalloc2::Block>,
succs: Vec<regalloc2::Block>,
instrs: regalloc2::InstRange,
params: Vec<regalloc2::VReg>,
branch_blockparams: Vec<regalloc2::VReg>,
}
#[derive(Debug)]
struct Instr {
nid: Nid,
ops: Vec<regalloc2::Operand>,
}
struct Function<'a> {
sig: Sig,
nodes: &'a mut Nodes,
tys: &'a Types,
blocks: Vec<Block>,
instrs: Vec<Instr>,
}
impl Debug for Function<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
for (i, block) in self.blocks.iter().enumerate() {
writeln!(f, "sb{i}{:?}-{:?}:", block.params, block.preds)?;
for inst in block.instrs.iter() {
let instr = &self.instrs[inst.index()];
writeln!(
f,
"{}: i{:?}:{:?}",
inst.index(),
self.nodes[instr.nid].kind,
instr.ops
)?;
}
writeln!(f, "eb{i}{:?}-{:?}:", block.branch_blockparams, block.succs)?;
}
Ok(())
}
}
impl<'a> Function<'a> {
fn new(nodes: &'a mut Nodes, tys: &'a Types, sig: Sig) -> Self {
let mut s = Self {
nodes,
tys,
sig,
blocks: Default::default(),
instrs: Default::default(),
};
s.nodes.visited.clear(s.nodes.values.len());
s.emit_node(VOID, VOID);
s.add_block(0);
s.blocks.pop();
s
}
fn add_block(&mut self, nid: Nid) -> RallocBRef {
if let Some(prev) = self.blocks.last_mut() {
prev.instrs = regalloc2::InstRange::new(
prev.instrs.first(),
regalloc2::Inst::new(self.instrs.len()),
);
}
self.blocks.push(Block {
nid,
preds: Default::default(),
succs: Default::default(),
instrs: regalloc2::InstRange::new(
regalloc2::Inst::new(self.instrs.len()),
regalloc2::Inst::new(self.instrs.len() + 1),
),
params: Default::default(),
branch_blockparams: Default::default(),
});
self.blocks.len() as RallocBRef - 1
}
fn add_instr(&mut self, nid: Nid, ops: Vec<regalloc2::Operand>) {
self.instrs.push(Instr { nid, ops });
}
fn urg(&mut self, nid: Nid) -> regalloc2::Operand {
regalloc2::Operand::reg_use(self.rg(nid))
}
fn def_nid(&mut self, _nid: Nid) {}
fn drg(&mut self, nid: Nid) -> regalloc2::Operand {
self.def_nid(nid);
regalloc2::Operand::reg_def(self.rg(nid))
}
fn rg(&self, nid: Nid) -> VReg {
regalloc2::VReg::new(nid as _, regalloc2::RegClass::Int)
}
fn emit_node(&mut self, nid: Nid, prev: Nid) {
if matches!(self.nodes[nid].kind, Kind::Region | Kind::Loop) {
let prev_bref = self.nodes[prev].ralloc_backref;
let node = self.nodes[nid].clone();
let idx = 1 + node.inputs.iter().position(|&i| i == prev).unwrap();
for ph in node.outputs {
if self.nodes[ph].kind != Kind::Phi {
continue;
}
let rg = self.rg(self.nodes[ph].inputs[idx]);
self.blocks[prev_bref as usize].branch_blockparams.push(rg);
}
self.add_instr(nid, vec![]);
match (self.nodes[nid].kind, self.nodes.visited.set(nid)) {
(Kind::Loop, false) => {
for i in node.inputs {
self.bridge(i, nid);
}
return;
}
(Kind::Region, true) => return,
_ => {}
}
} else if !self.nodes.visited.set(nid) {
return;
}
let node = self.nodes[nid].clone();
match node.kind {
Kind::Start => self.emit_node(node.outputs[0], VOID),
Kind::End => {}
Kind::If => {
self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref;
let &[_, cond] = node.inputs.as_slice() else { unreachable!() };
let &[mut then, mut else_] = node.outputs.as_slice() else {
unreachable!()
};
if let Kind::BinOp { op } = self.nodes[cond].kind
&& let Some((_, swapped)) = op.cond_op(node.ty.is_signed())
{
if swapped {
std::mem::swap(&mut then, &mut else_);
}
let &[_, lhs, rhs] = self.nodes[cond].inputs.as_slice() else {
unreachable!()
};
let ops = vec![self.urg(lhs), self.urg(rhs)];
self.add_instr(nid, ops);
} else {
todo!()
}
self.emit_node(then, nid);
self.emit_node(else_, nid);
}
Kind::Region | Kind::Loop => {
self.nodes[nid].ralloc_backref = self.add_block(nid);
if node.kind == Kind::Region {
for i in node.inputs {
self.bridge(i, nid);
}
}
let mut block = vec![];
for ph in node.outputs.clone() {
if self.nodes[ph].kind != Kind::Phi {
continue;
}
self.def_nid(ph);
block.push(self.rg(ph));
}
self.blocks[self.nodes[nid].ralloc_backref as usize].params = block;
for o in node.outputs.into_iter().rev() {
self.emit_node(o, nid);
}
}
Kind::Return => {
let ops = if node.inputs[1] != VOID {
vec![regalloc2::Operand::reg_fixed_use(
self.rg(node.inputs[1]),
regalloc2::PReg::new(1, regalloc2::RegClass::Int),
)]
} else {
vec![]
};
self.add_instr(nid, ops);
self.emit_node(node.outputs[0], nid);
}
Kind::CInt { .. } => {
let ops = vec![self.drg(nid)];
self.add_instr(nid, ops);
}
Kind::Phi => {}
Kind::Tuple { index } => {
let is_start = self.nodes[node.inputs[0]].kind == Kind::Start && index == 0;
if is_start || (self.nodes[node.inputs[0]].kind == Kind::If && index < 2) {
self.nodes[nid].ralloc_backref = self.add_block(nid);
self.bridge(prev, nid);
if is_start {
let mut parama = self.tys.parama(self.sig.ret);
for (arg, ti) in self.nodes[VOID]
.clone()
.outputs
.into_iter()
.skip(1)
.zip(self.sig.args.range())
{
let ty = self.tys.args[ti];
match self.tys.size_of(ty) {
0 => continue,
1..=8 => {
self.def_nid(arg);
self.add_instr(NEVER, vec![
regalloc2::Operand::reg_fixed_def(
self.rg(arg),
regalloc2::PReg::new(
parama.next() as _,
regalloc2::RegClass::Int,
),
),
]);
}
_ => todo!(),
}
}
}
for o in node.outputs.into_iter().rev() {
self.emit_node(o, nid);
}
} else {
todo!();
}
}
Kind::BinOp { op } => {
let &[_, lhs, rhs] = node.inputs.as_slice() else { unreachable!() };
let ops = if let Kind::CInt { .. } = self.nodes[rhs].kind
&& op.imm_binop(node.ty.is_signed(), 8).is_some()
{
vec![self.drg(nid), self.urg(lhs)]
} else if op.binop(node.ty.is_signed(), 8).is_some() {
vec![self.drg(nid), self.urg(lhs), self.urg(rhs)]
} else if op.cond_op(node.ty.is_signed()).is_some() {
return;
} else {
todo!("{op}")
};
self.add_instr(nid, ops);
}
Kind::UnOp { .. } => {
let ops = vec![self.drg(nid), self.urg(node.inputs[1])];
self.add_instr(nid, ops);
}
Kind::Call { func } => {
self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref;
let mut ops = vec![];
let fuc = self.tys.funcs[func as usize].sig.unwrap();
if self.tys.size_of(fuc.ret) != 0 {
self.def_nid(nid);
ops.push(regalloc2::Operand::reg_fixed_def(
self.rg(nid),
regalloc2::PReg::new(1, regalloc2::RegClass::Int),
));
}
let mut parama = self.tys.parama(fuc.ret);
for (&i, ti) in node.inputs[1..].iter().zip(fuc.args.range()) {
let ty = self.tys.args[ti];
match self.tys.size_of(ty) {
0 => continue,
1..=8 => {
ops.push(regalloc2::Operand::reg_fixed_use(
self.rg(i),
regalloc2::PReg::new(
parama.next() as _,
regalloc2::RegClass::Int,
),
));
}
_ => todo!(),
}
}
self.add_instr(nid, ops);
for o in node.outputs.into_iter().rev() {
if self.nodes[o].inputs[0] == nid {
self.emit_node(o, nid);
}
}
}
}
}
fn bridge(&mut self, pred: u16, succ: u16) {
if self.nodes[pred].ralloc_backref == u16::MAX
|| self.nodes[succ].ralloc_backref == u16::MAX
{
return;
}
self.blocks[self.nodes[pred].ralloc_backref as usize]
.succs
.push(regalloc2::Block::new(self.nodes[succ].ralloc_backref as usize));
self.blocks[self.nodes[succ].ralloc_backref as usize]
.preds
.push(regalloc2::Block::new(self.nodes[pred].ralloc_backref as usize));
}
}
impl<'a> regalloc2::Function for Function<'a> {
fn num_insts(&self) -> usize {
self.instrs.len()
}
fn num_blocks(&self) -> usize {
self.blocks.len()
}
fn entry_block(&self) -> regalloc2::Block {
regalloc2::Block(0)
}
fn block_insns(&self, block: regalloc2::Block) -> regalloc2::InstRange {
self.blocks[block.index()].instrs
}
fn block_succs(&self, block: regalloc2::Block) -> &[regalloc2::Block] {
&self.blocks[block.index()].succs
}
fn block_preds(&self, block: regalloc2::Block) -> &[regalloc2::Block] {
&self.blocks[block.index()].preds
}
fn block_params(&self, block: regalloc2::Block) -> &[regalloc2::VReg] {
&self.blocks[block.index()].params
}
fn is_ret(&self, insn: regalloc2::Inst) -> bool {
self.nodes[self.instrs[insn.index()].nid].kind == Kind::Return
}
fn is_branch(&self, insn: regalloc2::Inst) -> bool {
matches!(
self.nodes[self.instrs[insn.index()].nid].kind,
Kind::If | Kind::Tuple { .. } | Kind::Loop | Kind::Region
)
}
fn branch_blockparams(
&self,
block: regalloc2::Block,
_insn: regalloc2::Inst,
_succ_idx: usize,
) -> &[regalloc2::VReg] {
debug_assert!(
self.blocks[block.index()].succs.len() == 1
|| self.blocks[block.index()].branch_blockparams.is_empty()
);
&self.blocks[block.index()].branch_blockparams
}
fn inst_operands(&self, insn: regalloc2::Inst) -> &[regalloc2::Operand] {
&self.instrs[insn.index()].ops
}
fn inst_clobbers(&self, insn: regalloc2::Inst) -> regalloc2::PRegSet {
if matches!(self.nodes[self.instrs[insn.index()].nid].kind, Kind::Call { .. }) {
let mut set = regalloc2::PRegSet::default();
for i in 2..12 {
set.add(regalloc2::PReg::new(i, regalloc2::RegClass::Int));
}
set
} else {
regalloc2::PRegSet::default()
}
}
fn num_vregs(&self) -> usize {
self.nodes.values.len()
}
fn spillslot_size(&self, regclass: regalloc2::RegClass) -> usize {
match regclass {
regalloc2::RegClass::Int => 1,
regalloc2::RegClass::Float => unreachable!(),
regalloc2::RegClass::Vector => unreachable!(),
}
}
}
let mut nodes = std::mem::take(&mut self.ci.nodes);
let func = Function::new(&mut nodes, &self.tys, sig);
let env = regalloc2::MachineEnv {
preferred_regs_by_class: [
(1..13).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(),
vec![],
vec![],
],
non_preferred_regs_by_class: [
(13..64).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(),
vec![],
vec![],
],
scratch_by_class: Default::default(),
fixed_stack_slots: Default::default(),
};
let options = regalloc2::RegallocOptions { verbose_log: false, validate_ssa: true };
let output = regalloc2::run(&func, &env, &options).unwrap_or_else(|err| panic!("{err}"));
let mut saved_regs = HashMap::<u8, u8>::default();
let mut atr = |allc: regalloc2::Allocation| {
debug_assert!(allc.is_reg());
let hvenc = regalloc2::PReg::from_index(allc.index()).hw_enc() as u8;
if hvenc <= 12 {
return hvenc;
}
let would_insert = saved_regs.len() as u8 + reg::RET_ADDR + 1;
*saved_regs.entry(hvenc).or_insert(would_insert)
};
for (i, block) in func.blocks.iter().enumerate() {
let blk = regalloc2::Block(i as _);
func.nodes[block.nid].offset = self.ci.code.len() as _;
for instr_or_edit in output.block_insts_and_edits(&func, blk) {
let inst = match instr_or_edit {
regalloc2::InstOrEdit::Inst(inst) => inst,
regalloc2::InstOrEdit::Edit(&regalloc2::Edit::Move { from, to }) => {
self.ci.emit(instrs::cp(atr(to), atr(from)));
continue;
}
};
let nid = func.instrs[inst.index()].nid;
if nid == NEVER {
continue;
};
let allocs = output.inst_allocs(inst);
let node = &func.nodes[nid];
match node.kind {
Kind::Start => todo!(),
Kind::End => todo!(),
Kind::If => {
let &[_, cond] = node.inputs.as_slice() else { unreachable!() };
if let Kind::BinOp { op } = func.nodes[cond].kind
&& let Some((op, swapped)) = op.cond_op(node.ty.is_signed())
{
let rel = Reloc::new(self.ci.code.len(), 3, 2);
self.ci.jump_relocs.push((node.outputs[!swapped as usize], rel));
let &[lhs, rhs] = allocs else { unreachable!() };
self.ci.emit(op(atr(lhs), atr(rhs), 0));
} else {
todo!()
}
}
Kind::Loop | Kind::Region => {
if node.ralloc_backref as usize != i + 1 {
let rel = Reloc::new(self.ci.code.len(), 1, 4);
self.ci.jump_relocs.push((nid, rel));
self.ci.emit(instrs::jmp(0));
}
}
Kind::Return => {
if i != func.blocks.len() - 1 {
let rel = Reloc::new(self.ci.code.len(), 1, 4);
self.ci.ret_relocs.push(rel);
self.ci.emit(instrs::jmp(0));
}
}
Kind::CInt { value } => {
self.ci.emit(instrs::li64(atr(allocs[0]), value as _));
}
Kind::Phi => todo!(),
Kind::Tuple { .. } => todo!(),
Kind::UnOp { op } => {
let op = op.unop().expect("TODO: unary operator not supported");
let &[dst, oper] = allocs else { unreachable!() };
self.ci.emit(op(atr(dst), atr(oper)));
}
Kind::BinOp { op } => {
let &[.., rhs] = node.inputs.as_slice() else { unreachable!() };
if let Kind::CInt { value } = func.nodes[rhs].kind
&& let Some(op) =
op.imm_binop(node.ty.is_signed(), func.tys.size_of(node.ty))
{
let &[dst, lhs] = allocs else { unreachable!() };
self.ci.emit(op(atr(dst), atr(lhs), value as _));
} else if let Some(op) =
op.binop(node.ty.is_signed(), func.tys.size_of(node.ty))
{
let &[dst, lhs, rhs] = allocs else { unreachable!() };
self.ci.emit(op(atr(dst), atr(lhs), atr(rhs)));
} else if op.cond_op(node.ty.is_signed()).is_some() {
} else {
todo!()
}
}
Kind::Call { func } => {
self.ci.relocs.push(TypedReloc {
target: ty::Kind::Func(func).compress(),
reloc: Reloc::new(self.ci.code.len(), 3, 4),
});
self.ci.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0));
}
}
}
}
self.ci.nodes = nodes;
saved_regs.len()
}
// TODO: sometimes its better to do this in bulk
fn ty(&mut self, expr: &Expr) -> ty::Id {
match *expr {
Expr::Ident { id, .. } if ident::is_null(id) => id.into(),
ref e => {
self.report_unhandled_ast(e, "type");
ty::NEVER.into()
}
}
}
fn find_or_declare(
&mut self,
pos: Pos,
file: FileId,
name: Option<Ident>,
lit_name: &str,
) -> ty::Kind {
log::trc!("find_or_declare: {lit_name} {file}");
let f = self.files[file as usize].clone();
let Some((expr, ident)) = f.find_decl(name.ok_or(lit_name)) else {
match name.ok_or(lit_name) {
Ok(name) => {
let name = self.cfile().ident_str(name);
self.report(pos, format_args!("idk indentifier: {name}"))
}
Err("main") => self.report(
pos,
format_args!(
"missing main function in '{}', compiler can't \
emmit libraries since such concept is not defined",
f.path
),
),
Err(name) => self.report(pos, format_args!("idk indentifier: {name}")),
}
return ty::Kind::Builtin(ty::NEVER);
};
if let Some(existing) = self.tys.syms.get(&SymKey { file, ident }) {
if let ty::Kind::Func(id) = existing.expand()
&& let func = &mut self.tys.funcs[id as usize]
&& let Err(idx) = task::unpack(func.offset)
&& idx < self.tasks.len()
{
func.offset = task::id(self.tasks.len());
let task = self.tasks[idx].take();
self.tasks.push(task);
}
return existing.expand();
}
let prev_file = std::mem::replace(&mut self.ci.file, file);
let sym = match expr {
Expr::BinOp {
left: &Expr::Ident { .. },
op: TokenKind::Decl,
right: &Expr::Closure { pos, args, ret, .. },
} => {
let func = Func {
file,
sig: '_b: {
let arg_base = self.tys.args.len();
for arg in args {
let sym = parser::find_symbol(&f.symbols, arg.id);
assert!(sym.flags & idfl::COMPTIME == 0, "TODO");
let ty = self.ty(&arg.ty);
self.tys.args.push(ty);
}
let Some(args) = self.pack_args(arg_base) else {
self.fatal_report(
pos,
"you cant be serious, using more the 31 arguments in a function",
);
};
let ret = self.ty(ret);
Some(Sig { args, ret })
},
expr: {
let refr = ExprRef::new(expr);
debug_assert!(refr.get(&f).is_some());
refr
},
..Default::default()
};
let id = self.tys.funcs.len() as _;
self.tys.funcs.push(func);
ty::Kind::Func(id)
}
Expr::BinOp {
left: &Expr::Ident { .. },
op: TokenKind::Decl,
right: Expr::Struct { fields, .. },
} => ty::Kind::Struct(self.build_struct(fields)),
Expr::BinOp { .. } => {
todo!()
}
e => unimplemented!("{e:#?}"),
};
self.ci.file = prev_file;
self.tys.syms.insert(SymKey { ident, file }, sym.compress());
sym
}
fn ty_display(&self, ty: ty::Id) -> ty::Display {
ty::Display::new(&self.tys, &self.files, ty)
}
#[must_use]
#[track_caller]
fn assert_ty(
&self,
pos: Pos,
ty: ty::Id,
expected: ty::Id,
preserve_expected: bool,
hint: impl fmt::Display,
) -> ty::Id {
if let Some(res) = ty.try_upcast(expected)
&& (!preserve_expected || res == expected)
{
res
} else {
let ty = self.ty_display(ty);
let expected = self.ty_display(expected);
self.report(pos, format_args!("expected {hint} to be of type {expected}, got {ty}"));
ty::NEVER.into()
}
}
fn report_log(&self, pos: Pos, msg: impl std::fmt::Display) {
let mut buf = self.errors.borrow_mut();
self.report_log_to(pos, msg, &mut *buf);
}
fn report_log_to(&self, pos: Pos, msg: impl std::fmt::Display, out: &mut impl std::fmt::Write) {
self.cfile().report_to(pos, msg, out);
}
#[track_caller]
fn assert_report(&self, cond: bool, pos: Pos, msg: impl std::fmt::Display) {
if !cond {
self.report(pos, msg);
}
}
#[track_caller]
fn report(&self, pos: Pos, msg: impl std::fmt::Display) {
self.report_log(pos, msg);
}
#[track_caller]
fn report_unhandled_ast(&self, ast: &Expr, hint: &str) {
self.report(
ast.pos(),
format_args!(
"compiler does not (yet) know how to handle ({hint}):\n\
{ast:}\n\
info for weak people:\n\
{ast:#?}"
),
);
}
fn cfile(&self) -> &parser::Ast {
&self.files[self.ci.file as usize]
}
fn pack_args(&mut self, arg_base: usize) -> Option<ty::Tuple> {
let needle = &self.tys.args[arg_base..];
if needle.is_empty() {
return Some(ty::Tuple::empty());
}
let len = needle.len();
// FIXME: maybe later when this becomes a bottleneck we use more
// efficient search (SIMD?, indexing?)
let sp = self.tys.args.windows(needle.len()).position(|val| val == needle).unwrap();
self.tys.args.truncate((sp + needle.len()).max(arg_base));
ty::Tuple::new(sp, len)
}
fn fatal_report(&self, pos: Pos, msg: impl Display) -> ! {
self.report(pos, msg);
eprintln!("{}", self.errors.borrow());
std::process::exit(1);
}
fn gcm(&mut self) {
self.ci.nodes.visited.clear(self.ci.nodes.values.len());
push_up(&mut self.ci.nodes, NEVER);
// TODO: handle infinte loops
self.ci.nodes.visited.clear(self.ci.nodes.values.len());
push_down(&mut self.ci.nodes, VOID);
}
}
fn loop_depth(target: Nid, nodes: &mut Nodes) -> LoopDepth {
if nodes[target].loop_depth != 0 {
return nodes[target].loop_depth;
}
nodes[target].loop_depth = match nodes[target].kind {
Kind::Tuple { .. } | Kind::Call { .. } | Kind::Return | Kind::If => {
loop_depth(nodes[target].inputs[0], nodes)
}
Kind::Region => {
let l = loop_depth(nodes[target].inputs[0], nodes);
let r = loop_depth(nodes[target].inputs[1], nodes);
debug_assert_eq!(r, l);
l
}
Kind::Loop => {
let depth = loop_depth(nodes[target].inputs[0], nodes) + 1;
nodes[target].loop_depth = depth;
let mut cursor = nodes[target].inputs[1];
while cursor != target {
nodes[cursor].loop_depth = depth;
let next = if nodes[cursor].kind == Kind::Region {
loop_depth(nodes[cursor].inputs[0], nodes);
nodes[cursor].inputs[1]
} else {
idom(nodes, cursor)
};
debug_assert_ne!(next, VOID);
if let Kind::Tuple { index } = nodes[cursor].kind
&& nodes[next].kind == Kind::If
{
let other = *nodes[next]
.outputs
.iter()
.find(
|&&n| matches!(nodes[n].kind, Kind::Tuple { index: oi } if index != oi),
)
.unwrap();
if nodes[other].loop_depth == 0 {
nodes[other].loop_depth = depth - 1;
}
}
cursor = next;
}
depth
}
Kind::Start | Kind::End => 1,
Kind::CInt { .. } | Kind::Phi | Kind::BinOp { .. } | Kind::UnOp { .. } => {
unreachable!()
}
};
if target == 19 {
//panic!("{}", nodes[target].loop_depth);
}
nodes[target].loop_depth
}
fn better(nodes: &mut Nodes, is: Nid, then: Nid) -> bool {
loop_depth(is, nodes) < loop_depth(then, nodes)
|| idepth(nodes, is) > idepth(nodes, then)
|| nodes[then].kind == Kind::If
}
fn idepth(nodes: &mut Nodes, target: Nid) -> IDomDepth {
if target == VOID {
return 0;
}
if nodes[target].depth == 0 {
nodes[target].depth = match nodes[target].kind {
Kind::End | Kind::Start => unreachable!(),
Kind::Loop
| Kind::CInt { .. }
| Kind::BinOp { .. }
| Kind::UnOp { .. }
| Kind::Call { .. }
| Kind::Phi
| Kind::Tuple { .. }
| Kind::Return
| Kind::If => idepth(nodes, nodes[target].inputs[0]),
Kind::Region => {
idepth(nodes, nodes[target].inputs[0]).max(idepth(nodes, nodes[target].inputs[1]))
}
} + 1;
}
nodes[target].depth
}
fn push_up(nodes: &mut Nodes, node: Nid) {
if !nodes.visited.set(node) {
return;
}
if nodes[node].kind.is_pinned() {
for i in 0..nodes[node].inputs.len() {
let i = nodes[node].inputs[i];
push_up(nodes, i);
}
} else {
let mut max = VOID;
for i in 0..nodes[node].inputs.len() {
let i = nodes[node].inputs[i];
let is_call = matches!(nodes[i].kind, Kind::Call { .. });
if nodes.is_cfg(i) && !is_call {
continue;
}
push_up(nodes, i);
if idepth(nodes, i) > idepth(nodes, max) {
max = if is_call { i } else { idom(nodes, i) };
}
}
#[cfg(debug_assertions)]
{
nodes.check_dominance(node, max, false);
}
if max == VOID {
return;
}
let index = nodes[0].outputs.iter().position(|&p| p == node).unwrap();
nodes[0].outputs.remove(index);
nodes[node].inputs[0] = max;
debug_assert!(
!nodes[max].outputs.contains(&node) || matches!(nodes[max].kind, Kind::Call { .. }),
"{node} {:?} {max} {:?}",
nodes[node],
nodes[max]
);
nodes[max].outputs.push(node);
}
}
fn push_down(nodes: &mut Nodes, node: Nid) {
if !nodes.visited.set(node) {
return;
}
// TODO: handle memory nodes first
if nodes[node].kind.is_pinned() {
// TODO: use buffer to avoid allocation or better yet queue the location changes
for i in nodes[node].outputs.clone() {
push_down(nodes, i);
}
} else {
let mut min = None::<Nid>;
for i in 0..nodes[node].outputs.len() {
let i = nodes[node].outputs[i];
push_down(nodes, i);
let i = use_block(node, i, nodes);
min = min.map(|m| common_dom(i, m, nodes)).or(Some(i));
}
let mut min = min.unwrap();
debug_assert!(nodes.dominates(nodes[node].inputs[0], min));
let mut cursor = min;
loop {
if better(nodes, cursor, min) {
min = cursor;
}
if cursor == nodes[node].inputs[0] {
break;
}
cursor = idom(nodes, cursor);
}
if nodes[min].kind.ends_basic_block() {
min = idom(nodes, min);
}
#[cfg(debug_assertions)]
{
nodes.check_dominance(node, min, true);
}
let prev = nodes[node].inputs[0];
if min != prev {
debug_assert!(idepth(nodes, min) > idepth(nodes, prev));
let index = nodes[prev].outputs.iter().position(|&p| p == node).unwrap();
nodes[prev].outputs.remove(index);
nodes[node].inputs[0] = min;
nodes[min].outputs.push(node);
}
}
}
fn use_block(target: Nid, from: Nid, nodes: &mut Nodes) -> Nid {
if nodes[from].kind != Kind::Phi {
return idom(nodes, from);
}
let index = nodes[from].inputs.iter().position(|&n| n == target).unwrap();
nodes[nodes[from].inputs[0]].inputs[index - 1]
}
fn idom(nodes: &mut Nodes, target: Nid) -> Nid {
match nodes[target].kind {
Kind::Start => VOID,
Kind::End => unreachable!(),
Kind::Loop
| Kind::CInt { .. }
| Kind::BinOp { .. }
| Kind::UnOp { .. }
| Kind::Call { .. }
| Kind::Phi
| Kind::Tuple { .. }
| Kind::Return
| Kind::If => nodes[target].inputs[0],
Kind::Region => {
let &[lcfg, rcfg] = nodes[target].inputs.as_slice() else { unreachable!() };
common_dom(lcfg, rcfg, nodes)
}
}
}
fn common_dom(mut a: Nid, mut b: Nid, nodes: &mut Nodes) -> Nid {
while a != b {
let [ldepth, rdepth] = [idepth(nodes, a), idepth(nodes, b)];
if ldepth >= rdepth {
a = idom(nodes, a);
}
if ldepth <= rdepth {
b = idom(nodes, b);
}
}
a
}
#[cfg(test)]
mod tests {
use std::fmt::Write;
const README: &str = include_str!("../README.md");
fn generate(ident: &'static str, input: &'static str, output: &mut String) {
_ = env_logger::builder().is_test(true).try_init();
let mut codegen =
super::Codegen { files: crate::test_parse_files(ident, input), ..Default::default() };
codegen.generate();
{
let errors = codegen.errors.borrow();
if !errors.is_empty() {
output.push_str(&errors);
return;
}
}
let mut out = Vec::new();
codegen.tys.assemble(&mut out);
let mut buf = Vec::<u8>::new();
let err = codegen.tys.disasm(&out, &codegen.files, &mut buf, |_| {});
output.push_str(String::from_utf8(buf).unwrap().as_str());
if let Err(e) = err {
writeln!(output, "!!! asm is invalid: {e}").unwrap();
return;
}
println!("{output}");
crate::test_run_vm(&out, output);
}
crate::run_tests! { generate:
arithmetic => README;
variables => README;
functions => README;
comments => README;
if_statements => README;
loops => README;
fb_driver => README;
//pointers => README;
//structs => README;
//different_types => README;
//struct_operators => README;
//directives => README;
//global_variables => README;
//generic_types => README;
//generic_functions => README;
//c_strings => README;
//struct_patterns => README;
//arrays => README;
//struct_return_from_module_function => README;
////comptime_pointers => README;
//sort_something_viredly => README;
hex_octal_binary_literals => README;
//comptime_min_reg_leak => README;
////structs_in_registers => README;
//comptime_function_from_another_file => README;
//inline => README;
//inline_test => README;
const_folding_with_arg => README;
// FIXME: contains redundant copies
branch_assignments => README;
exhaustive_loop_testing => README;
}
}