waffle/src/passes/rpo.rs
Chris Fallin abc46f1d14 WIP.
2022-11-22 21:43:50 -08:00

175 lines
5.7 KiB
Rust

//! Reorder-into-RPO pass.
//!
//! The RPO sort order we choose is quite special: we want loop bodies
//! to be placed contiguously, without blocks that do not belong to
//! the loop in the middle.
//!
//! Consider the following CFG:
//!
//! ```plain
//! 1
//! |
//! 2 <-.
//! / | |
//! | 3 --'
//! | |
//! `> 4
//! |
//! 5
//! ```
//!
//! A normal RPO sort may produce 1, 2, 4, 5, 3 or 1, 2, 3, 4, 5
//! depending on which child order it chooses from block 2. (If it
//! visits 3 first, it will emit it first in postorder hence it comes
//! last.)
//!
//! One way of ensuring we get the right order would be to compute the
//! loop nest and make note of loops when choosing children to visit,
//! but we really would rather not do that, since we may not otherwise
//! need it.
//!
//! Instead, we keep a "pending" list: as we have nodes on the stack
//! during postorder traversal, we keep a list of other children that
//! we will visit once we get back to a given level. If another node
//! is pending, and is a successor we are considering, we visit it
//! *first* in postorder, so it is last in RPO. This is a way to
//! ensure that (e.g.) block 4 above is visited first when considering
//! successors of block 2.
use crate::declare_entity;
use crate::entity::{EntityRef, EntityVec, PerEntity};
use crate::ir::{Block, FunctionBody};
use std::collections::{HashMap, HashSet};
declare_entity!(RPOIndex, "rpo");
impl RPOIndex {
pub fn prev(self) -> RPOIndex {
RPOIndex::from(self.0.checked_sub(1).unwrap())
}
}
#[derive(Clone, Debug, Default)]
pub struct RPO {
pub order: EntityVec<RPOIndex, Block>,
pub rev: PerEntity<Block, Option<RPOIndex>>,
}
impl RPO {
pub fn compute(body: &FunctionBody) -> RPO {
let mut postorder = vec![];
let mut visited = HashSet::new();
let mut pending = vec![];
let mut pending_idx = HashMap::new();
visited.insert(body.entry);
Self::visit(
body,
body.entry,
&mut visited,
&mut pending,
&mut pending_idx,
&mut postorder,
);
postorder.reverse();
let order = EntityVec::from(postorder);
let mut rev = PerEntity::default();
for (rpo_index, &block) in order.entries() {
rev[block] = Some(rpo_index);
}
RPO { order, rev }
}
fn visit(
body: &FunctionBody,
block: Block,
visited: &mut HashSet<Block>,
pending: &mut Vec<Block>,
pending_idx: &mut HashMap<Block, usize>,
postorder: &mut Vec<Block>,
) {
// `pending` is a Vec, not a Set; we prioritize based on
// position (first in pending go first in postorder -> last in
// RPO). A case with nested loops to show why this matters:
//
// TODO example
let pending_top = pending.len();
pending.extend(body.blocks[block].succs.iter().copied());
// Sort new entries in `pending` by index at which they appear
// earlier. Those that don't appear in `pending` at all should
// be visited last (to appear in RPO first), so we want `None`
// values to sort first here (hence the "unwrap or MAX"
// idiom). Then those that appear earlier in `pending` should
// be visited earlier here to appear later in RPO, so they
// sort later.
pending[pending_top..]
.sort_by_key(|entry| pending_idx.get(entry).copied().unwrap_or(usize::MAX));
// Above we placed items in order they are to be visited;
// below we pop off the end, so we reverse here.
pending[pending_top..].reverse();
// Now update indices in `pending_idx`: insert entries for
// those seqs not yet present.
for i in pending_top..pending.len() {
pending_idx.entry(pending[i]).or_insert(i);
}
for _ in 0..(pending.len() - pending_top) {
let succ = pending.pop().unwrap();
if pending_idx.get(&succ) == Some(&pending.len()) {
pending_idx.remove(&succ);
}
if visited.insert(succ) {
Self::visit(body, succ, visited, pending, pending_idx, postorder);
}
}
postorder.push(block);
}
fn map_block(&self, block: Block) -> Option<Block> {
Some(Block::new(self.rev[block]?.index()))
}
}
pub fn run(body: &mut FunctionBody) {
let rpo = RPO::compute(body);
// Remap entry block.
body.entry = rpo
.map_block(body.entry)
.expect("Entry block must be in RPO sequence");
// Reorder blocks.
let mut block_data = std::mem::take(&mut body.blocks).into_vec();
let mut new_block_data = vec![];
for block in rpo.order.values().copied() {
new_block_data.push(std::mem::take(&mut block_data[block.index()]));
}
body.blocks = EntityVec::from(new_block_data);
// Rewrite references in each terminator, pred and succ list.
for block in body.blocks.values_mut() {
block.terminator.update_targets(|target| {
target.block = rpo
.map_block(target.block)
.expect("Target of reachable block must be reachable");
});
block.preds.retain_mut(|pred| {
if let Some(new_pred) = rpo.map_block(*pred) {
*pred = new_pred;
true
} else {
// Some preds may be unreachable, so are not in RPO.
false
}
});
for succ in &mut block.succs {
*succ = rpo
.map_block(*succ)
.expect("Succ of reachable block must be reachable");
}
}
}