waffle/src/interp.rs
2024-06-03 15:18:53 -04:00

1311 lines
53 KiB
Rust

//! Waffle IR interpreter.
use crate::entity::{EntityRef, PerEntity};
use crate::ir::*;
use crate::ops::Operator;
use smallvec::{smallvec, SmallVec};
use std::collections::HashMap;
mod wasi;
const WASM_PAGE: usize = 0x1_0000; // 64KiB
const MAX_PAGES: usize = 2048; // 2048 * 64KiB = 128MiB
pub struct InterpContext {
pub memories: PerEntity<Memory, InterpMemory>,
pub tables: PerEntity<Table, InterpTable>,
pub globals: PerEntity<Global, ConstVal>,
pub fuel: u64,
pub trace_handler: Option<Box<dyn Fn(usize, Vec<ConstVal>) -> bool + Send>>,
pub import_hander:
Option<Box<dyn FnMut(&mut InterpContext, &str, &[ConstVal]) -> InterpResult>>,
}
type MultiVal = SmallVec<[ConstVal; 2]>;
#[derive(Clone, Debug)]
pub enum InterpResult {
Ok(MultiVal),
Exit,
Trap(Func, Block, u32),
OutOfFuel,
TraceHandlerQuit,
}
impl InterpResult {
pub fn ok(self) -> anyhow::Result<MultiVal> {
match self {
InterpResult::Ok(vals) => Ok(vals),
other => anyhow::bail!("Bad InterpResult: {:?}", other),
}
}
}
impl InterpContext {
pub fn new(module: &Module<'_>) -> anyhow::Result<Self> {
let mut memories = PerEntity::default();
for (memory, data) in module.memories.entries() {
let mut interp_mem = InterpMemory {
data: vec![0; data.initial_pages * WASM_PAGE],
max_pages: data.maximum_pages.unwrap_or(MAX_PAGES),
};
for segment in &data.segments {
let end = match segment.offset.checked_add(segment.data.len()) {
Some(end) => end,
None => anyhow::bail!("Data segment offset + length overflows"),
};
if end > interp_mem.data.len() {
anyhow::bail!("Data segment out of bounds");
}
interp_mem.data[segment.offset..end].copy_from_slice(&segment.data[..]);
}
memories[memory] = interp_mem;
}
let mut tables = PerEntity::default();
for (table, data) in module.tables.entries() {
let interp_table = InterpTable {
elements: data.func_elements.clone().unwrap_or(vec![]),
};
tables[table] = interp_table;
}
let mut globals = PerEntity::default();
for (global, data) in module.globals.entries() {
globals[global] = match data.ty {
Type::I32 => ConstVal::I32(data.value.unwrap_or(0) as u32),
Type::I64 => ConstVal::I64(data.value.unwrap_or(0)),
Type::F32 => ConstVal::F32(data.value.unwrap_or(0) as u32),
Type::F64 => ConstVal::F64(data.value.unwrap_or(0)),
_ => unimplemented!(),
};
}
Ok(InterpContext {
memories,
tables,
globals,
fuel: u64::MAX,
trace_handler: None,
import_hander: None,
})
}
pub fn call(&mut self, module: &Module<'_>, mut func: Func, args: &[ConstVal]) -> InterpResult {
let mut args = args.to_vec();
'redo: loop {
let body = match &module.funcs[func] {
FuncDecl::Lazy(..) => panic!("Un-expanded function"),
FuncDecl::Compiled(..) => panic!("Already-compiled function"),
FuncDecl::Import(..) => {
let import = &module.imports[func.index()];
assert_eq!(import.kind, ImportKind::Func(func));
return self.call_import(&import.name[..], &args);
}
FuncDecl::Body(_, _, body) => body,
FuncDecl::None => panic!("FuncDecl::None in call()"),
};
log::trace!(
"Interp: entering func {}:\n{}\n",
func,
body.display_verbose("| ", Some(module))
);
log::trace!("args: {:?}", args);
let mut frame = InterpStackFrame {
func,
cur_block: body.entry,
values: HashMap::new(),
};
for (&arg, &(_, blockparam)) in args.iter().zip(body.blocks[body.entry].params.iter()) {
log::trace!("Entry block param {} gets arg value {:?}", blockparam, arg);
frame.values.insert(blockparam, smallvec![arg]);
}
loop {
self.fuel -= 1;
if self.fuel == 0 {
return InterpResult::OutOfFuel;
}
log::trace!("Interpreting block {}", frame.cur_block);
for (inst_idx, &inst) in body.blocks[frame.cur_block].insts.iter().enumerate() {
log::trace!("Evaluating inst {}", inst);
let result = match &body.values[inst] {
&ValueDef::Alias(_) => smallvec![],
&ValueDef::PickOutput(val, idx, _) => {
let val = body.resolve_alias(val);
smallvec![frame.values.get(&val).unwrap()[idx as usize]]
}
&ValueDef::Operator(Operator::Call { function_index }, args, _) => {
let args = body.arg_pool[args]
.iter()
.map(|&arg| {
let arg = body.resolve_alias(arg);
let multivalue = frame.values.get(&arg).unwrap();
assert_eq!(multivalue.len(), 1);
multivalue[0]
})
.collect::<Vec<_>>();
let result = self.call(module, function_index, &args[..]);
match result {
InterpResult::Ok(vals) => vals,
_ => return result,
}
}
&ValueDef::Operator(
Operator::CallIndirect { table_index, .. },
args,
_,
) => {
let args = body.arg_pool[args]
.iter()
.map(|&arg| {
let arg = body.resolve_alias(arg);
let multivalue = frame.values.get(&arg).unwrap();
assert_eq!(multivalue.len(), 1);
multivalue[0]
})
.collect::<Vec<_>>();
let idx = args.last().unwrap().as_u32().unwrap() as usize;
let func = self.tables[table_index].elements[idx];
let result = self.call(module, func, &args[..args.len() - 1]);
match result {
InterpResult::Ok(vals) => vals,
_ => return result,
}
}
&ValueDef::Operator(ref op, args, _) => {
let args = body.arg_pool[args]
.iter()
.map(|&arg| {
let arg = body.resolve_alias(arg);
let multivalue = frame
.values
.get(&arg)
.ok_or_else(|| format!("Unset SSA value: {}", arg))
.unwrap();
assert_eq!(multivalue.len(), 1);
multivalue[0]
})
.collect::<Vec<_>>();
let result = match const_eval(op, &args[..], Some(self)) {
Some(result) => result,
None => {
log::trace!("const_eval failed on {:?} args {:?}", op, args);
return InterpResult::Trap(
frame.func,
frame.cur_block,
inst_idx as u32,
);
}
};
smallvec![result]
}
&ValueDef::Trace(id, args) => {
if let Some(handler) = self.trace_handler.as_ref() {
let args = body.arg_pool[args]
.iter()
.map(|&arg| {
let arg = body.resolve_alias(arg);
let multivalue = frame
.values
.get(&arg)
.ok_or_else(|| format!("Unset SSA value: {}", arg))
.unwrap();
assert_eq!(multivalue.len(), 1);
multivalue[0]
})
.collect::<Vec<ConstVal>>();
if !handler(id, args) {
return InterpResult::TraceHandlerQuit;
}
}
smallvec![]
}
&ValueDef::None
| &ValueDef::Placeholder(..)
| &ValueDef::BlockParam(..) => {
unreachable!();
}
};
log::trace!("Inst {} gets result {:?}", inst, result);
frame.values.insert(inst, result);
}
match &body.blocks[frame.cur_block].terminator {
&Terminator::ReturnCallIndirect {
sig,
table,
args: ref args2,
} => {
let args2 = args2
.iter()
.map(|&arg| {
let arg = body.resolve_alias(arg);
let multivalue = frame.values.get(&arg).unwrap();
assert_eq!(multivalue.len(), 1);
multivalue[0]
})
.collect::<Vec<_>>();
let idx = args2.last().unwrap().as_u32().unwrap() as usize;
let fu = self.tables[table].elements[idx];
func = fu;
args = args2[..args2.len() - 1].to_vec();
continue 'redo;
// let result = self.call(module, func, &args[..args.len() - 1]);
// return result;
}
&Terminator::ReturnCall {
func: fu,
args: ref args2,
} => {
let args2 = args2
.iter()
.map(|&arg| {
let arg = body.resolve_alias(arg);
let multivalue = frame.values.get(&arg).unwrap();
assert_eq!(multivalue.len(), 1);
multivalue[0]
})
.collect::<Vec<_>>();
func = fu;
args = args2;
continue 'redo;
}
&Terminator::None => {
return InterpResult::Trap(frame.func, frame.cur_block, u32::MAX)
}
&Terminator::Unreachable => {
return InterpResult::Trap(frame.func, frame.cur_block, u32::MAX)
}
&Terminator::Br { ref target } => {
frame.apply_target(body, target);
}
&Terminator::CondBr {
cond,
ref if_true,
ref if_false,
} => {
let cond = body.resolve_alias(cond);
let cond = frame.values.get(&cond).unwrap();
let cond = cond[0].as_u32().unwrap() != 0;
if cond {
frame.apply_target(body, if_true);
} else {
frame.apply_target(body, if_false);
}
}
&Terminator::Select {
value,
ref targets,
ref default,
} => {
let value = body.resolve_alias(value);
let value = frame.values.get(&value).unwrap();
let value = value[0].as_u32().unwrap() as usize;
if value < targets.len() {
frame.apply_target(body, &targets[value]);
} else {
frame.apply_target(body, default);
}
}
&Terminator::Return { ref values } => {
let values = values
.iter()
.map(|&value| {
let value = body.resolve_alias(value);
frame.values.get(&value).unwrap()[0]
})
.collect();
log::trace!("returning from {}: {:?}", func, values);
return InterpResult::Ok(values);
}
Terminator::ReturnCallRef { sig, args } => todo!(),
}
}
}
}
fn call_import(&mut self, name: &str, args: &[ConstVal]) -> InterpResult {
let mut r = self.import_hander.take().unwrap();
let rs = r(self, name, args);
self.import_hander = Some(r);
return rs;
}
}
#[derive(Debug, Clone, Default)]
pub struct InterpStackFrame {
func: Func,
cur_block: Block,
values: HashMap<Value, SmallVec<[ConstVal; 2]>>,
}
impl InterpStackFrame {
fn apply_target(&mut self, body: &FunctionBody, target: &BlockTarget) {
// Collect blockparam args.
let args = target
.args
.iter()
.map(|&arg| {
let arg = body.resolve_alias(arg);
self.values.get(&arg).unwrap().clone()
})
.collect::<Vec<_>>();
log::trace!("taking target {:?} with args {:?}", target, args);
// Set blockparams.
for (arg, &(_, param)) in args
.into_iter()
.zip(body.blocks[target.block].params.iter())
{
log::trace!("setting blockparam {} to {:?}", param, arg);
self.values.insert(param, arg);
}
// Set current block.
self.cur_block = target.block;
}
}
#[derive(Debug, Clone, Default, PartialEq, Eq)]
pub struct InterpMemory {
pub data: Vec<u8>,
pub max_pages: usize,
}
#[derive(Debug, Clone, Default, PartialEq, Eq)]
pub struct InterpTable {
pub elements: Vec<Func>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Default)]
pub enum ConstVal {
I32(u32),
I64(u64),
F32(u32),
F64(u64),
#[default]
None,
}
impl ConstVal {
pub fn as_u32(self) -> Option<u32> {
match self {
Self::I32(x) => Some(x),
_ => None,
}
}
pub fn meet(a: Option<ConstVal>, b: Option<ConstVal>) -> Option<ConstVal> {
match (a, b) {
(None, None) => None,
(Some(a), None) | (None, Some(a)) => Some(a),
(Some(a), Some(b)) if a == b => Some(a),
_ => Some(ConstVal::None),
}
}
}
pub fn const_eval(
op: &Operator,
vals: &[ConstVal],
ctx: Option<&mut InterpContext>,
) -> Option<ConstVal> {
match (op, vals) {
(Operator::I32Const { value }, []) => Some(ConstVal::I32(*value)),
(Operator::I64Const { value }, []) => Some(ConstVal::I64(*value)),
(Operator::F32Const { value }, []) => Some(ConstVal::F32(*value)),
(Operator::F64Const { value }, []) => Some(ConstVal::F64(*value)),
(Operator::I32Eqz, [ConstVal::I32(a)]) => Some(ConstVal::I32(if *a == 0 { 1 } else { 0 })),
(Operator::I32Eq, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if a == b { 1 } else { 0 }))
}
(Operator::I32Ne, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if a != b { 1 } else { 0 }))
}
(Operator::I32LtS, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if (*a as i32) < (*b as i32) { 1 } else { 0 }))
}
(Operator::I32LtU, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if a < b { 1 } else { 0 }))
}
(Operator::I32GtS, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if (*a as i32) > (*b as i32) { 1 } else { 0 }))
}
(Operator::I32GtU, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if a > b { 1 } else { 0 }))
}
(Operator::I32LeS, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if (*a as i32) <= (*b as i32) {
1
} else {
0
}))
}
(Operator::I32LeU, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if a <= b { 1 } else { 0 }))
}
(Operator::I32GeS, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if (*a as i32) >= (*b as i32) {
1
} else {
0
}))
}
(Operator::I32GeU, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(if a >= b { 1 } else { 0 }))
}
(Operator::I64Eqz, [ConstVal::I64(a)]) => Some(ConstVal::I32(if *a == 0 { 1 } else { 0 })),
(Operator::I64Eq, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if a == b { 1 } else { 0 }))
}
(Operator::I64Ne, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if a != b { 1 } else { 0 }))
}
(Operator::I64LtS, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if (*a as i64) < (*b as i64) { 1 } else { 0 }))
}
(Operator::I64LtU, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if a < b { 1 } else { 0 }))
}
(Operator::I64GtS, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if (*a as i64) > (*b as i64) { 1 } else { 0 }))
}
(Operator::I64GtU, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if a > b { 1 } else { 0 }))
}
(Operator::I64LeS, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if (*a as i64) <= (*b as i64) {
1
} else {
0
}))
}
(Operator::I64LeU, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if a <= b { 1 } else { 0 }))
}
(Operator::I64GeS, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if (*a as i64) >= (*b as i64) {
1
} else {
0
}))
}
(Operator::I64GeU, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I32(if a >= b { 1 } else { 0 }))
}
(Operator::F32Eq, [ConstVal::F32(a), ConstVal::F32(b)]) => {
Some(ConstVal::I32(if f32::from_bits(*a) == f32::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F32Ne, [ConstVal::F32(a), ConstVal::F32(b)]) => {
Some(ConstVal::I32(if f32::from_bits(*a) != f32::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F32Lt, [ConstVal::F32(a), ConstVal::F32(b)]) => {
Some(ConstVal::I32(if f32::from_bits(*a) < f32::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F32Gt, [ConstVal::F32(a), ConstVal::F32(b)]) => {
Some(ConstVal::I32(if f32::from_bits(*a) > f32::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F32Le, [ConstVal::F32(a), ConstVal::F32(b)]) => {
Some(ConstVal::I32(if f32::from_bits(*a) <= f32::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F32Ge, [ConstVal::F32(a), ConstVal::F32(b)]) => {
Some(ConstVal::I32(if f32::from_bits(*a) >= f32::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F64Eq, [ConstVal::F64(a), ConstVal::F64(b)]) => {
Some(ConstVal::I32(if f64::from_bits(*a) == f64::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F64Ne, [ConstVal::F64(a), ConstVal::F64(b)]) => {
Some(ConstVal::I32(if f64::from_bits(*a) != f64::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F64Lt, [ConstVal::F64(a), ConstVal::F64(b)]) => {
Some(ConstVal::I32(if f64::from_bits(*a) < f64::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F64Gt, [ConstVal::F64(a), ConstVal::F64(b)]) => {
Some(ConstVal::I32(if f64::from_bits(*a) > f64::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F64Le, [ConstVal::F64(a), ConstVal::F64(b)]) => {
Some(ConstVal::I32(if f64::from_bits(*a) <= f64::from_bits(*b) {
1
} else {
0
}))
}
(Operator::F64Ge, [ConstVal::F64(a), ConstVal::F64(b)]) => {
Some(ConstVal::I32(if f64::from_bits(*a) >= f64::from_bits(*b) {
1
} else {
0
}))
}
(Operator::I32Clz, [ConstVal::I32(x)]) => Some(ConstVal::I32(x.leading_zeros())),
(Operator::I32Ctz, [ConstVal::I32(x)]) => Some(ConstVal::I32(x.trailing_zeros())),
(Operator::I32Popcnt, [ConstVal::I32(x)]) => Some(ConstVal::I32(x.count_ones())),
(Operator::I32Add, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(a.wrapping_add(*b)))
}
(Operator::I32Sub, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(a.wrapping_sub(*b)))
}
(Operator::I32Mul, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(a.wrapping_mul(*b)))
}
(Operator::I32DivU, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(a.checked_div(*b)?))
}
(Operator::I32DivS, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32((*a as i32).checked_div(*b as i32)? as u32))
}
(Operator::I32RemU, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(a.checked_rem(*b)?))
}
(Operator::I32RemS, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32((*a as i32).checked_rem(*b as i32)? as u32))
}
(Operator::I32And, [ConstVal::I32(a), ConstVal::I32(b)]) => Some(ConstVal::I32(a & b)),
(Operator::I32Or, [ConstVal::I32(a), ConstVal::I32(b)]) => Some(ConstVal::I32(a | b)),
(Operator::I32Xor, [ConstVal::I32(a), ConstVal::I32(b)]) => Some(ConstVal::I32(a ^ b)),
(Operator::I32Shl, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(a.wrapping_shl(*b)))
}
(Operator::I32ShrS, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32((*a as i32).wrapping_shr(*b) as u32))
}
(Operator::I32ShrU, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(a.wrapping_shr(*b)))
}
(Operator::I32Rotl, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(a.rotate_left(*b & 0x1f)))
}
(Operator::I32Rotr, [ConstVal::I32(a), ConstVal::I32(b)]) => {
Some(ConstVal::I32(a.rotate_right(*b & 0x1f)))
}
(Operator::I64Clz, [ConstVal::I64(x)]) => Some(ConstVal::I64(x.leading_zeros() as u64)),
(Operator::I64Ctz, [ConstVal::I64(x)]) => Some(ConstVal::I64(x.trailing_zeros() as u64)),
(Operator::I64Popcnt, [ConstVal::I64(x)]) => Some(ConstVal::I64(x.count_ones() as u64)),
(Operator::I64Add, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64(a.wrapping_add(*b)))
}
(Operator::I64Sub, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64(a.wrapping_sub(*b)))
}
(Operator::I64Mul, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64(a.wrapping_mul(*b)))
}
(Operator::I64DivU, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64(a.checked_div(*b)?))
}
(Operator::I64DivS, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64((*a as i64).checked_div(*b as i64)? as u64))
}
(Operator::I64RemU, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64(a.checked_rem(*b)?))
}
(Operator::I64RemS, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64((*a as i64).checked_rem(*b as i64)? as u64))
}
(Operator::I64And, [ConstVal::I64(a), ConstVal::I64(b)]) => Some(ConstVal::I64(a & b)),
(Operator::I64Or, [ConstVal::I64(a), ConstVal::I64(b)]) => Some(ConstVal::I64(a | b)),
(Operator::I64Xor, [ConstVal::I64(a), ConstVal::I64(b)]) => Some(ConstVal::I64(a ^ b)),
(Operator::I64Shl, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64(a.wrapping_shl(*b as u32)))
}
(Operator::I64ShrS, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64((*a as i64).wrapping_shr(*b as u32) as u64))
}
(Operator::I64ShrU, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64(a.wrapping_shr(*b as u32)))
}
(Operator::I64Rotl, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64(a.rotate_left((*b as u32) & 0x3f)))
}
(Operator::I64Rotr, [ConstVal::I64(a), ConstVal::I64(b)]) => {
Some(ConstVal::I64(a.rotate_right((*b as u32) & 0x3f)))
}
(Operator::F32Abs, [ConstVal::F32(a)]) => {
Some(ConstVal::F32(f32::from_bits(*a).abs().to_bits()))
}
(Operator::F32Neg, [ConstVal::F32(a)]) => {
Some(ConstVal::F32((-f32::from_bits(*a)).to_bits()))
}
(Operator::F32Ceil, [ConstVal::F32(a)]) => {
Some(ConstVal::F32(f32::from_bits(*a).ceil().to_bits()))
}
(Operator::F32Floor, [ConstVal::F32(a)]) => {
Some(ConstVal::F32(f32::from_bits(*a).floor().to_bits()))
}
(Operator::F32Trunc, [ConstVal::F32(a)]) => {
Some(ConstVal::F32(f32::from_bits(*a).trunc().to_bits()))
}
(Operator::F32Nearest, [ConstVal::F32(a)]) => {
// See
// https://github.com/paritytech/wasmi/blob/43ce25d47e26498b9372369345e75dc9632eca8f/crates/core/src/value.rs#L662
// for the origin of this algorithm.
//
// When https://github.com/rust-lang/rust/pull/95317 is
// resolved and the resulting API is stable, we can switch
// to that instead.
let a = f32::from_bits(*a);
let round = a.round();
let nearest = if a.fract().abs() != 0.5 {
round
} else {
let rem = round % 2.0;
if rem == 1.0 {
a.floor()
} else if rem == -1.0 {
a.ceil()
} else {
round
}
};
Some(ConstVal::F32(nearest.to_bits()))
}
(Operator::F32Sqrt, [ConstVal::F32(a)]) => {
Some(ConstVal::F32(f32::from_bits(*a).sqrt().to_bits()))
}
(Operator::F32Add, [ConstVal::F32(a), ConstVal::F32(b)]) => Some(ConstVal::F32(
(f32::from_bits(*a) + f32::from_bits(*b)).to_bits(),
)),
(Operator::F32Sub, [ConstVal::F32(a), ConstVal::F32(b)]) => Some(ConstVal::F32(
(f32::from_bits(*a) - f32::from_bits(*b)).to_bits(),
)),
(Operator::F32Mul, [ConstVal::F32(a), ConstVal::F32(b)]) => Some(ConstVal::F32(
(f32::from_bits(*a) * f32::from_bits(*b)).to_bits(),
)),
(Operator::F32Div, [ConstVal::F32(a), ConstVal::F32(b)]) => Some(ConstVal::F32(
(f32::from_bits(*a) / f32::from_bits(*b)).to_bits(),
)),
(Operator::F32Min, [ConstVal::F32(a), ConstVal::F32(b)]) => Some(ConstVal::F32(
f32_min(f32::from_bits(*a), f32::from_bits(*b)).to_bits(),
)),
(Operator::F32Max, [ConstVal::F32(a), ConstVal::F32(b)]) => Some(ConstVal::F32(
f32_max(f32::from_bits(*a), f32::from_bits(*b)).to_bits(),
)),
(Operator::F32Copysign, [ConstVal::F32(a), ConstVal::F32(b)]) => Some(ConstVal::F32(
f32::copysign(f32::from_bits(*a), f32::from_bits(*b)).to_bits(),
)),
(Operator::F64Abs, [ConstVal::F64(a)]) => {
Some(ConstVal::F64(f64::from_bits(*a).abs().to_bits()))
}
(Operator::F64Neg, [ConstVal::F64(a)]) => {
Some(ConstVal::F64((-f64::from_bits(*a)).to_bits()))
}
(Operator::F64Ceil, [ConstVal::F64(a)]) => {
Some(ConstVal::F64(f64::from_bits(*a).ceil().to_bits()))
}
(Operator::F64Floor, [ConstVal::F64(a)]) => {
Some(ConstVal::F64(f64::from_bits(*a).floor().to_bits()))
}
(Operator::F64Trunc, [ConstVal::F64(a)]) => {
Some(ConstVal::F64(f64::from_bits(*a).trunc().to_bits()))
}
(Operator::F64Nearest, [ConstVal::F64(a)]) => {
let a = f64::from_bits(*a);
let round = a.round();
let nearest = if a.fract().abs() != 0.5 {
round
} else {
let rem = round % 2.0;
if rem == 1.0 {
a.floor()
} else if rem == -1.0 {
a.ceil()
} else {
round
}
};
Some(ConstVal::F64(nearest.to_bits()))
}
(Operator::F64Sqrt, [ConstVal::F64(a)]) => {
Some(ConstVal::F64(f64::from_bits(*a).sqrt().to_bits()))
}
(Operator::F64Add, [ConstVal::F64(a), ConstVal::F64(b)]) => Some(ConstVal::F64(
(f64::from_bits(*a) + f64::from_bits(*b)).to_bits(),
)),
(Operator::F64Sub, [ConstVal::F64(a), ConstVal::F64(b)]) => Some(ConstVal::F64(
(f64::from_bits(*a) - f64::from_bits(*b)).to_bits(),
)),
(Operator::F64Mul, [ConstVal::F64(a), ConstVal::F64(b)]) => Some(ConstVal::F64(
(f64::from_bits(*a) * f64::from_bits(*b)).to_bits(),
)),
(Operator::F64Div, [ConstVal::F64(a), ConstVal::F64(b)]) => Some(ConstVal::F64(
(f64::from_bits(*a) / f64::from_bits(*b)).to_bits(),
)),
(Operator::F64Min, [ConstVal::F64(a), ConstVal::F64(b)]) => Some(ConstVal::F64(
f64_min(f64::from_bits(*a), f64::from_bits(*b)).to_bits(),
)),
(Operator::F64Max, [ConstVal::F64(a), ConstVal::F64(b)]) => Some(ConstVal::F64(
f64_max(f64::from_bits(*a), f64::from_bits(*b)).to_bits(),
)),
(Operator::F64Copysign, [ConstVal::F64(a), ConstVal::F64(b)]) => Some(ConstVal::F64(
f64::copysign(f64::from_bits(*a), f64::from_bits(*b)).to_bits(),
)),
(Operator::I32WrapI64, [ConstVal::I64(a)]) => Some(ConstVal::I32(*a as u32)),
(Operator::I32TruncF32S, [ConstVal::F32(a)]) => {
let a = f32::from_bits(*a);
if a >= (i32::MIN as f32) && a <= (i32::MAX as f32) {
Some(ConstVal::I32(a as i32 as u32))
} else {
None
}
}
(Operator::I32TruncF32U, [ConstVal::F32(a)]) => {
let a = f32::from_bits(*a);
if a >= 0.0 && a <= (u32::MAX as f32) {
Some(ConstVal::I32(a as u32))
} else {
None
}
}
(Operator::I32TruncF64S, [ConstVal::F64(a)]) => {
let a = f64::from_bits(*a);
if a >= (i32::MIN as f64) && a <= (i32::MAX as f64) {
Some(ConstVal::I32(a as i32 as u32))
} else {
None
}
}
(Operator::I32TruncF64U, [ConstVal::F64(a)]) => {
let a = f64::from_bits(*a);
if a >= 0.0 && a <= (u32::MAX as f64) {
Some(ConstVal::I32(a as u32))
} else {
None
}
}
(Operator::I64TruncF32S, [ConstVal::F32(a)]) => {
let a = f32::from_bits(*a);
if a >= (i64::MIN as f32) && a <= (i64::MAX as f32) {
Some(ConstVal::I64(a as i64 as u64))
} else {
None
}
}
(Operator::I64TruncF32U, [ConstVal::F32(a)]) => {
let a = f32::from_bits(*a);
if a >= 0.0 && a <= (u64::MAX as f32) {
Some(ConstVal::I64(a as u64))
} else {
None
}
}
(Operator::I64TruncF64S, [ConstVal::F64(a)]) => {
let a = f64::from_bits(*a);
if a >= (i64::MIN as f64) && a <= (i64::MAX as f64) {
Some(ConstVal::I64(a as i64 as u64))
} else {
None
}
}
(Operator::I64TruncF64U, [ConstVal::F64(a)]) => {
let a = f64::from_bits(*a);
if a >= 0.0 && a <= (u64::MAX as f64) {
Some(ConstVal::I64(a as u64))
} else {
None
}
}
(Operator::I32TruncSatF32S, [ConstVal::F32(a)]) => {
let a = f32::from_bits(*a);
Some(ConstVal::I32(if a.is_nan() {
0
} else {
a.min(i32::MAX as f32).max(i32::MIN as f32) as i32 as u32
}))
}
(Operator::I32TruncSatF32U, [ConstVal::F32(a)]) => {
let a = f32::from_bits(*a);
Some(ConstVal::I32(if a.is_nan() {
0
} else {
a.min(u32::MAX as f32).max(0.0) as u32
}))
}
(Operator::I32TruncSatF64S, [ConstVal::F64(a)]) => {
let a = f64::from_bits(*a);
Some(ConstVal::I32(if a.is_nan() {
0
} else {
a.min(i32::MAX as f64).max(i32::MIN as f64) as i32 as u32
}))
}
(Operator::I32TruncSatF64U, [ConstVal::F64(a)]) => {
let a = f64::from_bits(*a);
Some(ConstVal::I32(if a.is_nan() {
0
} else {
a.min(u32::MAX as f64).max(0.0) as u32
}))
}
(Operator::I64TruncSatF32S, [ConstVal::F32(a)]) => {
let a = f32::from_bits(*a);
Some(ConstVal::I64(if a.is_nan() {
0
} else {
a.min(i64::MAX as f32).max(i64::MIN as f32) as i64 as u64
}))
}
(Operator::I64TruncSatF32U, [ConstVal::F32(a)]) => {
let a = f32::from_bits(*a);
Some(ConstVal::I64(if a.is_nan() {
0
} else {
a.min(u64::MAX as f32).max(0.0) as u64
}))
}
(Operator::I64TruncSatF64S, [ConstVal::F64(a)]) => {
let a = f64::from_bits(*a);
Some(ConstVal::I64(if a.is_nan() {
0
} else {
a.min(i64::MAX as f64).max(i64::MIN as f64) as i64 as u64
}))
}
(Operator::I64TruncSatF64U, [ConstVal::F64(a)]) => {
let a = f64::from_bits(*a);
Some(ConstVal::I64(if a.is_nan() {
0
} else {
a.min(u64::MAX as f64).max(0.0) as u64
}))
}
(Operator::F32ConvertI32S, [ConstVal::I32(a)]) => {
Some(ConstVal::F32((*a as i32 as f32).to_bits()))
}
(Operator::F32ConvertI32U, [ConstVal::I32(a)]) => {
Some(ConstVal::F32((*a as f32).to_bits()))
}
(Operator::F32ConvertI64S, [ConstVal::I64(a)]) => {
Some(ConstVal::F32((*a as i64 as f32).to_bits()))
}
(Operator::F32ConvertI64U, [ConstVal::I64(a)]) => {
Some(ConstVal::F32((*a as f32).to_bits()))
}
(Operator::F64ConvertI32S, [ConstVal::I32(a)]) => {
Some(ConstVal::F64((*a as i32 as f64).to_bits()))
}
(Operator::F64ConvertI32U, [ConstVal::I32(a)]) => {
Some(ConstVal::F64((*a as f64).to_bits()))
}
(Operator::F64ConvertI64S, [ConstVal::I64(a)]) => {
Some(ConstVal::F64((*a as i64 as f64).to_bits()))
}
(Operator::F64ConvertI64U, [ConstVal::I64(a)]) => {
Some(ConstVal::F64((*a as f64).to_bits()))
}
(Operator::F32DemoteF64, [ConstVal::F64(a)]) => {
Some(ConstVal::F32((f64::from_bits(*a) as f32).to_bits()))
}
(Operator::F64PromoteF32, [ConstVal::F32(a)]) => {
Some(ConstVal::F64((f32::from_bits(*a) as f64).to_bits()))
}
(Operator::F32ReinterpretI32, [ConstVal::I32(a)]) => Some(ConstVal::F32(*a)),
(Operator::F64ReinterpretI64, [ConstVal::I64(a)]) => Some(ConstVal::F64(*a)),
(Operator::I32ReinterpretF32, [ConstVal::F32(a)]) => Some(ConstVal::I32(*a)),
(Operator::I64ReinterpretF64, [ConstVal::F64(a)]) => Some(ConstVal::I64(*a)),
(Operator::I32Extend8S, [ConstVal::I32(a)]) => Some(ConstVal::I32(*a as i8 as i32 as u32)),
(Operator::I32Extend16S, [ConstVal::I32(a)]) => {
Some(ConstVal::I32(*a as i16 as i32 as u32))
}
(Operator::I64Extend8S, [ConstVal::I64(a)]) => Some(ConstVal::I64(*a as i8 as i64 as u64)),
(Operator::I64Extend16S, [ConstVal::I64(a)]) => {
Some(ConstVal::I64(*a as i16 as i64 as u64))
}
(Operator::I64Extend32S, [ConstVal::I64(a)]) => {
Some(ConstVal::I64(*a as i32 as i64 as u64))
}
(Operator::I64ExtendI32S, [ConstVal::I32(a)]) => {
Some(ConstVal::I64(*a as i32 as i64 as u64))
}
(Operator::I64ExtendI32U, [ConstVal::I32(a)]) => Some(ConstVal::I64(*a as u64)),
(Operator::Select, [x, y, ConstVal::I32(k)]) => Some(if *k != 0 { *x } else { *y }),
(Operator::TypedSelect { .. }, [x, y, ConstVal::I32(k)]) => {
Some(if *k != 0 { *x } else { *y })
}
(Operator::GlobalGet { global_index }, []) => {
ctx.map(|global| global.globals[*global_index])
}
(Operator::GlobalSet { global_index }, [x]) => ctx.map(|global| {
global.globals[*global_index] = *x;
ConstVal::None
}),
(Operator::TableGet { .. }, _)
| (Operator::TableSet { .. }, _)
| (Operator::TableGrow { .. }, _) => None,
(Operator::TableSize { table_index }, []) => {
ctx.map(|global| ConstVal::I32(global.tables[*table_index].elements.len() as u32))
}
(Operator::MemorySize { mem }, []) => {
ctx.map(|global| ConstVal::I32((global.memories[*mem].data.len() / WASM_PAGE) as u32))
}
(Operator::MemoryGrow { mem }, [ConstVal::I32(amount)]) => ctx.and_then(|global| {
let cur_pages = global.memories[*mem].data.len() / WASM_PAGE;
let new_pages = cur_pages + (*amount as usize);
if new_pages > global.memories[*mem].max_pages || new_pages > MAX_PAGES {
None
} else {
global.memories[*mem].data.resize(new_pages * WASM_PAGE, 0);
Some(ConstVal::I32(cur_pages as u32))
}
}),
(Operator::Nop, []) => Some(ConstVal::None),
(Operator::Unreachable, []) => None,
(Operator::I32Load { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(4)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I32(read_u32(
&global.memories[memory.memory],
addr,
)))
}),
(Operator::I64Load { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(8)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I64(read_u64(
&global.memories[memory.memory],
addr,
)))
}),
(Operator::F32Load { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(4)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::F32(read_u32(
&global.memories[memory.memory],
addr,
)))
}),
(Operator::F64Load { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(8)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::F64(read_u64(
&global.memories[memory.memory],
addr,
)))
}),
(Operator::I32Load8S { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(1)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I32(
read_u8(&global.memories[memory.memory], addr) as i8 as i32 as u32,
))
}),
(Operator::I32Load8U { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(4)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I32(
read_u8(&global.memories[memory.memory], addr) as u32,
))
}),
(Operator::I32Load16S { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(2)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I32(
read_u16(&global.memories[memory.memory], addr) as i16 as i32 as u32,
))
}),
(Operator::I32Load16U { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(2)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I32(
read_u16(&global.memories[memory.memory], addr) as u32,
))
}),
(Operator::I64Load8S { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(1)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I64(
read_u8(&global.memories[memory.memory], addr) as i8 as i64 as u64,
))
}),
(Operator::I64Load8U { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(1)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I64(
read_u8(&global.memories[memory.memory], addr) as u64,
))
}),
(Operator::I64Load16S { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(2)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I64(
read_u16(&global.memories[memory.memory], addr) as i16 as i64 as u64,
))
}),
(Operator::I64Load16U { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(2)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I64(
read_u16(&global.memories[memory.memory], addr) as u64,
))
}),
(Operator::I64Load32S { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(4)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I64(
read_u32(&global.memories[memory.memory], addr) as i32 as i64 as u64,
))
}),
(Operator::I64Load32U { memory }, [ConstVal::I32(addr)]) => ctx.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(4)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
Some(ConstVal::I64(
read_u32(&global.memories[memory.memory], addr) as u64,
))
}),
(Operator::I32Store { memory }, [ConstVal::I32(addr), ConstVal::I32(data)]) => ctx
.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(4)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
write_u32(&mut global.memories[memory.memory], addr, *data);
Some(ConstVal::None)
}),
(Operator::I64Store { memory }, [ConstVal::I32(addr), ConstVal::I64(data)]) => ctx
.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(8)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
write_u64(&mut global.memories[memory.memory], addr, *data);
Some(ConstVal::None)
}),
(Operator::I32Store8 { memory }, [ConstVal::I32(addr), ConstVal::I32(data)]) => ctx
.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(1)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
write_u8(&mut global.memories[memory.memory], addr, *data as u8);
Some(ConstVal::None)
}),
(Operator::I32Store16 { memory }, [ConstVal::I32(addr), ConstVal::I32(data)]) => ctx
.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(2)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
write_u16(&mut global.memories[memory.memory], addr, *data as u16);
Some(ConstVal::None)
}),
(Operator::I64Store8 { memory }, [ConstVal::I32(addr), ConstVal::I64(data)]) => ctx
.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(1)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
write_u8(&mut global.memories[memory.memory], addr, *data as u8);
Some(ConstVal::None)
}),
(Operator::I64Store16 { memory }, [ConstVal::I32(addr), ConstVal::I64(data)]) => ctx
.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(2)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
write_u16(&mut global.memories[memory.memory], addr, *data as u16);
Some(ConstVal::None)
}),
(Operator::I64Store32 { memory }, [ConstVal::I32(addr), ConstVal::I64(data)]) => ctx
.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(4)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
write_u32(&mut global.memories[memory.memory], addr, *data as u32);
Some(ConstVal::None)
}),
(Operator::F32Store { memory }, [ConstVal::I32(addr), ConstVal::F32(data)]) => ctx
.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(4)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
write_u32(&mut global.memories[memory.memory], addr, *data);
Some(ConstVal::None)
}),
(Operator::F64Store { memory }, [ConstVal::I32(addr), ConstVal::F64(data)]) => ctx
.and_then(|global| {
let addr = addr.checked_add(memory.offset as u32)?;
if addr.checked_add(8)? > global.memories[memory.memory].data.len() as u32 {
return None;
}
write_u64(&mut global.memories[memory.memory], addr, *data);
Some(ConstVal::None)
}),
(_, args) if args.iter().any(|&arg| arg == ConstVal::None) => None,
_ => None,
}
}
pub(crate) fn read_u8(mem: &InterpMemory, addr: u32) -> u8 {
let addr = addr as usize;
mem.data[addr]
}
pub(crate) fn read_u16(mem: &InterpMemory, addr: u32) -> u16 {
use std::convert::TryInto;
let addr = addr as usize;
u16::from_le_bytes(mem.data[addr..(addr + 2)].try_into().unwrap())
}
pub(crate) fn read_u32(mem: &InterpMemory, addr: u32) -> u32 {
use std::convert::TryInto;
let addr = addr as usize;
u32::from_le_bytes(mem.data[addr..(addr + 4)].try_into().unwrap())
}
pub(crate) fn read_u64(mem: &InterpMemory, addr: u32) -> u64 {
use std::convert::TryInto;
let addr = addr as usize;
u64::from_le_bytes(mem.data[addr..(addr + 8)].try_into().unwrap())
}
pub(crate) fn write_u8(mem: &mut InterpMemory, addr: u32, data: u8) {
let addr = addr as usize;
mem.data[addr] = data;
}
pub(crate) fn write_u16(mem: &mut InterpMemory, addr: u32, data: u16) {
let addr = addr as usize;
mem.data[addr..(addr + 2)].copy_from_slice(&data.to_le_bytes()[..]);
}
pub(crate) fn write_u32(mem: &mut InterpMemory, addr: u32, data: u32) {
let addr = addr as usize;
mem.data[addr..(addr + 4)].copy_from_slice(&data.to_le_bytes()[..]);
}
pub(crate) fn write_u64(mem: &mut InterpMemory, addr: u32, data: u64) {
let addr = addr as usize;
mem.data[addr..(addr + 8)].copy_from_slice(&data.to_le_bytes()[..]);
}
fn f32_min(a: f32, b: f32) -> f32 {
if a.is_nan() || b.is_nan() {
f32::NAN
} else {
f32::min(a, b)
}
}
fn f32_max(a: f32, b: f32) -> f32 {
if a.is_nan() || b.is_nan() {
f32::NAN
} else {
f32::max(a, b)
}
}
fn f64_min(a: f64, b: f64) -> f64 {
if a.is_nan() || b.is_nan() {
f64::NAN
} else {
f64::min(a, b)
}
}
fn f64_max(a: f64, b: f64) -> f64 {
if a.is_nan() || b.is_nan() {
f64::NAN
} else {
f64::max(a, b)
}
}